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Abstract

We consider the problem of learning high-
dimensional Gaussian graphical models. The
graphical lasso is one of the most popular methods
for estimating Gaussian graphical models. How-
ever, it does not achieve the oracle rate of con-
vergence. In this paper, we propose the graphical
nonconvex optimization for optimal estimation
in Gaussian graphical models, which is then ap-
proximated by a sequence of adaptive convex pro-
grams. Our proposal is computationally tractable
and produces an estimator that achieves the oracle
rate of convergence. The statistical error intro-
duced by the sequential approximation is clearly
demonstrated via a contraction property. The pro-
posed methodology is then extended to modeling
semiparametric graphical models. We show via
numerical studies that the proposed estimator out-
performs other popular methods for estimating
Gaussian graphical models.

1. Introduction
We consider the problem of learning an undirected graph
G = (V,E), where V = {1, . . . , d} is a set of nodes that
represents d random variables, and E is an edge set that
describes the pairwise conditional dependence relationships
among the d random variables. Gaussian graphical models
have been widely used to represent pairwise conditional
dependencies among a set of random variables. Let X be
a d-dimensional random variables. Under the Gaussian as-
sumption X ∼ N (0,Σ∗), the graph G is encoded by the
sparse concentration matrix Θ∗ = (Σ∗)−1, or the sparse
inverse correlation matrix Ψ∗ = (C∗)−1. Here, C∗ is the
correlation matrix such that Σ∗ = WC∗W and W2 is a
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diagonal matrix with diagonal elements of Σ∗. It is well
known that the jth and kth variables are conditionally in-
dependent given all of the other variables if and only if the
(j, k)-th element of Θ∗ (or Ψ∗) is equal to zero. Thus, in-
ferring the conditional dependencies structure of a Gaussian
graphical model boils down to estimating a sparse inverse
covariance (or correlation) matrix.

A number of methods have been proposed to estimate the
sparse concentration matrix under the Gaussian assumption.
For example, Meinshausen & Bühlmann (2006) proposed a
neighborhood selection approach for estimating Gaussian
graphical models by solving a collection of sparse linear re-
gression problems using the lasso penalty. In addition, Yuan
(2010) and Cai et al. (2011) proposed the graphical Dantzig
and CLIME, both of which can be solved efficiently. From
a different perspective, Yuan & Lin (2007) and Friedman
et al. (2008) proposed the graphical lasso, a penalized likeli-
hood based approach, to estimate the concentration matrix
Θ∗ directly. Various extensions of the graphical lasso were
proposed and the theoretical properties were also studied
(among others, Banerjee et al., 2008; Rothman et al., 2008;
Ravikumar et al., 2011). The Gaussian graphical models
literature is vast and we refer the reader to Cai et al. (2016a)
and Drton & Maathuis (2016) for a comprehensive review.

Despite the popularity of the graphical lasso on modeling
sparse Gaussian graphical models, it does not achieve the
oracle rate of convergence. More specifically, it is believed
that the optimal rate of convergence in spectral norm for the
graphical lasso is at the order of

√
s log d/n (Rothman et al.,

2008). Here, n is the sample size, d is the number of nodes,
and s is the number of edges in the true graph. In fact, the
graphical lasso and all of the aforementioned methods are
based on the lasso penalty and it is generally believed that
convex penalties usually introduce non-negligible estima-
tion bias. For example, in the linear regression setting, Fan
& Li (2001); Zhang (2010a;b); Fan et al. (2018) have shown
that the nonconvex penalized regression is able to eliminate
the estimation bias and attain a more refined statistical rate
of convergence.

Based on these insights, we propose the following penalized
maximum likelihood estimation with a general nonconvex
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penalty:

Θ̂=argmin
Θ∈Sd

+

{〈
Θ, Σ̂

〉
−log det(Θ)+

∑
i 6=j

pλ
(
Θij

)}
, (1.1)

where Sd+ ={A∈Rd×d : A=AT,A�0} is the symmetric
definite cone formed by all d×d symmetric positive definite
matrices, Σ̂ is the sample covariance matrix, and pλ(·) is a
nonconvex penalty. Here, 〈A,B〉 = tr(ATB) denotes the
trace of ATB. However, from the computational perspec-
tive, minimizing a penalized loss function with nonconvex
penalty is a challenging problem due to its intrinsic noncon-
vex structure. For example, Ge et al. (2011) have shown
that solving (1.1) with the `p penalty is strongly NP-hard,
when 0 ≤ p < 1. In other words, there does not exist a fully
polynomial-time approximation scheme for problem (1.1)
unless more structures are assumed.

Recently, Loh & Wainwright (2015) proposed an algorithm
to obtain a good local optimum for regression problems
similar to (1.1), under an additional convex constraint that
depends on the unknown true parameters. Loh & Wain-
wright (2015) have established estimation error under var-
ious vector norm such as the `2 and `∞. However, Loh &
Wainwright (2015) failed to provide a faster rate of con-
vergence statistically due to not taking signal strength into
account. Computationally, our algorithm is different from
the path-following algorithm in Wang et al. (2014), which
must start from the largest regularization parameter. Our
algorithm directly starts form the target regularization pa-
rameter, which is in the order of

√
log d/n. This could

help in some cases. For example, if we have some prior
knowledge about the range of λ, then we do not need to start
from the largest regularization parameter. In the context
of Gaussian graphical models, the rate of convergence of√
s log d/n under the spectral norm has been obtained in

the existing literature. In this paper, we further improve the
rate to

√
s/n. To the best of our knowledge, we are the first

in the literature to obtain this sharp rate under the operator
norm.

In this paper, instead of directly solving the nonconvex
problem (1.1), we propose to approximate it by a sequence
of adaptive convex programs. Even though the proposed
method involves solving a sequence of convex programs, we
show that the proposed estimator for estimating the sparse
concentration matrix achieves the oracle rate of convergence
of
√
s/n, as if the locations of the nonzeros in the sparse

concentration matrix were known a priori. This is achieved
by a contraction property. Roughly speaking, each convex
program gradually contracts the initial estimator to the re-
gion of oracle rate of convergence even when a bad initial

estimator is used in the first place:

∥∥Ψ̂(`) −Ψ∗
∥∥

F ≤ C

√
s

n︸ ︷︷ ︸
Oracle Rate

+
1

2

∥∥Ψ̂(`−1) −Ψ∗
∥∥

F︸ ︷︷ ︸
Contraction Effect

,

where Ψ̂(`) is the inverse correlation matrix estimator af-
ter the `-th convex approximation, ‖ · ‖F is the Frobenius
norm, C is a positive constant, and

√
s/n is referred to

as the oracle rate. Each iteration of the proposed method
helps improve the accuracy only when ‖Ψ̂(`−1) − Ψ∗‖F
dominates the statistical error. The error caused by each
iteration is clearly demonstrated via the proven contraction
property. Suprisingly, we only need to solve about log log d
convex programs to achieve the oracle rate. By rescaling
the inverse correlation matrix using the estimated marginal
variances, we obtain an estimator of the concentration ma-
trix with spectral norm convergence rate in the order of√

log d/n ∨
√
s/n, where a ∨ b = max{a, b}. By exploit-

ing the sparsity pattern matrix of Θ∗, we further sharpen
the rate of convergence to

√
s/n under the spectral norm.

The rest of this paper proceeds as follows. Our proposed
method and its implementation are detailed in Section 2.
Section 3 is devoted to theoretical studies. We show that the
proposed methodology can be extended to the semiparamet-
ric graphical models in Section 4. Numerical experiments
are provided to support the proposed method in Section 5.
We conclude the paper in Section 6. Proofs and technical
details are in the supplementary material.

Notation: We summarize the notation that will be used
regularly throughout the paper. Given a vector u =
(u1, u2, . . . , ud)

T ∈ Rd, we define the `q-norm of u by
‖u‖q = (

∑d
j=1 |uj |q)1/q, where q ∈ [1,∞). For a set A,

let |A| denote its cardinality. For a matrix A = (ai,j) ∈
Rd×d, we use A � 0 to indicate that A is positive definite.
For q ≥ 1, we use ‖A‖q = maxu ‖Au‖q/‖u‖q to denote
the operator norm of A. For index sets I,J ⊆ {1, . . . , d},
we define AI,J ∈ Rd×d to be the matrix whose (i, j)-th
entry is equal to ai,j if i∈I and j∈J , and zero otherwise.
We use A�B = (aijbij) to denote the Hadamard product
of two matrices A and B. Let diag(A) denote the diagonal
matrix consisting diagonal elements of A. We use sign(x)
to denote the sign of x: sign(x) = x/|x| if x 6= 0 and
sign(x) = 0 otherwise. For two scalars fn and gn, we use
fn & gn to denote the case that fn ≥ cgn, and fn . gn
if fn ≤ Cgn, for two positive constants c and C. We say
fn � gn, if fn & gn and fn . gn. OP(·) is used to denote
bounded in probability. We use c and C to denote constants
that may vary from line to line.
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2. Graphical Nonconvex Optimization
Let X = (X1, X2, . . . , Xd)

T be a mean zero d-
dimensional Gaussian random vector. Then its density can
be parameterized by the concentration matrix Θ∗ or the
inverse correlation matrix Ψ∗. The family of Gaussian dis-
tributions respects the edge structure of a graph G = (V,E)
in the sense that Ψ∗ij = 0 if and only if (i, j) 6∈ E. This
family is known as the Gauss-Markov random field with
respect to the graph G.

Given n independent and identically distributed observa-
tions {X(i)}ni=1 of a mean zero d-dimensional random vec-
tor X ∈ Rd, we are interested in estimating the inverse
correlation matrix Ψ∗ and concentration matrix Θ∗. Let
Σ̂ = n−1

∑n
i=1X

(i)(X(i))T be the sample covariance ma-
trix and let Ĉ = Ŵ−1Σ̂Ŵ−1, where Ŵ2 = diag(Σ̂). To
estimate Ψ∗, we propose to adaptively solve the following
sequence of convex programs

Ψ̂(`) = argmin
Ψ∈Sd

+

{〈
Ψ, Ĉ

〉
− log det(Ψ)

+ ‖λ(`−1) �Ψ‖1,off

}
, for ` = 1, . . . , T, (2.1)

where ‖Ψ‖1,off =
∑
i 6=j |Ψij |, λ(`−1) = λ · w

(
Ψ̂

(`−1)
ij

)
is

a d × d adaptive regularization matrix for a given tuning
parameter λ and a weight function w(·), and T indicates
the total number of convex programs needed. The weight
function w(·) can be taken to be w(t) = p′λ(t)/λ, where
pλ(t) is a folded concave penalty such as the SCAD or the
MCP proposed by Fan & Li (2001) and Zhang (2010a),
respectively.

To obtain an estimator for the concentration matrix Θ∗, we
rescale Ψ̂(T ) back to Θ̃(T ) = Ŵ−1Ψ̂(T )Ŵ−1 after the T -
th convex program. This rescaling helps improve the rate of
convergence for Θ̃(T ) significantly by eliminating the effect
introduced through the unpenalized diagonal elements. The
detailed routine is summarized in Algorithm 1.

The computational complexity of Step 2 in Algorithm 1 is
O(d3): this is the complexity of the algorithm for solving
the graphical lasso problem. We will show in the latter
section that the number of iterations of Algorithm 1 can be
chosen to be T ≈ log log d based on our theoretical analysis,
yielding a computational complexity of O(log[log(d)]d3).
Algorithm 1 can be implemented using existing R packages
such as glasso. We note that our algorithm is an adaptive
version of the SPICE algorithm in Rothman et al. (2008).

3. Theoretical Results
In this section, we study the theoretical properties of the
proposed estimator. We start with some assumptions needed
for the theoretical analysis.

Algorithm 1 A sequential convex approximation for the
graphical nonconvex optimization.

Input: Sample covariance matrix Σ̂, regularization pa-
rameter λ.
Step 1: Obtain sample correlation matrix Ĉ by Ĉ =

Ŵ−1Σ̂Ŵ−1, where Ŵ2 is a diagonal matrix with diag-
onal elements of Σ̂.
Step 2: Solve a sequence of graphical lasso problems
adaptively

Ψ̂(`) = argmin
Ψ∈Sd

+

{
〈Ψ, Ĉ〉 − log det(Ψ)

+‖λ(`−1) �Ψ‖1,off

}
,

and λ(`) = λ · w(Ψ̂
(`)
ij ), for ` = 1, . . . , T.

Step 3: Obtain an estimator of Θ∗ by Θ̃(T ) =

Ŵ−1Ψ̂(T )Ŵ−1.

3.1. Assumptions

Let S=
{

(i, j) : Θ∗ij 6= 0, i 6= j
}

be the support set of the
off-diagonal elements in Θ∗. Thus, S is also the support set
of the off-diagonal elements in Ψ∗. The first assumption
we need concerns the structure of the true concentration and
covariance matrices.

Assumption 3.1 (Structural Assumption). We assume that
|S| ≤ s, ‖Σ∗‖∞ ≤ M < ∞, 0 < ε1 ≤ σmin ≤ σmax ≤
1/ε1 < ∞, 0 < ε2 ≤ λmin(Θ∗)≤ λmax(Θ∗) ≤ 1/ε2 <
∞. Here, σ2

max = maxj Σ∗jj and σ2
min = minj Σ∗jj , where

Σ∗ =
(
Σ∗ij
)
.

Assumption 3.1 is standard in the existing literature for
Gaussian graphical models (see, for instance, Meinshausen
& Bühlmann, 2006; Yuan, 2010; Cai et al., 2016b; Yuan
& Lin, 2007; Ravikumar et al., 2011). We need σmin and
σmax to be bounded from above and below to guarantee rea-
sonable performance of the concentration matrix estimator
(Rothman et al., 2008). Throughout this section, we treat
M, ε1, ε2 as constants to simplify the presentation.

The second assumption concerns the weight functions,
which are used to adaptively update the regularizers in Step
2 of Algorithm 1. Define the following class of weight
functions:

W=
{

w(t) : w(t) is nonincreasing,

0 ≤ w(t) ≤ 1 if t ≥ 0,w(t) = 1 if t ≤ 0
}
. (3.1)

Assumption 3.2 (Weight Function). There exists an α such
that the weight function w(·) ∈ W satisfies w(αλ) =
0 and w(u) ≥ 1/2, where u = cλ for some constant c.
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The above assumption on the weight functions can be easily
satisfied. For example, it can be satisfied by simply taking
w(t) = p′λ(t)/λ, where pλ(t) is a folded concave penalty
such as the SCAD or the MCP (Fan & Li, 2001; Zhang,
2010a). Next, we impose an assumption on the magnitude
of the nonzero off-diagonal entries in the inverse correlation
matrix Ψ∗.

Assumption 3.3 (Minimal Signal Strength). The minimal
signal satisfies min(i,j)∈S Ψ∗ij ≥ (α + c)λ & λ, where
c > 0 is the same constant that appears in Assumption 3.2.

Assumption 3.3 is a mild condition. In the sub-Gaussian
design case, λ can be taken to be the order of

√
log d/n,

which diminishes quickly as n increases. It is an analogue
to the minimal signal strength assumption frequently as-
sumed in nonconvex penalized regression problems (Fan &
Li, 2001; Zhang, 2010a). Taking the signal strength into
account, we can then obtain the oracle rate of convergence.

3.2. Main Theory

We now present several main theorems concerning the rates
of convergence of the proposed estimator for the sparse
inverse correlation and the concentration matrices, respec-
tively. The following theorem concerns the rate of con-
vergence for the one-step estimator Ψ̂(1) obtained from
Algorithm 1 when ` = 1.

Proposition 3.4 (One-step Estimator). Let λ �
√

log d/n.
Under Assumption 3.1, we have

∥∥Ψ̂(1)−Ψ∗
∥∥

F .

√
s log d

n

with probability at least 1− 8/d,

Proof of Proposition 3.4. We collect the proof of Proposi-
tion 3.4 in Appendix A in the supplementary material.

The above proposition indicates that the statistical error
under the Frobenius norm for the one-step estimator is at
the order of

√
s log d/n, which is believed to be unimprov-

able when one-step convex regularization is used (Rothman
et al., 2008; Ravikumar et al., 2011). However, when a
sequence of convex programs is used as in our proposal, the
rate of convergence can be improved significantly. This is
demonstrated in the following theorem.

Theorem 3.5 (Contraction Property). Suppose that n &
s log d and select λ such that λ �

√
log d/n. Under As-

sumptions 3.1, 3.2 and 3.3, with probability at least 1− 8/d,

Ψ̂(`) satisfies the following contraction property:∥∥Ψ̂(`)−Ψ∗
∥∥

F ≤ 8‖Ψ∗‖22‖∇L(Ψ∗)S‖F︸ ︷︷ ︸
Oracle Rate

+
1

2

∥∥Ψ̂(`−1)−Ψ∗
∥∥

F︸ ︷︷ ︸
Contraction

,

for 1 ≤ ` ≤ T. Moreover, if T & log(λ
√
n) & log log d,

we have

∥∥Ψ̂(T )−Ψ∗
∥∥

F = OP

(√
s

n

)
.

Proof of Theorem 3.5. The proof is collected in Appendix
A in the supplementary material.

Theorem 3.5 establishes a contraction property: each con-
vex approximation contracts the initial estimator towards
the true sparse inverse correlation matrix until it reaches the
oracle rate of convergence,

√
s/n. To achieve the oracle

rate, we need to solve no more than approximately log log d
convex programs. Note that log log d grows very slowly as
d increases and thus, in practice, we only need to solve a
few convex programs to get a better estimator than existing
method such as the graphical lasso. The rate of convergence√
s/n is better than the existing literature on likelihood-

based methods for estimating sparse inverse correlation ma-
trices (Rothman et al., 2008; Lam & Fan, 2009; Ravikumar
et al., 2011). By rescaling, we obtain a concentration matrix
estimator with a faster rate of convergence.

Theorem 3.6 (Faster Rate in Spectral Norm). Under the
same conditions as in Theorem 3.5, we have

∥∥Θ̃(T ) −Θ∗
∥∥
2

= OP

(√
s

n
∨
√

log d

n

)
.

Proof of Theorem 3.6. The proof is deferred to Appendix
A in the supplementary material.

The theorem above provides the optimal statistical rate for
estimating sparse concentration matrices using likelihood
based methods (Rothman et al., 2008; Lam & Fan, 2009;
Ravikumar et al., 2011). The extra log d term is a conse-
quence of estimating the marginal variances.

Definition 3.7 (Sparsity Pattern Matrix). For a matrix A =(
aij
)
, we say Asp =

(
asp
ij

)
is the corresponding sparsity

pattern matrix if asp
ij = 1 when aij 6= 0; and asp

ij = 0,
otherwise.

Let M∗ be the sparsity pattern matrix of Ψ∗ or Θ∗. Our
next theorem provides an improved rate of convergence.
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Theorem 3.8 (Improved Convergence Rate). Suppose that
n & (s + s2max) log d and take λ such that λ �

√
log d/n.

Let T & log s. Under Assumptions 3.1, 3.2 and 3.3, we
have

∥∥Ψ̂(T ) −Ψ∗
∥∥
2

= OP

(
‖M∗‖2

√
1

n

)
,

∥∥Θ̃(T ) −Θ∗
∥∥
2

= OP

(
‖M∗‖2

√
1

n
∨
√

log d

n

)
.

Proof of Theorem 3.8. The proof is deferred to Appendix B
in the supplementary material.

Theorem 3.8 suggests that the rates of convergence can
be bounded using the spectral norm of the sparsity pattern
matrix M∗, which can be much sharper than those provided
in Theorems 3.5 and 3.6. To demonstrate this observation,
we consider a sequence of chain graphs specified by the
following sparsity pattern matrices:

Mc
k =

[
Ak 0
0 Id−k−1

]
, for k = 4, . . . , 50,

where Ak ∈ R(k+1)×(k+1) is such that the (i, j)-th entry
Ak,ij = 1 if |i−j| ≤ 1, andAk,ij = 0 otherwise. Id−k−1 ∈
R(d−k−1)×(d−k−1) is the identity matrix. Let sk be the total
sparsity of Mc

k, that is sk = 2k. We plot the ratio of the two
rates of convergence for estimating Ψ∗ in Theorems 3.5 and
3.8, ‖Mc

k‖22/sk, versus sk in Figure 1. From Figure 1, we
can see that the ratio goes to 0 as the total sparsity increases.
This demonstrates that the convergence rate in Theorem 3.8
is indeed much sharper than that in Theorem 3.5, as least for
the chain graphs constructed above. We also observe similar
but less significant improvement for star-shape graphs. In
Figure 2, we give an geometric illustration of the star and
chain graphs.

4. Extension to Semiparametric Graphical
Models

In this section, we extend the proposed method to mod-
eling semiparametric graphical models. We focus on
the nonparanormal family proposed by Liu et al. (2012),
which is a nonparametric extension of the normal fam-
ily. More specifically, we replace the random variable
X = (X1, . . . , Xd)

T by the transformed variable f(X) =
(f1(X1), . . . , fd(Xd))

T, and assume that f(X) follows a
multivariate Gaussian distribution.

Definition 4.1 (Nonparanormal). Let f = {f1, . . . , fd}T
be a set of monotone univariate functions and let
Σnpn ∈ Rd×d be a positive-definite correlation matrix with
diag(Σnpn) = 1. A d-dimensional random variable X =
(X1, . . . , Xd)

T has a nonparanormal distribution X ∼

NPNd(f,Σnpn) if f(X) ≡ (f(X1), . . . , fd(Xd))
T ∼

Nd(0,Σ
npn).

We aim to recover the precision matrix Θnpn = (Σnpn)−1.
The main idea behind this procedure is to exploit Kendall’s
tau statistics to directly estimate Θnpn, without explicitly
calculating the marginal transformation functions {fj}dj=1.
We consider the following Kendall’s tau statistic:

τ̂jk =
2
∑

1≤i<i′≤n sign
(
(X

(i)
j −X

(i′)
j )(X

(i)
k −X

(i′)
k )

)
n(n− 1)

.

The Kendall’s tau statistic τ̂jk represent the nonparametric
correlations between the empirical realizations of random
variables Xj and Xk and is invariant to monotone transfor-
mations. Let X̃j and X̃k be two independent copies of Xj

and Xk. The population version of Kendall’s tau is given
by τjk ≡ Corr

(
sign(Xj − X̃j), sign(Xk − X̃k)

)
. We need

the following lemma which is taken from (Liu et al., 2012).
It connects the Kendall’s tau statistics to the underlying
Pearson correlation coefficient Σnpn.

Lemma 4.2. AssumingX ∼ NPNd(f,Σ), we have Σ0
jk =

sin
(
τjk ·π/2

)
.

Motivated by this Lemma, we define the following estima-
tors Ŝ = [Ŝjk] for the unknown correlation matrix Σnpn:

Ŝτjk =

{
sin
(
τ̂jk ·π/2

)
, j 6= k,

1, j = k.

Now we are ready to prove the optimal spectral norm rate
for the Gaussian copula graphical model. The results are
provided in the following theorem.

Theorem 4.3. Assume that n & s log d and let λ �√
log d/n. Under Assumptions 3.1, 3.2 and 3.3, Θ̂(`) satis-

fies the following contraction property:∥∥Θ̂(`)−Θ∗
∥∥

F ≤ 4‖Θ∗‖22‖∇L(Θ∗)S‖F︸ ︷︷ ︸
Optimal Rate

+
1

2

∥∥Θ̂(`−1)−Θ∗
∥∥

F︸ ︷︷ ︸
Contraction

, 1 ≤ ` ≤ T,

with probability at least 1 − 8/d. If T & log(λ
√
n) &

log log d, we have

∥∥Θ̂(T )−Θ∗
∥∥

F = OP

(√
s

n

)
.

Proof of Theorem 4.3. The proof is deferred to Appendix C
in the supplementary material.
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Figure 1. Convergence rates using sparsity pattern matrix Mc
k and total sparsity sk.

Star Graph Chain Graph

Figure 2. An illustration of the star and chain graphs.

5. Numerical Experiments
We compare our proposal to the graphical lasso (glasso)
(Friedman et al., 2008) and neighborhood selection (NS)
(Meinshausen & Bühlmann, 2006). Each of these ap-
proaches learns a Gaussian graphical model via an `1
penalty on each edge. To evaluate the performance across
different methods, we define the true positive rate as the
proportion of correctly identified edges in the graph, and the
false positive rate as the proportion of incorrectly identified
edges in the graph. In addition, we calculate the difference
between the estimated and true concentration matrix under
the Frobenius norm. We do not compute this quantity for the
NS approach since they do not estimate the concentration
matrix directly.

For our proposal, we consider T = 4 iterations with the
SCAD penalty proposed by Fan & Li (2001) that takes the
following form:

p′λ(t) =


λ if |t| ≤ λ,
γλ−|t|
γ−1 if λ < |t| < γλ,

0 otherwise,

where γ > 2. In all of our simulation studies, we pick
γ = 2.1. Each of the methods involves a sparsity tuning
parameter: we applied a fine grid of tuning parameter values

to obtain the curves shown in Figure 3.

We consider cases with n = {150, 200} and d = 150 with
two set-ups for a p×p sparsity pattern matrix A: (i) random
graph with 2.5% elements of A set to 1; (ii) band graph
with Ai,i+1 = Ai+1,i = 1 for 1 ≤ i ≤ d− 1. We then use
the sparsity pattern matrix A to create a matrix E, as

Eij =

{
0 if Aij = 0

0.4 otherwise,

and set E = 1
2 (E + ET ). Given the matrix E, we set

Θ−1 equal to E + (0.1− emin)I, where emin is the smallest
eigenvalue of E. We then standardize the matrix Θ−1 so
that the diagonals are equal to one. Finally, we generate
the data according to X(1), . . . ,X(n) i.i.d.∼ N(0,Σ). We
present the results averaged over 100 data sets for each
of the two simulation settings with n = {150, 200} and
d = 150 in Figure 3.

From Row I of Figure 3, we see that our proposal is very
competitive relative to the existing proposals for estimating
Gaussian graphical models in terms of true and false positive
rates across all simulation settings. Row II of Figure 3
contains the difference between the estimated and the true
inverse covariance matrices under the Frobenius norm as
a function of the false positive rate. For random graph
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Figure 3. Row I: True and false positive rates, averaged over 100 data sets with d = 150, for random and band graphs, respectively. Row
II: Difference between the estimated and the true inverse covariance matrices under the Frobenius norm. The different curves are obtained
by varying the sparsity tuning parameter for each of the methods.

with n = 150, we see that the minimum error under the
Frobenius norm for our proposal is smaller than that of the
graphical lasso. As we increase the number of observations
to n = 200, the difference between the minimum error for
the two proposals are more apparent. More interestingly,
the region for which our proposal has lower Frobenius norm
than the graphical lasso is the primary region of interest.
This is because an ideal estimator is one that has a low
false positive rate while maintaining a high true positive rate
with low error under the Frobenius norm. In contrast, the
region for which the graphical lasso does better under the
Frobenius norm is not the primary region of interest due to
the high false positive rate. We see similar results for the
band graph setting.

6. Conclusion and Discussions
We propose the graphical nonconvex optimization, which
we approximate via a sequence of convex programs, for es-
timating the inverse correlation and concentration matrices.
We prove that our proposed estimators have better statistical
rates of convergence compared to existing approaches. The
proposed method is sequential convex in nature and thus
is computationally tractable. Yet surprisingly, it produces
estimators with oracle rate of convergence as if the global
optimum for the penalized nonconvex problem could be

obtained. Our results stem from the contraction property
we have proven, i.e., every convex problem contracts the
previous estimator by a 0.5-fraction towards the optimal rate
of convergence. Roughly speaking, since the first convex
program achieves rate of convergence

√
s log d/n and the

optimal rate is
√
s/n under the Frobenius-norm, it can be

shown that we need log[log(d)] convex programs to achieve
the optimal rate of

√
s/n from

√
s log d/n.

Our work can be applied to many different topics: low rank
matrix completion problems, high-dimensional quantile re-
gression and many others. We conjecture that in all of the
aforementioned topics, a similar sequential convex approx-
imation can be proposed and can possibly give faster rate,
with controlled computing resources. It is also interesting
to see how our algorithm works in large-scale distributed
systems. Are there any fundamental tradeoffs between statis-
tical efficiency, communication and algorithmic complexity?
We leave these as future research topics.
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