Appendix: Convolutional Imputation of Matrix Networks

Qingyun Sun * ${ }^{*}$ Mengyuan Yan *2 David Donoho ${ }^{3}$ Stephen Boyd ${ }^{2}$

Exact recovery guarantee

Theorem 1. We assume that A is a matrix network on a graph G, and its graph Fourier transform $\hat{A}(k)$ are a sequence of matrices, each of them is at most rank r, and \hat{A} satisfy the incoherence condition with coherence μ. And we observe a matrix network A^{Ω} on the graph G, for a subset of node in Ω random sampled from the network, node i on the network is sampled with probability p_{i}, we define the average sampling rate $p=\frac{1}{N} \sum_{i=1}^{N} p_{i}=|\Omega| /\left(N n^{2}\right)$, and define $\mathcal{R}=\frac{1}{p} P_{\Omega} \mathcal{U}^{*}$.
Then we prove that for any sampling probability distribution $\left\{p_{i}\right\}$, as long as the average sampling rate $p>$ $C \mu \frac{r}{n} \log ^{2}(N n)$ for some constants C, the solution to the optimization problem

$$
\begin{array}{ll}
\underset{\hat{M}}{\operatorname{minimize}} & \|\hat{M}\|_{*, 1} \\
\text { subject to } & A^{\Omega}=\mathcal{R} \hat{M}
\end{array}
$$

is unique and is exactly \hat{A} with probability $1-$ $(N n)^{-\gamma}$, where $\gamma=\frac{\log (N n)}{16}$.

Proof. We define a inner product: $\left\langle\hat{M}_{1}, \hat{M}_{2}\right\rangle=$ $\sum_{k}\left\langle\hat{M}_{1}(k), \hat{M}_{2}(k)\right\rangle$. Then we have the following two inequalities

$$
\|\hat{M}(k)\|_{*}=\operatorname{Tr}(\operatorname{sgn}(\hat{M}(k)) \hat{M}(k))=\langle\operatorname{sgn}(\hat{M}(k)), \hat{M}(k)\rangle .
$$

Therefore,

$$
\|\hat{M}\|_{*, 1}=\langle\operatorname{sgn}(\hat{M}), \hat{M}\rangle
$$

Here $\operatorname{sgn}(\hat{M})=V_{1} V_{2}^{*}$ is the sign matrix of the singular values of \hat{M} under the singular vector basis.
We consider $\Delta=\hat{M}-\hat{A}$, then either $\mathcal{R} \Delta \neq 0$, or $\| \hat{A}+$ $\Delta\left\|_{*, 1}>\right\| \hat{A} \|_{*, 1}$.

[^0]First we define a decomposition $\Delta=\Delta_{T}+\Delta_{T}^{\perp}=P_{T} \Delta+$ $P_{T^{\perp}} \Delta$.

For $\mathcal{R} \Delta=0$, we compute

$$
\begin{aligned}
& \|\hat{A}+\Delta\|_{*, 1} \\
\geq & \left\|P_{1}(\hat{A}+\Delta) P_{2}\right\|_{*, 1}+\left\|P_{1}^{\perp}(\hat{A}+\Delta) P_{2}^{\perp}\right\|_{*, 1} \\
= & \left\|\hat{A}+P_{1} \Delta P_{2}\right\|_{*, 1}+\left\|\Delta_{T}^{\perp}\right\|_{*, 1} \\
\geq & \left\langle\operatorname{sgn}(\hat{A}), \hat{A}+P_{1} \Delta P_{2}\right\rangle+\left\langle\operatorname{sgn}\left(\Delta_{T}^{\perp}\right), \Delta_{T}^{\perp}\right\rangle \\
= & \|\hat{A}\|_{*, 1}+\left\langle\operatorname{sgn}(\hat{A}), P_{1} \Delta P_{2}\right\rangle+\left\langle\operatorname{sgn}\left(\Delta_{T}^{\perp}\right), \Delta_{T}^{\perp}\right\rangle \\
= & \|\hat{A}\|_{*, 1}+\left\langle\operatorname{sgn}(\hat{A})+\left(\Delta_{T}^{\perp}\right), \Delta\right\rangle
\end{aligned}
$$

Now we want to estimate $\left\langle(\hat{A})+\left(\Delta_{T}^{\perp}\right), \Delta\right\rangle$. We make two assumptions, which we will prove later.

First, we assume that for all $\Delta \in \operatorname{range}(\mathcal{R})^{\perp}$, with probability $1-(N n)^{-\gamma}$,

$$
\left\|\Delta_{T}\right\|_{2}<2 n N\left\|\Delta_{T}^{\perp}\right\|_{2}
$$

Second, we want to construct a dual certificate $K \in$ $\operatorname{range}(\mathcal{R})$, such that for $k=3+\frac{1}{2} \log _{2}(r)+\log _{2}(n)+$ $\log _{2}(N)$, with probability $1-(N n)^{-\gamma}$,

$$
\begin{array}{rcc}
\left\|P_{T}(K)-\operatorname{sign}(\hat{A})\right\|_{2} & \leq & \left(\frac{1}{2}\right)^{k} \sqrt{r} \\
\left\|P_{T^{\perp}}(K)\right\| & \leq \frac{1}{2}
\end{array}
$$

Then

$$
\begin{aligned}
& \left\langle\operatorname{sgn}(\hat{A})+\left(\Delta_{T}^{\perp}\right), \Delta\right\rangle \\
= & \left\langle\operatorname{sgn}(\hat{A})+\left(\Delta_{T}^{\perp}\right)-K, \Delta\right\rangle \\
= & \left\langle\operatorname{sgn}(\hat{A})-K, \Delta_{T}\right\rangle+\left\langle\left(\Delta_{T}^{\perp}\right)-K, \Delta_{T}^{\perp}\right\rangle \\
\geq & \frac{1}{2}\left\|\Delta_{T}^{\perp}\right\|_{2}-\left(\frac{1}{2}\right)^{k} \sqrt{r}\left\|\Delta_{T}\right\|_{2} \\
\geq & \frac{1}{4}\left\|\Delta_{T}^{\perp}\right\|_{2} .
\end{aligned}
$$

When \hat{M} is a minimizer, we must have $\Delta_{T}^{\perp}=0$, otherwise $\|\hat{A}+\Delta\|_{*, 1}<\|\hat{A}\|_{*, 1}$. By assumption, $\left\|\Delta_{T}\right\|_{2}<$ $n^{2}\left\|\Delta_{T}^{\perp}\right\|_{2} ., \Delta_{T}=0$, then $\Delta=0$. Therefore, under the two assumption, \hat{M} is the unique mininizer, and $\hat{M}=\hat{A}$.
Now we prove the above assumption and construct dual certificate.

First, we show that if

$$
\left\|\Delta_{T}\right\|_{2} \geq(2 n N)\left\|\Delta_{T}^{\perp}\right\|_{2}
$$

then $\left\|\mathcal{R} \Delta_{T}\right\|_{2}>\left\|\mathcal{R} \Delta_{T}^{\perp}\right\|_{2}$,

$$
\begin{aligned}
& \|\mathcal{R} \Delta\|_{2} \\
= & \left\|\mathcal{R} \Delta_{T}+\mathcal{R} \Delta_{T}^{\perp}\right\|_{2} \\
\geq & \left\|\mathcal{R} \Delta_{T}\right\|_{2}-\left\|\mathcal{R} \Delta_{T}^{\perp}\right\|_{2} \\
> & 0
\end{aligned}
$$

We have a lower bound on $\left\|\mathcal{R} \Delta_{T}\right\|_{2}$ and upper bound on $\left\|\mathcal{R} \Delta_{T}^{1}\right\|_{2}$.

$$
\left\|\mathcal{R} \Delta_{T}^{\perp}\right\|_{2}^{2} \leq\|\mathcal{R}\|^{2}\left\|\Delta_{T}^{\perp}\right\|_{2}^{2}
$$

Here $\|\mathcal{R}\|$ is the operator norm of \mathcal{R}.

$$
\begin{aligned}
\left\|\mathcal{R} \Delta_{T}\right\|_{2}^{2} & =\left\langle\mathcal{R} \Delta_{T}, \mathcal{R} \Delta_{T}\right\rangle \\
& \geq\|\mathcal{R}\|^{2} /(n N)^{2}\left(1-\left\|P_{T}-P_{T} \mathcal{R} P_{T}\right\|\right)\left\|\Delta_{T}\right\|_{2}^{2}
\end{aligned}
$$

Since $E\left(P_{T} \mathcal{R} P_{T}\right)=P_{T}$, we only need to control the deviation, we could use a concentration inequality called operatorBernstein inequality (1),

$$
\mathbf{P}\left[\left\|P_{T}-P_{T} \mathcal{R} P_{T}\right\|>t\right] \leq \exp \left(-\frac{n p t^{2}}{4 \mu r}\right)
$$

Using the condition that $p=C \mu \frac{r}{n} \log ^{2}(N n)$, let $t=1 / 4$, we have

$$
\begin{array}{rc}
& \mathbf{P}\left[\left\|P_{T}-P_{T} \mathcal{R} P_{T}\right\|>t\right] \\
\leq & \exp \left(-\frac{n \mu \frac{r}{n} \log ^{2}(N n)}{16 \mu r}\right) \\
= & \exp \left(-\frac{\log ^{2}(N n)}{16}\right) \\
= & (n N)^{-\gamma},
\end{array}
$$

where $\gamma=\frac{\log (N n)}{16}$. Therefore, with probability $1-$ $(n N)^{-\gamma}$, the the inequality holds for $t=1 / 2$. When the inequality holds, $\left\|P_{T}-P_{T} \mathcal{R} P_{T}\right\|<1 / 2, \mathcal{R} \Delta \neq 0$.

Second, we construct the dual certificate K by the following construction: We decompose Ω as the union of k subset Ω_{t}, where each entry is sampled independently so that $E\left(\left|\Omega_{t}\right|=\right.$ $p_{t}=1-(1-p)^{1 / k}$, and define $R_{t}=\frac{1}{p_{t}} P_{\Omega_{t}} \mathcal{U}^{*}$. Define

$$
H_{0}=(\hat{A}), K_{t}=\sum_{j=1}^{t} R_{j} H_{j-1}, H_{t}=(\hat{A})-P_{T} K_{t}
$$

Then the dual certificate is defined as $K=K_{k}$.
This construction is called golfing scheme, which is invented in (1). Since $p_{t}=p / k=C \mu \frac{r}{n k} \log ^{2}(N n)$, we can assume $\left\|P_{T}-P_{T} \mathcal{R}_{j} P_{T}\right\|<1 / 2$, which is true with probability $1-\exp \left(\frac{C n p t^{2}}{\mu k r}\right)$.

$$
\left\|H_{t}\right\|_{2} \leq\left\|P_{T}-P_{T} \mathcal{R} P_{T}\right\|\left\|H_{t-1}\right\|_{2} \leq \frac{1}{2}\left\|H_{t-1}\right\|_{2}
$$

And

$$
\left\|P_{T}(K)-(\hat{A})\right\|_{2}=\left\|H_{k}\right\| \leq\left(\frac{1}{2}\right)^{k}\|(\hat{A})\| \leq\left(\frac{1}{2}\right)^{k} \sqrt{r}
$$

Then

$$
\left\|P_{T}(K)-(\hat{A})\right\|_{2} \leq\left(\frac{1}{2}\right)^{k} \sqrt{r}
$$

Also, $\left\|P_{T^{\perp}}(K)\right\| \leq \sum_{j=1}^{k}\left\|P_{T^{\perp}} R_{j} H_{j-1}\right\|$, use the operator-Bernstein inequality for a sequence of $t_{j}=$ $1 /(4 \sqrt{r})$, we have $\left\|P_{T^{\perp}} R_{j} H_{j-1}\right\| \leq t_{i}\left\|H_{j-1}\right\|_{2}$, and since $\left\|H_{j}\right\|_{2} \leq \sqrt{r} 2^{-j}$, then

$$
\left\|P_{T^{\perp}}(K)\right\| \leq \sum_{j=1}^{k} t_{i}\left\|H_{j-1}\right\|_{2} \leq \frac{1}{4} \sum_{j=1}^{k} 2^{-(j-1)}<1 / 2 .
$$

Therefore, K is the dual certificate, the whole proof is done.

Imputation algorithm convergence Now we show that the solution of our imputation algorithm converges asymptotically to a minimizer of the previously defined objective $L_{\lambda}(\hat{M})$.
Each step of our imputation algorithm is minimizing a surrogate $Q_{\lambda}\left(\hat{M} \mid \hat{M}^{\text {old }}\right)$ of the above objective function as

$$
\left\|A^{\Omega}+P_{\Omega}^{\perp} \mathcal{U}^{-1} \hat{M}^{\mathrm{old}}-\mathcal{U}^{-1} \hat{M}\right\|^{2}+\sum_{k=1}^{N} \lambda_{k}\|\hat{M}(k)\|_{*}
$$

The resulting minimizer forms a sequence \hat{M}_{λ}^{t} with starting point \hat{M}_{λ}^{0}

$$
\hat{M}_{\lambda}^{t+1}=\quad \operatorname{argmin} \quad Q_{\lambda}\left(\hat{M} \mid \hat{M}_{\lambda}^{t}\right)
$$

Theorem 2. The imputation algorithm produces a sequence of iterates \hat{M}_{λ}^{t} that converges to the minimizer of $L_{\lambda}(\hat{M})$.

The main idea of the proof is to show that Q_{λ} decreases after every iteration and \hat{M}_{λ}^{t} is a Cauchy sequence, and the limit point is a stationary point of L_{λ}.

Proof. For each iteration in our algorithm, we are solving for a surrogate of the objective function as
$Q_{\lambda}\left(\hat{M} \mid \hat{M}^{\text {old }}\right)=\left\|A^{\Omega}+P_{\Omega}^{\perp} \mathcal{U}^{-1} \hat{M}^{\text {old }}-\mathcal{U}^{-1} \hat{M}\right\|^{2}+\sum_{k=1}^{N} \lambda_{k}\|\hat{M}(k)\|_{*}$.
And the sequence \hat{M}_{λ}^{t} with any starting point \hat{M}_{λ}^{0} is given by

$$
\hat{M}_{\lambda}^{t+1}=\quad \operatorname{argmin} \quad Q_{\lambda}\left(\hat{M} \mid \hat{M}_{\lambda}^{t}\right)
$$

The sequence satisfies

$$
L_{\lambda}\left(\hat{M}_{\lambda}^{t+1}\right) \leq Q_{\lambda}\left(\hat{M}_{\lambda}^{t+1} \mid \hat{M}_{\lambda}^{t}\right) \leq L_{\lambda}\left(\hat{M}_{\lambda}^{t}\right)
$$

Because

$$
Q_{\lambda}\left(\hat{M}_{\lambda}^{t+1} \mid \hat{M}_{\lambda}^{t+1}\right)=L_{\lambda}\left(\hat{M}_{\lambda}^{t+1}\right)
$$

and

$$
\begin{aligned}
& Q_{\lambda}\left(\hat{M} \mid \hat{M}^{\text {old }}\right) \\
= & \left\|P_{\Omega}(A)+P_{\Omega}^{\perp} \mathcal{U}^{-1} \hat{M}^{\text {old }}-\mathcal{U}^{-1} \hat{M}\right\|^{2}+\sum_{k=1}^{N} \lambda_{k}\|\hat{M}(k)\|_{*} \\
\geq & \left\|P_{\Omega}(A)+P_{\Omega}^{\perp} \mathcal{U}^{-1} \hat{M}-\mathcal{U}^{-1} \hat{M}\right\|^{2}+\sum_{k=1}^{N} \lambda_{k}\|\hat{M}(k)\|_{*} \\
= & Q_{\lambda}(\hat{M} \mid \hat{M})
\end{aligned}
$$

Below we prove the following successive differences are monotonically decreasing

$$
\left\|\hat{M}_{\lambda}^{t+1}-\hat{M}_{\lambda}^{t}\right\|^{2} \leq\left\|\hat{M}_{\lambda}^{t}-\hat{M}_{\lambda}^{t-1}\right\|^{2} .
$$

and the difference sequence converges to zero,

$$
\hat{M}_{\lambda}^{t+1}-\hat{M}_{\lambda}^{t} \rightarrow 0
$$

The successive differences are monotonically decreasing because the soft threshold operator is a contraction in L_{2} norm (2). And when there are positive singular values smaller than the threshold, the successive differences will strictly decrease until the algorithm converges.
Then \hat{M}_{λ}^{t} is a Cauchy sequence, therefore we have a set of limit points. Also by monotonic convergence theorem, since $\hat{M}_{\lambda}^{t+1}-\hat{M}_{\lambda}^{t}$ converges to zero monotonically, the Cauchy sequence \hat{M}_{λ}^{t} has an unique limit $\hat{M}_{\lambda}^{\infty}$. Moreover, we can verify that $\hat{M}_{\lambda}^{\infty}$ is a solution to the fixed point equation $\nabla L_{\lambda}=0$, and a stationary point of $L_{\lambda}\left(\hat{M}_{\lambda}\right)$. Since $L_{\lambda}\left(\hat{M}_{\lambda}\right)$ is convex, each stationary point is a minimizer. Therefore, the convergence is proved.

References

[1] David Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on Information Theory, 57(3):1548-1566, 2011.
[2] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. Journal of machine learning research, 11(Aug):22872322, 2010.

[^0]: ${ }^{*}$ Equal contribution ${ }^{1}$ Department of Mathematics, Stanford University, California, USA ${ }^{2}$ Department of Electrical Engineering, Stanford University, California, USA ${ }^{3}$ Department of Statistics, Stanford University, California, USA. Correspondence to: Qingyun Sun qysun@stanford.edu.

 Proceedings of the $35^{\text {th }}$ International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

