Appendix: Convolutional Imputation of Matrix Networks

Qingyun Sun *1 Mengyuan Yan *2 David Donoho 3 Stephen Boyd 2

Exact recovery guarantee

Theorem 1. We assume that A is a matrix network on a graph G, and its graph Fourier transform $\hat{A}(k)$ are a sequence of matrices, each of them is at most rank r, and \hat{A} satisfy the incoherence condition with coherence μ . And we observe a matrix network A^{Ω} on the graph G, for a subset of node in Ω random sampled from the network, node i on the network is sampled with probability p_i , we define the average sampling rate $p = \frac{1}{N} \sum_{i=1}^N p_i = |\Omega|/(Nn^2)$, and define $\mathcal{R} = \frac{1}{p} P_{\Omega} \mathcal{U}^*$.

Then we prove that for any sampling probability distribution $\{p_i\}$, as long as the average sampling rate $p > C\mu \frac{r}{n} \log^2(Nn)$ for some constants C, the solution to the optimization problem

$$\begin{array}{ll} \textit{minimize} & \|\hat{M}\|_{*,1}, \\ & \hat{M} \\ \textit{subject to} & A^{\Omega} = \mathcal{R}\hat{M} \end{array}$$

is unique and is exactly \hat{A} with probability $1 - (Nn)^{-\gamma}$, where $\gamma = \frac{\log(Nn)}{16}$.

Proof. We define a inner product: $\langle \hat{M}_1, \hat{M}_2 \rangle = \sum_k \langle \hat{M}_1(k), \hat{M}_2(k) \rangle$. Then we have the following two inequalities

$$\|\hat{M}(k)\|_* = \mathbf{Tr}(\operatorname{sgn}(\hat{M}(k))\hat{M}(k)) = \langle \operatorname{sgn}(\hat{M}(k)), \hat{M}(k) \rangle.$$

Therefore,

$$\|\hat{M}\|_{*,1} = \langle \operatorname{sgn}(\hat{M}), \hat{M} \rangle.$$

Here $sgn(\hat{M}) = V_1V_2^*$ is the sign matrix of the singular values of \hat{M} under the singular vector basis.

We consider $\Delta = \hat{M} - \hat{A}$, then either $\mathcal{R}\Delta \neq 0$, or $\|\hat{A} + \Delta\|_{*,1} > \|\hat{A}\|_{*,1}$.

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

First we define a decomposition $\Delta = \Delta_T + \Delta_T^{\perp} = P_T \Delta + P_{T^{\perp}} \Delta$.

For $\mathcal{R}\Delta = 0$, we compute

$$\begin{split} &\|\hat{A} + \Delta\|_{*,1} \\ &\geq &\|P_{1}(\hat{A} + \Delta)P_{2}\|_{*,1} + \|P_{1}^{\perp}(\hat{A} + \Delta)P_{2}^{\perp}\|_{*,1} \\ &= &\|\hat{A} + P_{1}\Delta P_{2}\|_{*,1} + \|\Delta_{T}^{\perp}\|_{*,1} \\ &\geq &\langle \operatorname{sgn}(\hat{A}), \hat{A} + P_{1}\Delta P_{2} \rangle + \langle \operatorname{sgn}(\Delta_{T}^{\perp}), \Delta_{T}^{\perp} \rangle \\ &= &\|\hat{A}\|_{*,1} + \langle \operatorname{sgn}(\hat{A}), P_{1}\Delta P_{2} \rangle + \langle \operatorname{sgn}(\Delta_{T}^{\perp}), \Delta_{T}^{\perp} \rangle \\ &= &\|\hat{A}\|_{*,1} + \langle \operatorname{sgn}(\hat{A}) + (\Delta_{T}^{\perp}), \Delta \rangle. \end{split}$$

Now we want to estimate $\langle (\hat{A}) + (\Delta_T^{\perp}), \Delta \rangle$. We make two assumptions, which we will prove later.

First, we assume that for all $\Delta \in \text{range}(\mathcal{R})^{\perp}$, with probability $1 - (Nn)^{-\gamma}$,

$$\|\Delta_T\|_2 < 2nN\|\Delta_T^{\perp}\|_2.$$

Second, we want to construct a dual certificate $K \in \text{range}(\mathcal{R})$, such that for $k = 3 + \frac{1}{2}\log_2(r) + \log_2(n) + \log_2(N)$, with probability $1 - (Nn)^{-\gamma}$,

$$||P_T(K) - \mathbf{sign}(\hat{A})||_2 \le (\frac{1}{2})^k \sqrt{r},$$

 $||P_{T^{\perp}}(K)|| \le \frac{1}{2}.$

Then

$$\begin{split} &\langle \operatorname{sgn}(\hat{A}) + (\Delta_T^{\perp}), \Delta \rangle \\ = &\langle \operatorname{sgn}(\hat{A}) + (\Delta_T^{\perp}) - K, \Delta \rangle \\ = &\langle \operatorname{sgn}(\hat{A}) - K, \Delta_T \rangle + \langle (\Delta_T^{\perp}) - K, \Delta_T^{\perp} \rangle \\ \geq &\frac{1}{2} \|\Delta_T^{\perp}\|_2 - (\frac{1}{2})^k \sqrt{r} \|\Delta_T\|_2 \\ \geq &\frac{1}{4} \|\Delta_T^{\perp}\|_2. \end{split}$$

When \hat{M} is a minimizer, we must have $\Delta_T^{\perp}=0$, otherwise $\|\hat{A}+\Delta\|_{*,1}<\|\hat{A}\|_{*,1}$. By assumption, $\|\Delta_T\|_2< n^2\|\Delta_T^{\perp}\|_2$., $\Delta_T=0$, then $\Delta=0$. Therefore, under the two assumption, \hat{M} is the unique minimizer, and $\hat{M}=\hat{A}$.

Now we prove the above assumption and construct dual certificate.

^{*}Equal contribution ¹Department of Mathematics, Stanford University, California, USA ²Department of Electrical Engineering, Stanford University, California, USA ³Department of Statistics, Stanford University, California, USA. Correspondence to: Qingyun Sun <qysun@stanford.edu>.

First, we show that if

$$\|\Delta_T\|_2 \ge (2nN)\|\Delta_T^{\perp}\|_2$$

then $\|\mathcal{R}\Delta_T\|_2 > \|\mathcal{R}\Delta_T^{\perp}\|_2$,

$$\begin{split} & & \|\mathcal{R}\Delta\|_2 \\ &= & \|\mathcal{R}\Delta_T + \mathcal{R}\Delta_T^{\perp}\|_2 \\ &\geq & \|\mathcal{R}\Delta_T\|_2 - \|\mathcal{R}\Delta_T^{\perp}\|_2 \\ &> & 0. \end{split}$$

We have a lower bound on $\|\mathcal{R}\Delta_T\|_2$ and upper bound on $\|\mathcal{R}\Delta_T^{\perp}\|_2$.

$$\|\mathcal{R}\Delta_T^{\perp}\|_2^2 \leq \|\mathcal{R}\|^2 \|\Delta_T^{\perp}\|_2^2$$
.

Here $\|\mathcal{R}\|$ is the operator norm of \mathcal{R} .

$$\|\mathcal{R}\Delta_T\|_2^2 = \langle \mathcal{R}\Delta_T, \mathcal{R}\Delta_T \rangle$$

$$\geq \|\mathcal{R}\|^2/(nN)^2(1 - \|P_T - P_T\mathcal{R}P_T\|)\|\Delta_T\|_2^2.$$

Since $E(P_T \mathcal{R} P_T) = P_T$, we only need to control the deviation, we could use a concentration inequality called operator-Bernstein inequality (1),

$$\mathbf{P}[\|P_T - P_T \mathcal{R} P_T\| > t] \le \exp(-\frac{npt^2}{4\mu r}).$$

Using the condition that $p = C\mu \frac{r}{n} \log^2(Nn)$, let t = 1/4, we have

$$\mathbf{P}[\|P_T - P_T \mathcal{R} P_T\| > t]$$

$$\leq \exp(-\frac{n\mu_n^r \log^2(Nn)}{16\mu r})$$

$$= \exp(-\frac{\log^2(Nn)}{16})$$

$$= (nN)^{-\gamma},$$

where $\gamma = \frac{\log(Nn)}{16}$. Therefore, with probability $1 - (nN)^{-\gamma}$, the the inequality holds for t = 1/2. When the inequality holds, $\|P_T - P_T \mathcal{R} P_T\| < 1/2$, $\mathcal{R} \Delta \neq 0$.

Second, we construct the dual certificate K by the following construction: We decompose Ω as the union of k subset Ω_t , where each entry is sampled independently so that $E(|\Omega_t| = p_t = 1 - (1-p)^{1/k}$, and define $R_t = \frac{1}{p_t} P_{\Omega_t} \mathcal{U}^*$. Define

$$H_0 = (\hat{A}), K_t = \sum_{j=1}^t R_j H_{j-1}, H_t = (\hat{A}) - P_T K_t.$$

Then the dual certificate is defined as $K = K_k$.

This construction is called golfing scheme, which is invented in (1). Since $p_t = p/k = C\mu \frac{r}{nk} \log^2(Nn)$, we can assume $\|P_T - P_T \mathcal{R}_j P_T\| < 1/2$, which is true with probability $1 - \exp(\frac{Cnpt^2}{ukr})$.

$$||H_t||_2 \le ||P_T - P_T \mathcal{R} P_T|| ||H_{t-1}||_2 \le \frac{1}{2} ||H_{t-1}||_2.$$

And

$$||P_T(K) - (\hat{A})||_2 = ||H_k|| \le (\frac{1}{2})^k ||(\hat{A})|| \le (\frac{1}{2})^k \sqrt{r}.$$

Then

$$||P_T(K) - (\hat{A})||_2 \le (\frac{1}{2})^k \sqrt{r}.$$

Also, $\|P_{T^{\perp}}(K)\| \leq \sum_{j=1}^k \|P_{T^{\perp}}R_jH_{j-1}\|$, use the operator-Bernstein inequality for a sequence of $t_j=1/(4\sqrt{r})$, we have $\|P_{T^{\perp}}R_jH_{j-1}\| \leq t_i\|H_{j-1}\|_2$, and since $\|H_j\|_2 \leq \sqrt{r}2^{-j}$, then

$$||P_{T^{\perp}}(K)|| \le \sum_{j=1}^{k} t_i ||H_{j-1}||_2 \le \frac{1}{4} \sum_{j=1}^{k} 2^{-(j-1)} < 1/2.$$

Therefore, K is the dual certificate, the whole proof is done.

Imputation algorithm convergence Now we show that the solution of our imputation algorithm converges asymptotically to a minimizer of the previously defined objective $L_{\lambda}(\hat{M})$.

Each step of our imputation algorithm is minimizing a surrogate $Q_{\lambda}(\hat{M}|\hat{M}^{\mathrm{old}})$ of the above objective function as

$$||A^{\Omega} + P_{\Omega}^{\perp} \mathcal{U}^{-1} \hat{M}^{\text{old}} - \mathcal{U}^{-1} \hat{M}||^2 + \sum_{k=1}^{N} \lambda_k ||\hat{M}(k)||_*.$$

The resulting minimizer forms a sequence \hat{M}^t_λ with starting point \hat{M}^0_λ

$$\hat{M}_{\lambda}^{t+1} = \operatorname{argmin} Q_{\lambda}(\hat{M}|\hat{M}_{\lambda}^{t}).$$

Theorem 2. The imputation algorithm produces a sequence of iterates \hat{M}_{λ}^{t} that converges to the minimizer of $L_{\lambda}(\hat{M})$.

The main idea of the proof is to show that Q_{λ} decreases after every iteration and \hat{M}_{λ}^{t} is a Cauchy sequence, and the limit point is a stationary point of L_{λ} .

Proof. For each iteration in our algorithm, we are solving for a surrogate of the objective function as

$$Q_{\lambda}(\hat{M}|\hat{M}^{\text{old}}) = \|A^{\Omega} + P_{\Omega}^{\perp} \mathcal{U}^{-1} \hat{M}^{\text{old}} - \mathcal{U}^{-1} \hat{M}\|^{2} + \sum_{k=1}^{N} \lambda_{k} \|\hat{M}(k)\|_{*}.$$

And the sequence \hat{M}_{λ}^t with any starting point \hat{M}_{λ}^0 is given by

$$\hat{M}_{\lambda}^{t+1} = \text{argmin} \quad Q_{\lambda}(\hat{M}|\hat{M}_{\lambda}^{t}).$$

The sequence satisfies

$$L_{\lambda}(\hat{M}_{\lambda}^{t+1}) \le Q_{\lambda}(\hat{M}_{\lambda}^{t+1}|\hat{M}_{\lambda}^{t}) \le L_{\lambda}(\hat{M}_{\lambda}^{t}).$$

Because

$$Q_{\lambda}(\hat{M}_{\lambda}^{t+1}|\hat{M}_{\lambda}^{t+1}) = L_{\lambda}(\hat{M}_{\lambda}^{t+1})$$

and

$$Q_{\lambda}(\hat{M}|\hat{M}^{\text{old}})$$

$$= \|P_{\Omega}(A) + P_{\Omega}^{\perp} \mathcal{U}^{-1} \hat{M}^{\text{old}} - \mathcal{U}^{-1} \hat{M}\|^{2} + \sum_{k=1}^{N} \lambda_{k} \|\hat{M}(k)\|_{*}$$

$$\geq \|P_{\Omega}(A) + P_{\Omega}^{\perp} \mathcal{U}^{-1} \hat{M} - \mathcal{U}^{-1} \hat{M}\|^{2} + \sum_{k=1}^{N} \lambda_{k} \|\hat{M}(k)\|_{*}$$

$$= Q_{\lambda}(\hat{M}|\hat{M})$$

Below we prove the following successive differences are monotonically decreasing

$$\|\hat{M}_{\lambda}^{t+1} - \hat{M}_{\lambda}^{t}\|^{2} \le \|\hat{M}_{\lambda}^{t} - \hat{M}_{\lambda}^{t-1}\|^{2}.$$

and the difference sequence converges to zero,

$$\hat{M}_{\lambda}^{t+1} - \hat{M}_{\lambda}^{t} \to 0.$$

The successive differences are monotonically decreasing because the soft threshold operator is a contraction in L_2 norm (2). And when there are positive singular values smaller than the threshold, the successive differences will strictly decrease until the algorithm converges.

Then \hat{M}^t_{λ} is a Cauchy sequence, therefore we have a set of limit points. Also by monotonic convergence theorem, since $\hat{M}^{t+1}_{\lambda} - \hat{M}^t_{\lambda}$ converges to zero monotonically, the Cauchy sequence \hat{M}^t_{λ} has an unique limit $\hat{M}^{\infty}_{\lambda}$. Moreover, we can verify that $\hat{M}^{\infty}_{\lambda}$ is a solution to the fixed point equation $\nabla L_{\lambda} = 0$, and a stationary point of $L_{\lambda}(\hat{M}_{\lambda})$. Since $L_{\lambda}(\hat{M}_{\lambda})$ is convex, each stationary point is a minimizer. Therefore, the convergence is proved.

References

- [1] David Gross. Recovering low-rank matrices from few coefficients in any basis. *IEEE Transactions on Information Theory*, 57(3):1548–1566, 2011.
- [2] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. *Journal of machine learning research*, 11(Aug):2287–2322, 2010.