Appendix: Convolutional Imputation of Matrix Networks
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Exact recovery guarantee

Theorem 1. We assume that A is a matrix network on
a graph G, and its graph Fourier transform fl(k) are a
sequence of matrices, each of them is at most rank r, and A
satisfy the incoherence condition with coherence 1. And we
observe a matrix network A on the graph G, for a subset
of node in Q) random sampled from the network, node i on
the network is sampled with probability p;, we define the
average sampling rate p = + Zi\;l pi = |Q|/(Nn?), and
define R = %PQZ/{*.

Then we prove that for any sampling probability distri-
bution {p;}, as long as the average sampling rate p >

Cur log?(Nn) for some constants C, the solution to the
optimization problem

minimize || M||+.1,
M

subjectto A = RM

is unique and is exactly A with probability 1 —
(Nn)~7,where vy = %.

Proof. We define a inner product: (Ml, M2> =
>k (Mi(k), M2(k)). Then we have the following two in-
equalities

IV (k)| = Tr(sgn(M (k)M (k) = (sgn(M (k)), M (k)).

Therefore,

IM]].1 = (sgn(d), M).

Here sgn(M) = V1 V5" is the sign matrix of the singular

values of M under the singular vector basis.

We consider A = M — A, then either RA # 0, or Hfl +
Al > | Al
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First we define a decomposition A = Ap + A% = PrA+
PriA.

For RA = 0, we compute

A+ Al

[PL(A+ A)Pa]ly + | PH(A + A) Pl
|A+ PIAP |1 + || AT |1

(sgn(A), A+ PLAP,) + (sgn(AF), AF)

= ||A]lu1 + (sgn(A), PLAP,) + (sgn(A7F), A7)
= [[Afl1 + (sgn(A) + (A7), A).

v

Now we want to estimate ((A) 4 (A%), A). We make two
assumptions, which we will prove later.

First, we assume that for all A € range(R)*, with proba-
bility 1 — (Nn)~7,

IAT]l2 < 20N AT 2.

Second, we want to construct a dual certificate K €
range(R), such that for k = 3 + 3log,(r) + logy(n) +
log, (), with probability 1 — (Nn)~7,

1Pr(K) = sign(A)[s < (3)"v/r,

<
[1Pro (K| <

N

Then
)+ (A7), A)

)+ (A7) — K, A)
A) — K, A7) + (AF) — K, AF)
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When M is a minimizer, we must have A% = 0, other-
wise [|[A + All,1 < ||A|l+1. By assumption, [|Ap|ls <
n?||A%||2., Az = 0, then A = 0. Therefore, under the two
assumption, M is the unique mininizer, and M = A.

Now we prove the above assumption and construct dual
certificate.
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First, we show that if
A7z > (20N)[|AF 2,
then ||RAT||2 > HRA%”Q,

[RA2
= |RA7T +RAZ[2
> [[RA7|2 — [|RAT 2
> 0.

We have a lower bound on ||RAr||2 and upper bound on
IRAT I 12 21 AL|2
IRATIz < IRIF[IAT2-

Here ||R|| is the operator norm of R.

|IRAZ|3 = (RArp,RAT)

Since E(PrRPr) = Pr, we only need to control the devia-
tion, we could use a concentration inequality called operator-
Bernstein inequality (1)),

npt2 )

P[HPT — PTRPTH > t] < exp(f 4/,67" .

Using the condition that p = Cp~ log*(Nn), let t = 1/4,
we have

P[”PT — PTRPTH > t]

npx log?(Nn)
< exp(——g, )

exp ( - log21(6Nn) )

(nN)~7,

where v = loggNn). Therefore, with probability 1 —

(nN)~7, the the inequality holds for ¢ = 1/2. When the
inequality holds, || Py — PrRPr| < 1/2, RA # 0.

Second, we construct the dual certificate K by the following
construction: We decompose (2 as the union of k& subset {2;,
where each entry is sampled independently so that E'(|2;| =
pr =1— (1 —p)"/*, and define R; = -- P, U*. Define

t
Hy = (A)aKt = ZRjHj—l,Ht = (A) — PrK;.

j=1
Then the dual certificate is defined as K = K.

This construction is called golfing scheme, which is invented
in (1). Since p; = p/k = Cp-1x log?(Nn), we can assume
||Pr — PrR;Pr| < 1/2, which is true with probability

Cnpt? )
pkr /°

1 —exp(

1
1Hell2 < || Pr — PrRPr|l|He-1ll2 < 5[ He-1]l2-

> |[RIP/(nN)*(1 = ||Pr — PrRPr|)|| Arll3.

And
1Pr(K) = ()]l = 1l < GIIA] < ().

Then 1
[1Pr(K) — (A2 < (i)k\/;-
k
Also, ||PTJ_(K).H < 23:1 |ProR;H;_1]|, use the
operator-Bernstein inequality for a sequence of t; =
1/(4\/F), we have HPT¢RJ'HJ'_1|| < ti||Hj_1||2, and since
1,2 < \/r277, then

=

k k
[Pr (K)|| < Zti”Hj—1”2 < 227@71) <1/2.
Jj=1 j=1

Therefore, K is the dual certificate, the whole proof is done.

O

Imputation algorithm convergence Now we show that
the solution of our imputation algorithm converges asymp-
totically to a minimizer of the previously defined objective
Ly (M).

Each step of our imputation algorithm is minimizing a sur-
rogate Q (M |M°'4) of the above objective function as

N
IA? + PaU ™ MO — U MP + Y Al M (k)]
k=1
The resulting minimizer forms a sequence M§ with starting
point ]\ng
M;\H = argmin Q,(M|M?).
Theorem 2. The imputation algorithm produces a sequence

of iterates M that converges to the minimizer of Ly (M).

The main idea of the proof is to show that (J decreases
after every iteration and M is a Cauchy sequence, and the
limit point is a stationary point of L.

Proof. For each iteration in our algorithm, we are solving
for a surrogate of the objective function as

N

QAM M) = | A+ P~ MO U M P4 Al M (K)] .

k=1

And the sequence M ! with any starting point ]\ng is given
by

Mf\'“: argmin  Qx(M|MY).

The sequence satisfies

LM < QM MY) < La(M}).
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Because
QM M) = La(MH)
and
Q)\(M‘MOM)
N
= [|Pa(A) + PoU™" MM — U M|+ > A M(K)|l
k=1
A A N A~
> ||Pa(A) + PaU "M — U M|* + > Nl M(E)|l.
k=1
= Qx(M|[M)

Below we prove the following successive differences are
monotonically decreasing

IMEH — NS < (MK — M
and the difference sequence converges to zero,
M — Mt = o.

The successive differences are monotonically decreasing be-
cause the soft threshold operator is a contraction in Ly norm
(2). And when there are positive singular values smaller
than the threshold, the successive differences will strictly
decrease until the algorithm converges.

Then ]\fo\ is a Cauchy sequence, therefore we have a set of
limit points. Also by monotonic convergence theorem, since
Mf\“ -M ! converges to zero monotonically, the Cauchy
sequence M§ has an unique limit M °. Moreover, we can
verify that M ¢ is a solution to the fixed point equation
VL) = 0, and a stationary point of L (M)\) Since LA(]\ZT)\)
is convex, each stationary point is a minimizer. Therefore,
the convergence is proved. O
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