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Exact recovery guarantee
Theorem 1. We assume that A is a matrix network on
a graph G, and its graph Fourier transform Â(k) are a
sequence of matrices, each of them is at most rank r, and Â
satisfy the incoherence condition with coherence µ. And we
observe a matrix network AΩ on the graph G, for a subset
of node in Ω random sampled from the network, node i on
the network is sampled with probability pi, we define the
average sampling rate p = 1

N

∑N
i=1 pi = |Ω|/(Nn2), and

defineR = 1
pPΩU∗.

Then we prove that for any sampling probability distri-
bution {pi}, as long as the average sampling rate p >
Cµ rn log2(Nn) for some constants C, the solution to the
optimization problem

minimize
M̂

‖M̂‖∗,1,

subject to AΩ = RM̂

is unique and is exactly Â with probability 1 −
(Nn)−γ ,where γ = log(Nn)

16 .

Proof. We define a inner product: 〈M̂1, M̂2〉 =∑
k〈M̂1(k), M̂2(k)〉. Then we have the following two in-

equalities

‖M̂(k)‖∗ = Tr(sgn(M̂(k))M̂(k)) = 〈sgn(M̂(k)), M̂(k)〉.

Therefore,

‖M̂‖∗,1 = 〈sgn(M̂), M̂〉.

Here sgn(M̂) = V1V
∗
2 is the sign matrix of the singular

values of M̂ under the singular vector basis.

We consider ∆ = M̂ − Â, then either R∆ 6= 0, or ‖Â +
∆‖∗,1 > ‖Â‖∗,1.
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First we define a decomposition ∆ = ∆T + ∆⊥T = PT∆ +
PT⊥∆.

ForR∆ = 0, we compute

‖Â+ ∆‖∗,1
≥ ‖P1(Â+ ∆)P2‖∗,1 + ‖P⊥1 (Â+ ∆)P⊥2 ‖∗,1
= ‖Â+ P1∆P2‖∗,1 + ‖∆⊥T ‖∗,1
≥ 〈sgn(Â), Â+ P1∆P2〉+ 〈sgn(∆⊥T ),∆⊥T 〉
= ‖Â‖∗,1 + 〈sgn(Â), P1∆P2〉+ 〈sgn(∆⊥T ),∆⊥T 〉
= ‖Â‖∗,1 + 〈sgn(Â) + (∆⊥T ),∆〉.

Now we want to estimate 〈(Â) + (∆⊥T ),∆〉. We make two
assumptions, which we will prove later.

First, we assume that for all ∆ ∈ range(R)⊥, with proba-
bility 1− (Nn)−γ ,

‖∆T ‖2 < 2nN‖∆⊥T ‖2.

Second, we want to construct a dual certificate K ∈
range(R), such that for k = 3 + 1

2 log2(r) + log2(n) +
log2(N), with probability 1− (Nn)−γ ,

‖PT (K)− sign(Â)‖2 ≤ ( 1
2 )k
√
r,

‖PT⊥(K)‖ ≤ 1
2 .

Then

〈sgn(Â) + (∆⊥T ),∆〉
= 〈sgn(Â) + (∆⊥T )−K,∆〉
= 〈sgn(Â)−K,∆T 〉+ 〈(∆⊥T )−K,∆⊥T 〉

≥ 1

2
‖∆⊥T ‖2 − (

1

2
)k
√
r‖∆T ‖2

≥ 1

4
‖∆⊥T ‖2.

When M̂ is a minimizer, we must have ∆⊥T = 0, other-
wise ‖Â + ∆‖∗,1 < ‖Â‖∗,1. By assumption, ‖∆T ‖2 <
n2‖∆⊥T ‖2., ∆T = 0, then ∆ = 0. Therefore, under the two
assumption, M̂ is the unique mininizer, and M̂ = Â.

Now we prove the above assumption and construct dual
certificate.
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First, we show that if

‖∆T ‖2 ≥ (2nN)‖∆⊥T ‖2,

then ‖R∆T ‖2 > ‖R∆⊥T ‖2,

‖R∆‖2
= ‖R∆T +R∆⊥T ‖2
≥ ‖R∆T ‖2 − ‖R∆⊥T ‖2
> 0.

We have a lower bound on ‖R∆T ‖2 and upper bound on
‖R∆⊥T ‖2.

‖R∆⊥T ‖22 ≤ ‖R‖2‖∆⊥T ‖22.
Here ‖R‖ is the operator norm ofR.

‖R∆T ‖22 = 〈R∆T ,R∆T 〉
≥ ‖R‖2/(nN)2(1− ‖PT − PTRPT ‖)‖∆T ‖22.

SinceE(PTRPT ) = PT , we only need to control the devia-
tion, we could use a concentration inequality called operator-
Bernstein inequality (1),

P[‖PT − PTRPT ‖ > t] ≤ exp(−npt
2

4µr
).

Using the condition that p = Cµ rn log2(Nn), let t = 1/4,
we have

P[‖PT − PTRPT ‖ > t]

≤ exp(−nµ
r
n log2(Nn)

16µr )

= exp(− log2(Nn)
16 )

= (nN)−γ ,

where γ = log(Nn)
16 . Therefore, with probability 1 −

(nN)−γ , the the inequality holds for t = 1/2. When the
inequality holds, ‖PT − PTRPT ‖ < 1/2,R∆ 6= 0.

Second, we construct the dual certificateK by the following
construction: We decompose Ω as the union of k subset Ωt,
where each entry is sampled independently so thatE(|Ωt| =
pt = 1− (1− p)1/k, and define Rt = 1

pt
PΩt
U∗. Define

H0 = (Â),Kt =

t∑
j=1

RjHj−1, Ht = (Â)− PTKt.

Then the dual certificate is defined as K = Kk.

This construction is called golfing scheme, which is invented
in (1). Since pt = p/k = Cµ r

nk log2(Nn), we can assume
‖PT − PTRjPT ‖ < 1/2, which is true with probability
1− exp(Cnpt

2

µkr ).

‖Ht‖2 ≤ ‖PT − PTRPT ‖‖Ht−1‖2 ≤
1

2
‖Ht−1‖2.

And

‖PT (K)− (Â)‖2 = ‖Hk‖ ≤ (
1

2
)k‖(Â)‖ ≤ (

1

2
)k
√
r.

Then
‖PT (K)− (Â)‖2 ≤ (

1

2
)k
√
r.

Also, ‖PT⊥(K)‖ ≤
∑k
j=1 ‖PT⊥RjHj−1‖, use the

operator-Bernstein inequality for a sequence of tj =
1/(4
√
r), we have ‖PT⊥RjHj−1‖ ≤ ti‖Hj−1‖2, and since

‖Hj‖2 ≤
√
r2−j , then

‖PT⊥(K)‖ ≤
k∑
j=1

ti‖Hj−1‖2 ≤
1

4

k∑
j=1

2−(j−1) < 1/2.

Therefore, K is the dual certificate, the whole proof is done.

Imputation algorithm convergence Now we show that
the solution of our imputation algorithm converges asymp-
totically to a minimizer of the previously defined objective
Lλ(M̂).

Each step of our imputation algorithm is minimizing a sur-
rogate Qλ(M̂ |M̂old) of the above objective function as

‖AΩ + P⊥Ω U−1M̂old − U−1M̂‖2 +

N∑
k=1

λk‖M̂(k)‖∗.

The resulting minimizer forms a sequence M̂ t
λ with starting

point M̂0
λ

M̂ t+1
λ = argmin Qλ(M̂ |M̂ t

λ).

Theorem 2. The imputation algorithm produces a sequence
of iterates M̂ t

λ that converges to the minimizer of Lλ(M̂).

The main idea of the proof is to show that Qλ decreases
after every iteration and M̂ t

λ is a Cauchy sequence, and the
limit point is a stationary point of Lλ.

Proof. For each iteration in our algorithm, we are solving
for a surrogate of the objective function as

Qλ(M̂ |M̂old) = ‖AΩ+P⊥Ω U−1M̂old−U−1M̂‖2+

N∑
k=1

λk‖M̂(k)‖∗.

And the sequence M̂ t
λ with any starting point M̂0

λ is given
by

M̂ t+1
λ = argmin Qλ(M̂ |M̂ t

λ).

The sequence satisfies

Lλ(M̂ t+1
λ ) ≤ Qλ(M̂ t+1

λ |M̂ t
λ) ≤ Lλ(M̂ t

λ).
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Because

Qλ(M̂ t+1
λ |M̂ t+1

λ ) = Lλ(M̂ t+1
λ )

and

Qλ(M̂ |M̂old)

= ‖PΩ(A) + P⊥Ω U−1M̂old − U−1M̂‖2 +

N∑
k=1

λk‖M̂(k)‖∗

≥ ‖PΩ(A) + P⊥Ω U−1M̂ − U−1M̂‖2 +

N∑
k=1

λk‖M̂(k)‖∗

= Qλ(M̂ |M̂)

Below we prove the following successive differences are
monotonically decreasing

‖M̂ t+1
λ − M̂ t

λ‖2 ≤ ‖M̂ t
λ − M̂ t−1

λ ‖2.

and the difference sequence converges to zero,

M̂ t+1
λ − M̂ t

λ → 0.

The successive differences are monotonically decreasing be-
cause the soft threshold operator is a contraction in L2 norm
(2). And when there are positive singular values smaller
than the threshold, the successive differences will strictly
decrease until the algorithm converges.

Then M̂ t
λ is a Cauchy sequence, therefore we have a set of

limit points. Also by monotonic convergence theorem, since
M̂ t+1
λ − M̂ t

λ converges to zero monotonically, the Cauchy
sequence M̂ t

λ has an unique limit M̂∞λ . Moreover, we can
verify that M̂∞λ is a solution to the fixed point equation
OLλ = 0, and a stationary point of Lλ(M̂λ). Since Lλ(M̂λ)
is convex, each stationary point is a minimizer. Therefore,
the convergence is proved.
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