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A. Complex-Valued Non-Stationary Kernels
Beyond stationary kernels, Generalized Bochner’s Theorem
(Yaglom, 2012; Kakihara, 1985; Genton, 2001) presents
a spectral representation for a larger class of kernels. As
stated in Yaglom (2012), Generalized Bochner’s Theorem
applies for most bounded kernels except for some special
counter-examples.

Theorem 5. (Generalized Bochner) A complex-valued
bounded continuous function k on Rd is the covariance
function of a mean square continuous complex-valued ran-
dom process on Rd if and only if it can be represented as

k(x, y) =
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where  is a Lebesgue-Stieltjes measure associated with
some positive semi-definite bounded symmetric function
S(w

1

,w

2

).

We call kernels with this property complex-valued non-
stationary (CvNs) kernels.

Actually, when the spectral measure  has mass concen-
trated along the diagonal w

1

= w

2

, Bochner’s theorem is
recovered. Similarly, for such a CvNs kernel, the closure
under summation and multiplication still holds (Proof in
Appendix C):

Lemma 6. For CvNs kernels k, k1, k2,

• For �1,�2 2 R⇤, �1k1 + �2k2 is a CvNs kernel.

• Product k1k2 is a CvNs kernel.

• Real part <{k} is a real-valued kernel.

Finally, the next theorem justifies the use of complex-valued
kernels and real-valued kernels together in an NKN.

Theorem 7. An NKN with primitive kernels which are either
real-valued kernels or CvNs kernels has all the nodes’ real
parts be valid real-valued kernels.

Proof. Assume primitive kernels have real-valued kernels
r1, · · · , rt and CvNs kernels c1, · · · , cs. Any node in an
NKN can be written as Poly+(r1, · · · , rt, c1, · · · , cs).3 It
is sufficient to show that for every purely multiplication
term in Poly+(r1, · · · , rt, c1, · · · , cs), its real part is a valid
kernel. As the real part equals

Q
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and Lemma 8 shows <(

Q
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j=1 c
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j

) is a valid real-valued
kernel, therefore the whole real part is also a valid kernel.

3
Poly+ represents a positive-weighted polynomial of primitive

kernels.

B. Complex-Valued Stationary-Kernel
Closure

Lemma 8. For complex-valued stationary kernels k, k1, k2,

• For �1,�2 2 R⇤, �1k1 + �2k2 is a complex-valued
stationary kernel.

• Product k1k2 is a complex-valued stationary kernel.

• Real part <{k} is a real-valued kernel.

Proof. A complex-valued stationary kernel k is equivalent
to being the covariance function of a weakly stationary mean
square continuous complex-valued random process on RP ,
which also means that for any N 2 Z+, {x

i

}N
i=1, we have

K = {k(x
i

� x
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)}0i,jN

is a complex-valued positive
semi-definite matrix.

Thus for complex-valued stationary kernels k1 and k2, and
any N 2 Z+, {x

i

}N
i=1, we have complex-valued PSD ma-

trices K1 and K2. Then product k = k1k2 will have matrix
K = K1 � K2. For PSD matrices, assume eigenvalue
decompositions
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where eigenvalues �
i

and �
i

are non-negative real numbers
based on positive semi-definiteness. Then
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K is also a complex-valued PSD matrix, thus K is also a
complex-valued stationary kernel.

For sum k = k1 + k2, K = K1 +K1 is also a complex-
valued PSD.

Hence we proved the closure of complex-valued kernels
under summation and multiplication. For a complex-valued
kernel k and arbitrarily N complex-valued numbers, as
shown above
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Here a

k

, b
k

are all real vectors. Therefore, <(K) is a real
PSD matrix, thus <{k} is a real-valued stationary kernel.

Note: Kernel’s summation, multiplication and real part cor-
respond to summation, convolution and even part in the spec-
tral domain. Because the results of applying these spectral-
domain operations to a positive function are still positive,
and the only requirement for spectral representation is being
positive as in Theorem 1, the closure is natural.

C. Proof for Complex-Valued Kernel Closure
This section provides proof for Lemma 6.

Proof. First, for k(x,y) to be a valid kernel (k(x,y) =
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Compared to
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We have the requirement that S(w
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Next we will show the correspondence between kernel oper-

ations and spectral operations. Denote z =
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Where w
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. Therefore, summa-

tion in the kernel domain corresponds to summation in the

spectral domain, and multiplication in the kernel domain
corresponds to convolution in the spectral domain.

For symmetric S1 and S2, their convolution
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is still symmetric, and their sum is also symmetric. There-
fore, the sum and multiplication of complex-valued non-
stationary kernels is still a complex-valued non-stationary
kernel.

Finally, decompose S(w1,w2) into even and odd parts
S(w1,w2) = E(w1,w2)+O(w1,w2), that E(w1,w2) =

E(�w1,�w2), O(w1,w2) = �O(w2,w1). Inherently,
E and O are symmetric.
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is real. The part corresponded with O
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is purely imaginary. Therefore E(w1,w2) corresponds to
<(k), the real part of kernel k. As E is bounded, symmetric
and positive, <(k) is a valid real-valued kernel.
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D. Proof for NKN Polynomial Universalities
This section provides proof for Theorem 3.

Proof. For limited width For limited width, we will demon-
strate a special stucture of NKN which can represent any
positive-weighted polynomial of primitive kernels. As a
polynomial is summation of several multiplication terms, if
NKN can represent any multiplication term and add them
iteratively to the outputs, it can represent any positive-
weighted polynomial of primitive kernels.

Figure 6 demonstrates an example of how to generate multi-
plication term 0.3k1k

2
2 , in which k1, k2, k3 represent primi-

tive kernels and 1 represents bias. In every Linear-Product
module, we add a primitive kernel to the fourth neuron on
the right and multiply it with the third neuron on the right.
Iteratively, we can generate the multiplication term. Finally,
we can add this multiplication term to the rightmost output.

Note that, after adding the multiplication term to the output,
we keep every kernel except the output kernel unchanged.
Therefore, we can continue adding new multiplication terms
to the output and generate the whole polynomial.

Although this structure demonstrates the example with 3
primitive kernel, it can easily extend to deal with any number
of primitive kernels as can be seen. What’s more, as a
special case, this structure only uses specific edges of a
NKN. In practice, NKN can be more flexible and efficient
in representing kernels.

For limited depth, the example can be proved by recursion.

As a Lemma, we firstly prove, a NKN with one primitive
kernel k0 and p Linear-Product modules, can use width
2(p+ 1) to represent kq0, 8q  2

p.

It is obvious that NKN can use width 2 to represent
k2

t

0 , 8t  p. Then we can write q =

P
p

t=0 qt2
t with

q
t

2 {0, 1}. Therefore, in order to represent kq0 , we can rep-
resent these terms separately, using width 2(p+ 1). Lemma
proved.

Now we start the recusion proof,

If B = 1, according to the lemma above, we can use width
2(p + 1)  2

Bp+1. The theorem also holds easily when
p = 1.

Now assume the statement holds for in cases less than B.
We can write the polynomial according to the degree of k0,
which ranges from 0 to 2

p. According to the lemma, these
degrees of k0 can be represented with width 2(p+ 1). And
according to the recusion assumption, the width we need is
at most

2

p�1
(2p+2

(B�1)(p�1)+1
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+1)(2(p+1)+2
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)

Where the first term corresponds to degree of k0 larger than

2

p�1 and the second term corresponds to degree of k0 no
larger than 2

p�1. The formula above is less than 2

Bp+1.
According to the recursion, the theorem is proved.

E. Proof for Example 1
This section provides proof for Example 1.

Proof. As all dimensions are independent, we only need to
prove for the one-dimensional case.

We consider these stationary kernels in spectral domain.
Then cosine kernel cos(µ⌧) corresponds to �(w � µ) +
�(w + µ) as spectral density. Note that summation and
multiplication in kernel domain correspond to summation
and convolution in spectral domain, respectively.

The example can be proved by recursion.

If n = 0, the conclusion is obvious.

Now assume the conclusion holds when less than n.

Consider case n,

Then spectral density of target kernel k⇤ will be

f⇤
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Because ¯k is a PWP of cosine kernels. Its spectral den-
sity will be summations of convolutions of even delta fun-
tions �(w � µ) + �(w + µ). As convolution �(w � w1) ⇤
�(w � w2) = �(w � (w1 + w2)), ¯f can be represented
as summations of delta functions, where location in every
delta function has form

P
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If 9t0 such that p
t0 < 0, according to symmetry of �(w �
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Figure 6. A building block of NKN to represent any positive-weighed polynomial of primitive kernels. This structure shows how NKN
can add a multiplication term to the output kernel as well as keeping primitive kernels unchanged.
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which has the same coefficient in ¯f as
P
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. However
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Contradiction!

If
P

n

t=1 pt � 3, we can find the smallest µ and reverse its
sign. For example, if the location is 2µ1+µ2, then according
to symmetry, there must be another location �µ1+µ1+µ2

in f with the same coefficient. However,

�µ1 + µ1 + µ2 >
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Therefore,
P

n

t=1 pt  2. If one µ has degree 2, 2µ = 4
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According to symmetry, there will be a term with location
�µ + µ = 0, contradiction. If µ
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Therefore, there exists t such that p
t

= 1, µ
t

= 4

n+1. Be-
cause 4

n+1 is the biggest location in f⇤, µ
t

cannot appear
in any other term of ¯f , which induces to case of n � 1.
According to induction, the statement is proved.

F. Proof of NKN’s Stationary Universality
This section provides proof for Theorem 4.

Proof. Start at 1-d primitive kernels. For a given complex-
valued stationary kernel k with Fourier transform g, accord-
ing to Lemma 10, we can find v 2 R, µ 2 R+, such that
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Thus the corresponding kernel
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Here, Poly+ denotes a positive-weighted polynomial of
primitive kernels. Therefore, any complex-valued stationary
kernel can be well approximated by a positive-weighted
polynomial of a RBF and two eiµx. As Theorem 3 shows,
an NKN with limited width can approximate any positive-
weighted polynomial of primitive kernels. By Wiener’s
Tauberian theorem (Wiener, 1932), which states L1 con-
vergence in Fourier domain implies pointwise convergence
in original domain, we prove, taking these three kernels
as primitive kernels, an NKN with width no more than
2⇥3+6 = 12 is dense towards any 1-dimensional complex-
valued stationary kernel wrt pointwise convergence. To be
noted, as cos is an even function, we only need two prim-
itive kernels (RBF, eiµx) (width 10) to approximate any
real-valued stationary kernel.

For d dimensional inputs, Wilson & Adams (2013) provides
an SM kernel which is a universal approximator for all
real-valued stationary kernels.
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For complex-valued stationary kernels corresponding to
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the formula above is a positive-weighted polynomial of
1-dimensional case. Similarly, we can approximate them
well using an NKN with d RBF and 2d eiµ

>
x as primitive

kernels and with width no more than 6d + 6. For a real-
valued stationary kernel, we only need an NKN with d RBF
and d eiµ

>
x as primitive kernels and with width no more

than 4d+ 6.
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G. NKN on Approximating Bounded Kernels
Theorem 9. By using d RBF kernels, 2d exponential ker-
nels ei(x�y)>µ and d functions ei(x+y)>⌫ that only sup-
port multiplication and always apply the same operation
on e�i(x+y)>⌫ , NKN with width no more than 8d+ 6 can
approximate all d-dimensional generalized spectral kernels
in Kom Samo & Roberts (2015).

Proof. This proof refers to the proof in Kom Samo &
Roberts (2015).

Let (x,y) ! k⇤(x,y) be a real-valued positive semi-
definite, continuous, and integrable function such that
8x,y, k⇤(x,y) > 0.

k⇤ being integrable, it admits a Fourier transform
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therefore,
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)(x,y) = k⇤(�x,�y) > 0.

Hence k⇤ suffices Wiener’s tauberian theorem, so that any
integrable function on Rd ⇥ Rb can be approximated well
with linear combinations of translations of K⇤.

Let k be any continuous bounded kernel4, according to
Theorem 5,
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Where w =
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. Plus, for k(x,y) being a kernel,

we must have k(x,y) = k(y,x)⇤, corresponding to
4Yaglom (2012) points out that there are some exception cases

that cannot be written as this, but these are specially designed and
hardly ever seen in practice.

f(w1,w2) = f(w2,w1), therefore we have the universal
approximator
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where � 2 R and for k⇤(x,y) we can use RBF. However,
not every � makes ¯k a kernel; therefore, for practical use,
we limit � 2 R+. If we only focus on one part of ¯k(x,y),
that is

¯k
h

(x,y) =
KX

k=1

�
k

k⇤(x,y)(ei(x�y)>µ0
)

nk
(ei(x+y)>⌫0

)

mk

= Poly+{k⇤(x,y), ei(x�y)>µ0 , e�i(x�y)>µ0 ,

ei(x+y)>⌫0 , e�i(x+y)>⌫0}
(29)

according to 3, ¯k
h

(x,y) can be represented with an NKN.
In order to generate ¯k(x,y), we only increment a class
with two items ei(x+y)>⌫0 , e�i(x+y)>⌫0 and apply the same
transformation to these two items each time. In order to
keep the output of NKN as a kernel, we can limit this class
to only be enabled for multiplication.

H. Discrete Gaussian Mixture Approximation
Lemma 10. Gaussian mixtures with form

G(x) =

QX

q=1

w
q

exp(� (x �  
q

)

2

2f
q

) (30)

with Q 2 Z+, w
q

, , f 2 R+, and  
q

and f
q

selected
discretely in S

 

= { ,±2 , · · · },S
f

= {f, 2f, · · · } is
dense with respect to L1 convergence.

Proof. For any continuous positive function g(x) and ✏ >
0, the Gaussian mixture approximation theorem ensures
existing

ĝ(x) =

QX

q=1

w
q

exp(� (x � µ
q

)

2

2v
q

) (31)
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that kg(x) � ĝ(x)k1 < ✏

2 ,
According to Pinsker’s Inequality (Csiszar & Körner, 2011),
for two probability distributions P,Q,

kP � Qk1 
r

1

2

D

KL

(PkQ)

(32)

For small enough dv and dµ, we have

D

KL

(N (µ+ dµ, v + dv)kN (µ, v))

= �1

2

log

v + dv

v
+

v + dv + (dµ)2

2v
� 1

2

= �1

2

log

v + dv

v
+

dv + (dµ)2

2v
 1

2⇡v

✏2

2w2
q

Q2

(33)

Thus, the L1 norm between two gaussians is bounded by

kN (µ+dµ, v+dv)� N (µ, v)k1  1p
2⇡v

✏

2|w
q

|Q (34)

Take f, small enough such that 8q = 1, · · ·Q

kN (µ
q

+

 

2

, v
q

+

f

2

) � N (µ
q

, v
q

)k1  1p
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2|w
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|Q

Then for any v
i

, µ
i

, we can find f
i

2 F =

{f, 2f, · · · }, 
i

2  = { ,±2 , · · · } such that |v
i

�f
i

| <
f

2 , |µi

�  
i

| <  

2 , define discrete Gaussian mixture

ḡ(x) :=

QX

q=1

w
q

r
v
q

f
q

exp(� (x �  
q

)

2

2f
q

) (35)

According to triangular inequality,

kḡ(x) � g(x)k1  kḡ(x) � ĝ(x)k1 + kĝ(x) � g(x)k1

< k
QX
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(36)

I. Additional Results
I.1. Synthetic Data

We first considered a synthetic regression dataset for illustra-
tive purposes. Specifically, we randomly sampled a function
from a GP with mean 0 and a sum of RBF and periodic
kernels. We randomly selected 100 training points from
[�12, 0] [ [6, 14].

Figure 7. Synthesized 1-d toy experiment. We compare NKN pre-
diction with the ground truth function. Shaded area represents the
standard deviation of NKN prediction.

Table 3. Time (seconds) in 1D Time-series experiments.
DATASETS AIRLINE MAUNA SOLAR

AS 6147 51065 37716
NKN 201 576 962

As shown in Figure 3, the NKN is able to fit the training data,
and its extrapolations are consistent with the ground truth
function. We also observe that the NKN assigns small pre-
dictive variance near the training data and larger predictive
variance far away from it.

I.2. 1D Time-Series

Figure 8 and Figure 9 plot the 1D Time-Series extrapolations
result, along with Figure 3. For these experiments, the
running time of AS and NKN are shown in 3.

I.3. Neuron Pattern Analysis

We perform another synthetic toy experiment to analyze
individual neurons’ prediction patterns in NKN. The kernel
for generating random functions is LIN + RBF ⇤ PER. We
use NKN with LIN, PER, and RBF as primitive kernels
and the following layers organized as Linear4–Product2–
Linear1. The prediction result is shown in Figure 10. As
we can see, NKN fits the data well with plausible patterns.
Beyond that, we also visualize the pattern learned by each
neuron in first layer of NKN in Figure 11.

As shown in Figure 11, these four neurons show different
patterns in terms of frequencies. The third neuron learns
the highest frequency and the first neuron learns the lowest
frequency. This shows that NKN can automatically learn
basis with low correlations.

The question of how to steer the NKN framework to gener-
ate more interpretable patterns is an interesting subject for
future investigation.
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Figure 8. Extrapolation results of NKN on the Mauna datasets.
Heuristic kernel represents linear combination of RBF, PER, LIN,
and Constant kernels. AS represents Automatic Statistician (Duve-
naud et al., 2013). The red circles are the training points, and the
curve after the blue dashed line is the extrapolation result. Shaded
areas represent 1 standard deviation.

I.4. Kernel Recovery and Interpretability

As we proved in the paper theoretically, NKN is capable
to represent sophisticated combinations of primitive ker-
nels. We perform another experiment analyzing this kernel
recovery ability in practice.

The experiment settings are the same as Sec 5.3, that we
use individual dimensional RBF as primitive kernels of a
NKN to fit the additive function. We set input dimension
as 10 and use 100 data points. Ideally, a well-performing
model will learn the final kernel as summation of these
additive groups. After training NKN for 20,000 iterations,
we print 20 terms with biggest coefficients of the overall
kernel polynomial. Here k0, k1 · · · , k9 represents the 10
primitive RBF kernels, respectively.

For fully additive Stybtang function, the 20 biggest terms in
the final NKN kernel polynomial is

Figure 9. Extrapolation results of NKN on the Solar datasets.
Heuristic kernel represents linear combination of RBF, PER, LIN,
and Constant kernels. AS represents Automatic Statistician (Duve-
naud et al., 2013). The red circles are the training points, and the
curve after the blue dashed line is the extrapolation result. Shaded
areas represent 1 standard deviation.

Figure 10. Synthesized 1-d toy experiment.

1, k6, k9, k5, k1, k2, k3, k0, k8, k4, k7, k2*k8, k6*k9,
k5*k6, k1*k6, k5*k9, k1*k9, k1*k5, k6**2, k3*k9

For group additive Stybtang-transformed function with
k0, k1, k2, k3, k4 as one group and k5, k6, k7, k8, k9 as
one group, the 20 biggest terms in the final NKN kernel
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(a) The first neuron (b) The second neuron (c) The third neuron (d) The fourth neuron
Figure 11. The visualization of learned pattern of each neuron in the first layer of NKN.

polynomial is

k1*k3*k4*k7, k2*k5*k7*k8, k5*k7*k8*k9, k1*k3*k4**2,
k5*k6*k7*k8, k3**2*k4*k7, k1**2*k4*k7, k2*k7**2*k9,
k2*k6*k7**2, k3**2*k4**2, k1**2*k4**2, k6*k7**2*k9,
k1*k3*k7**2, k5**2*k8**2, k2**2*k7**2, k3*k4*k7**2,
k1*k4*k7**2, k7**2*k9**2, k3**2*k7**2, k3*k4**2*k7

We can see, for Stybtang function, the biggest ones are
exactly all the linear terms. This shows NKN learns the ad-
ditive structure from 100 data points in this 10 dimensional
space. For group additive Stybtang-transformed function,
except k7 appears in all terms, the kernels within the same
group basically appears in the same term. This demonstrates
again that NKN recovers the underlying data structure.

Michalewicz function is more complicated with steep val-
leys. The final polynomial with 100 data points didn’t show
clear patterns. Therefore we change to model it with 500

data points. The 20 biggest terms are shown below,

k2*k4, k0*k9, k2*k8, k4*k7, k2*k3, k1, k3*k7, k7*k8,
k0*k7, k3*k4, k6, k9**2, k7, k0*k2, k3*k8, k3*k9, k3**2,
k2, k1*k5, k5*k6

We can see, although the biggest terms are not linear terms,
all of them are either linear terms or quadratic terms. Note
that for this NKN architecture with 2 Linear-Product mod-
ules, most common terms are fourth power. Therefore, this
polynomial can show that this function is of low-correlation
across dimensions to some degree.

Note that although NKN can produce sensible extrapola-
tions, it is less interpretable compared to AS. However, as
shown above, by inspecting the final kernel polynomial,
we can indeed find interpretable information about the data
distribution. Probably, combing with some clustering algo-
rithms, this information recovery can become more Auto-
matic. What’s more, NKN’s fast speed makes it possible to
try different primitive kernel and network structure config-
urations, which might offer interpretable information from
different aspects. This can be an interesting future research
topic.

I.5. Bayesian Optimization

We perform another Bayesian Optimization experiment com-
pared to Sec 5.3. Sec 5.3 models the function but optimizes
function for all dimensions together, which doesn’t take
advantage of the additive strucutre. However, because addi-
tive kernels correspond to additive functions, we can opti-
mize the function within each additive groups and combine
them together, which is much more sample efficiency (Kan-
dasamy et al., 2015; Gardner et al., 2017; Wang et al., 2017).

In this experiment, we adopt a small NKN network which
takes 2 RBF as primitive kernels, following layers arranged
as Linear4-Product2-Linear1. We compare NKN with stan-
dard RBF and RBF + RBF, which we denote as 2RBF.

We compare these kernels on two models. The fully depen-
dent model uses a single d-dimensional kernel for fitting,
which is the standard approach in Bayesian optimization.
The Model MCMC (Gardner et al., 2017) samples partitions
using MCMC from the posterior. We plot the optimization
results in Figure 12. Each curve shows the mean cumula-
tive minimum function evaluation up to the current iteration
across 10 runs, while the shaded region shows 0.2 the stan-
dard deviation.

We found that for the fully dependent model, NKN dis-
tinctly outperforms RBF and 2RBF in terms of not only the
minimum found but also convergence speed for Styblinski
and Styblinski-transformed. This is because the fully depen-
dent algorithm models correlations between all dimensions,
which is beyond the capacity of RBF and 2RBF. Though
NKN is expressive enough to model above two functions
well, it fails to model Michalewicz function well. Therefore,
we switch to use Model MCMC which can explore the ad-
ditive structure of the underlying function. Stybtang task
has only one local minimum, thus all three kernels perform
well. In contrast, Michalewicz has many steep valleys and
is much more difficult to model with simple kernels like
RBF and 2RBF. Compared with Stybtang and Michalewicz,
Stybtang-transformed’s function introduces correlation be-
tween dimensions, which calls for a more expressive kernel
structure to represent. This explains the improved conver-
gence speed of NKN compared to the other two baselines.
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(a) Stybtang (b) Michalewicz (c) Stybtang-transform
Figure 12. Bayesian optimization on three tasks. Here 2RBF represents RBF + RBF. Fully and MCMC correspond to Fully dependent
and MCMC (Gardner et al., 2017) models, respectively. Shaded error bars are 0.2 standard deviation over 10 runs.

J. Implementation Details
In this section we introduce the implementation details of
NKN. For better analyzing NKN’s parameter scale, we first
list the parameter numbers for all the primitive kernels we
use.

Table 4. Number of kernel parameters for d dimensional inputs.
RBF LIN COS PER RQ
d+ 1 1 d+ 1 2d+ 1 d+ 1

J.1. Toy experiments

Across all 1-D and 2-D toy experiments, we adopt the same
architecture and the same hyper-parameters initialization
strategy. Concretely, we provide 8 primitive kernels (2
RBFs, 2 PERs, 2 LINs, and 2 RQs respectively) as the prim-
itive kernels. The NKN has a Linear8-Product4-Linear4-
Product2-Linear1 structure. This NKN has overall 111 train-
able parameters. We optimize our model using Adam with
an initial learning rate of 0.001 for 20, 000 iterations.

J.2. Regression

For the regression benchmarks, we follow the standard set-
tings of (Hernández-Lobato & Adams, 2015) for bayesian
neural networks. We use the network with 1 hidden layer
of 50 units for all the datasets, except for protein we use
1 hidden layer of 100 units. We also compare NKN with
standard RBF kernel and SM kernels. For the SM kernel, we
use 4 mixtures which has 8d+ 12 trainable parameters for
d dimensional inputs. The NKN has 6 primitive kernels in-
cluding 2 RQ, 2 RBF, and 2 LIN. The following layers orga-
nize as Linear8-Product4-Linear4-Product2-Linear1. This
architecture has 4d+ 85 trainable parameters.

Because GP suffers from O(N3
) computational cost, which

brings up difficulties training for large datasets. Therefore,
we use Variational Free Energy (VFE) (Titsias, 2009) to
train the GP models for datasets with more than 2000 data

points, while for the small datasets we use the vanilla GP.

J.3. Bayesian Optimization

We first introduce two standard optimization benchmarks
that have fully additive structure: the Styblinski-Tang func-
tion and the Michalewicz function. The d-dimensional
Styblinski-Tang function is defined as

Stybtang(x) =

1

2

dX

i=1

x4
i

� 16x2
i

+ 5x
i

(37)

which obtains its global minimum at approximately at x⇤ ⇡
(�2.9, · · · ,�2.9) with value �39.166d. In practice , we
limit the exploring domain within [�4, 4]d and set d = 10.

The d-dimensional Michalewicz function is defined as

Michalewicz(x) = �
dX

i=1

sin(x
i

) sin

2m
(

ix2
i

⇡
) (38)

Here m controls the steepness of valleys and ridges; a larger
m leads to a more difficult search. We set m = 10, d = 10,
then the global minimum is approximately �9.66 over the
domain [0,⇡]d.

In addition, we extend the Styblinski-Tang function to a
transformed Styblinski-Tang function that is not fully addi-
tive. We sample a random partition P and for each part i of
P , we sample a random orthonormal matrix Q

i

over the di-
mensions of part i. If Q is the block diagonal matrix formed
by placing each Q

i

on the diagonal, then Stybtang(Qx) is
no longer fully additive, but instead is additive across the
components of P . This evaluates performance of BO al-
gorithms when the true function has corrlations between
inputs dimensions.

For the Bayesian optimization process, we firsly sample 10
initial data points randomly. Then at each step, we use a
GP with the proposed kernel to fit all data points available.
We choose the next point from all candidate points in the
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exploring domain according to expected improvement. For
sampling in Model MCMC, we perform 30 steps in the
first 30 iterations, while we perform 10 steps after. Among
all models and tasks, we use L-BFGS optimizer for speed.
In this experiment, we use shared lengthscale for all input
dimensions, in which case the trainable parameters for RBF
is 2.

J.4. Texture Extrapolation

In texture extraplation, all observations don’t exactly on a
grid. Following the algorithm in, we complete the grid using
extra W imaginary observations, y

W

⇠ N (f

W

, ✏�1
I), ✏ !

0. In practice, ✏ is set to 1e�6. The total observation vector
y = [y

M

,y
W

]

> has N = M +W entries.

We use preconditioned conjugate gradients (PCG) to com-
pute (K

N

+D
N

)

�1
y, we use the preconditioning matrix

C = D
�1/2
N

to solve C>
(K

N

+D
N

)Cz = C>
y.

To compute the log-determinant term in marginal likelihood,
we cannot efficiently decompose K

M

+D
M

since K
M

is
not a Kronecker matrix, Considering

log |K
M

+D
M

| =
MX

i=1

log(�M
i

+�2
) ⇡

MX

i=1

log(

˜�M
i

+�2
),

(39)
where � is the noise standard deviation of the data. We ap-
proximate the eigenvalues �M

i

of K
M

using the eigenvalues
of K

N

such that ˜�M
i

=

M

N

�N
i

. Since �n
i

is the eigenvalue
of a matrix with Kronecker structure, it can be computed
efficiently.


