
Learning the Reward Function for a Misspecified Model:
Supplemental Material

Erik Talvitie 1

A. Hallucinated DAgger-MC Details
Hallucinated DAgger-MC, like earlier variations on DAgger,
requires the ability to reset to the initial state distribution µ
and also the ability to reset to an “exploration distribution”
ν. The exploration distribution ideally ensures that the agent
will encounter states that would be visited by a good policy.
The performance bound for H-DAgger-MC depends in part
on the quality of the selected ν.

In addition to assuming a particular form for the planner
(one-ply MC with a blind rollout policy), H-DAgger-MC
requires the dynamics model to be “unrolled”. Rather
than learning a single P̂ , H-DAgger-MC learns a set
{P̂ 1, . . . , P̂T−1} ⊆ P , where model P̂ i is responsible for
predicting the outcome of step i of a rollout, given the state
sampled from P̂ i−1. While this impractical condition is
important theoretically, Talvitie (2017) showed that in prac-
tice a single P can be used for all steps; the experiments in
Section 5 make use of this practical alteration.

Algorithm 1 augments H-DAgger-MC to learn a reward
model as well as a dynamics model. In particular, H-
DAgger-MC proceeds in iterations, each iteration producing
a new plan, which is turn used to collect data to train a new
model. In each iteration state-action pairs are sampled using
the current plan and the exploration distribution (lines 7-13),
and then the world and model are rolled out in parallel to
generate hallucinated training examples (lines 14-21). The
resulting data is used to update the model. We simply add
a reward model learning process, and collect training ex-
amples along with the state transition examples during the
rollout. After both parts of the model have been updated,
a new plan is generated for the subsequent iteration. Note
that while the dynamics model is “unrolled”, there is only
a single reward model that is responsible for predicting the
reward at every step of the rollout. We assume that the re-
ward learning algorithm is performing a weighted regression

1Department of Computer Science, Franklin & Marshall Col-
lege, Lancaster, Pennsylvania, USA. Correspondence to: Erik
Talvitie <erik.talvitie@fandm.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Algorithm 1 Hallucinated DAgger-MC (+ reward learning)

Require: LEARN-DYNAMICS, LEARN-REWARD, explo-
ration distr. ν, MC-PLANNER(blind rollout policy ρ,
depth T), # iterations N , # rollouts per iteration K.

1: Get initial datasets D1:T−1
1 and E1 (maybe using ν)

2: Initialize P̂ 1:T−1
1 ← LEARN-DYNAMICS(D1:T−1

1).
3: Initialize R̂1 ← LEARN-REWARD(E1).
4: Initialize π̂1 ← MC-PLANNER(P̂ 1:T−1

1 , R̂1).
5: for n← 2 . . . N do
6: for k ← 1 . . .K do
7: With probability... . First sample from ξ
8: 1/2: Sample (x, b) ∼ Dπ̂n

µ

9: 1/4: Reset to (x, b) ∼ ν.
10: (1−γ)/4: Sample x ∼ µ, b ∼ π̂n(· | x).
11: γ/4: Reset to (y, c) ∼ ν
12: Sample x ∼ P (· | y, c), b ∼ π̂n(· | x)
13: Let s← x, z ← x, a← b.
14: for t← 1 . . . T − 1 do . Parallel rollouts...
15: Sample s′ ∼ P (· | s, a).
16: Add 〈z, a, s′〉 to Dtn.

. (DAgger-MC adds 〈s, a, s′〉)
17: Add 〈z, a,Ras , γt−1〉 to En.

. (Standard approach adds 〈s, a,Ras , γt−1〉)
18: Sample z′ ∼ P̂ tn−1(· | z, a).
19: Let s← s′, z ← z′, and sample a ∼ ρ.
20: end for
21: Add 〈z, a,Ras , γT−1〉 to En.

. (Standard approach adds 〈s, a,Ras , γT−1〉)
22: end for
23: P̂ 1:T−1

n ← LEARN-DYNAMICS(P̂ 1:T−1
n−1 , D1:T−1

n)
24: R̂n ← LEARN-REWARD(R̂n−1, En)
25: π̂n ← MC-PLANNER(P̂ 1:T−1

n , R̂n).
26: end for
27: return the sequence π̂1:N

(where each training example is weighted by γt−1 for the
rollout step t in which it occurred).

A.1. Analysis of H-DAgger-MC

We now derive theoretical guarantees for this new version
of H-DAgger-MC. The analysis is similar to that of existing

Learning the Reward Function for a Misspecified Model

DAgger variants (Ross & Bagnell, 2012; Talvitie, 2015;
2017), but the proof is included for completeness. Let Ht

n

be the distribution from which H-DAgger-MC samples a
training example at depth t (lines 7-13 to pick an initial
state-action pair, lines 14-21 to roll out). Define the average
error of the dynamics model at depth t to be

ε̄tprd =
1

N

N∑
n=1

E(s,z,a)∼Htn [1− P̂ tn(σas | z, a)].

Let εR̂n(s, z, a) = |R(s, a)− R̂n(z, a)| and let

ε̄hrwd =
1

N

N∑
n=1

T∑
t=1

γt−1 E(s,z,a)∼Htn [εR̂n(s, z, a)|]

be the average reward model error. Finally, let Dt
n be the

distribution from which H-DAgger-MC samples s and a
during the rollout in lines 14-21. The error of the reward
model with respect to these environment states is

ε̄erwd =
1

N

N∑
n=1

T∑
t=1

γt−1 E(s,a)∼Dtn [|R(s, a)− R̂(s, a)|].

For a policy π, let cπν = sups,a
Dµ,π(s,a)
ν(s,a) represent the mis-

match between the discounted state-action distribution under
π and the exploration distribution ν. Now, consider the se-
quence of policies π̂1:N generated by H-DAgger-MC. Let π̄
be the uniform mixture over all policies in the sequence. Let
ε̄mc = 1

N
4

1−γ
∑N
n=1 ‖Q̄n−Q̂

ρ
T,n‖∞+ 2

1−γ ‖BV
ρ
T −V

ρ
T ‖∞

be the error induced by the choice of planning algorithm,
averaged over all iterations.

Lemma 7. In H-DAgger-MC, the policies π̂1:N are such
that for any policy π,

E
s∼µ

[
V π(s)− V π̄(s)

]
≤ 4

1− γ
cπν ε̄hrwd + ε̄mc

≤ 4

1− γ
cπν

(
ε̄erwd + 2M

T−1∑
t=1

γt−1ε̄tprd

)
+ ε̄mc.

Proof. Recall that

E
s∼µ

[
V π(s)− V π̄(s)

]
=

1

N

N∑
n=1

E
s∼µ

[
V π(s)− V π̂n(s)

]
.

and by Lemma 1 for any n ≥ 1,

E
s∼µ

[
V π(s)− V π̂n(s)

]
≤

4

1− γ
E

(s,a)∼ξπ,π̂nµ

[|Q̂ρT,n(s, a)−QρT (s, a)|] + ε̄mc,

where

ξπ,π̂nµ (s, a) =
1

2
Dµ,π̂n(s, a) +

1

4
Dµ,π(s, a)

+
1

4

(
(1− γ)µ(s)π̂n(a | s)

+ γ
∑
z,b

Dµ,π(z, b)P bz (s)π̂n(a | s)
)
.

Then, combining the above with Theorem 5,

1

N

N∑
n=1

4

1− γ
E

(s,a)∼ξπ,π̂nµ

[|Q̂ρT,n(s, a)−QρT (s, a)|] + ε̄mc

≤ 1

N

N∑
n=1

4

1− γ

T∑
t=1

γt−1 E
(s, z, a)

∼ Ht,n
ξ
π,π̂n
µ ,ρ

[εR̂n(s, z, a)] + ε̄mc

Now note that for any t and any n,

E
(s,z,a)∼Ht,n

ξ
π,π̂n
µ ,ρ

[
εR̂n(s, z, a)

]
=

1

2

∑
s′,a′

Dµ,π̂n(s′, a′) E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+

1

4

∑
s′,a′

Dµ,π(s′, a′) E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+
γ

4

∑
s′,a′

∑
s′′,a′′

Dµ,π(s′′, a′′)P a
′′

s′′ (s
′)π̂n(a′ | s′)

E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+

1− γ
4

∑
s′,a′

µ(s′)π̂n(a′ | s′)

E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
≤ 1

2

∑
s′,a′

Dµ,π̂n(s′, a′) E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+

1

4
cπν
∑
s′,a′

ν(s′, a′) E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+
γ

4
cπν
∑
s′,a′

∑
s′′,a′′

ν(s′′, a′′)P a
′′

s′′ (s
′)π̂n(a′ | s′)

E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+

1− γ
4

∑
s′,a′

µ(s′)π̂n(a′ | s′)

E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]

Learning the Reward Function for a Misspecified Model

≤ cπν
(

1

2

∑
s′,a′

Dµ,π̂n(s′, a′)

E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+

1

4

∑
s′,a′

ν(s′, a′) E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+
γ

4

∑
s′,a′

∑
s′′,a′′

ν(s′′, a′′)P a
′′

s′′ (s
′)π̂n(a′ | s′)

E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
+

1− γ
4

∑
s′,a′

µ(s′)π̂n(a′ | s′)

E
(s,z,a)∼Ht,n

s′,a′,ρ

[
εR̂n(s, z, a)

]
= cπν E

(s,z,a)∼Ht,nξn,ρ

[
εR̂n(s, z, a)

]
.

When t = 1,

E
(s,z,a)∼Ht,nξn,ρ

[
εR̂n(s, z, a)

]
= E

(s,a)∼ξn(s,a)

[
εR̂n(s, z, a)

]
.

When t > 1,

E
(s,z,a)∼Ht,nξn,ρ

[
εR̂n(s, z, a)

]
=

∑
st,zt,at

E
(s1,a1)∼ξn

[∑
a1:t−1

ρ(a2:t | a1)

P a0:t−1
s1 (st | s1, a0:t−1)P̂ 1:t−1

n (zt | s1, a0:t−1)

εR̂n(st, zt, at)

]
= E

(s,z,a)∼Htn

[
εR̂n(s, z, a)

]
.

Thus, putting it all together, we have shown that

E
s∼µ

[
V π(s)− V π̄(s)

]
≤ 4

1− γ
cπν

1

N

N∑
n=1

T∑
t=1

γt−1 E
(s,z,a)∼Htn

[
εR̂n(s, z, a)

]
+ ε̄mc

=
4

1− γ
cπν ε̄hrwd + ε̄mc.

Thus we have proven the first inequality. Furthermore, by

Theorem 6,

ε̄hrwd =
1

N

N∑
n=1

T∑
t=1

E
(s,z,a)∼Htn

[
R̂n(s, z, a)

]
≤ 1

N

N∑
n=1

(T∑
t=1

γt−1 E
(s,a)∼Dtn

[
|R(s, a)− R̂n(s, a)|

]
+ 2M

T−1∑
t=1

γt−1 E
(s,z,a)∼Htn

[
1− P̂ tn(σas | z, a)|

])

=
1

N

N∑
n=1

T∑
t=1

γt−1 E
(s,a)∼Dtn

[
|R(s, a)− R̂n(s, a)|

]
+ 2M

T−1∑
t=1

γt−1 1

N

N∑
n=1

E
(s,z,a)∼Htn

[
1− P̂ tn(σas | z, a)|

]
≤ ε̄erwd + 2M

T−1∑
t=1

γt−1ε̄tprd.

This gives the second inequality.

Note that this result holds for any comparison policy π.
Thus, if ε̄mc is small and the learned models have low error,
then if ν is similar to the state-action distribution under
some good policy, π̄ will compare favorably to it. That
said, Lemma 7 shares the limitations of the comparable
results for the other DAgger algorithms. It focuses on the L1
loss, which is not always a practical learning objective. It
also assumes that the expected loss at each iteration can be
computed exactly (i.e. that there are infinitely many samples
per iteration). It also applies to the average policy π̄, rather
than π̂N . Ross & Bagnell (2012) discuss extensions that
address more practical loss functions, finite sample bounds,
and results for π̂N .

Lemma 7 effectively says that if the models have low train-
ing error, the resulting policy will be good. It does not
promise that the models will have low training error. Fol-
lowing Ross & Bagnell (2012) note that ε̄tprd and ε̄hrwd can
each be interpreted as the average loss of an online learner
on the problem defined by the aggregated datasets. Then for
each horizon depth t let ε̄tP be the error of the best dynamics
model in P under the training distribution at that depth, in
retrospect. Specifically,

ε̄tP = inf
P ′∈P

1

N

N∑
n=1

E
(s,z,a)∼Htn

[1− P ′(σas | z, a)].

Similarly, let

ε̄R = inf
R′∈R

1

N

N∑
n=1

T∑
t=1

γt−1 E
(s,z,a)∼Htn

[εR′(s, z, a)]

be the error of the best reward model inR in retrospect.

Learning the Reward Function for a Misspecified Model

The average regret for the dynamics model at depth t is
ε̄tprgt = ε̄tprd − ε̄tP . For the reward model it is ε̄rrgt =
ε̄hrwd − ε̄R. For a no-regret online learning algorithm,
average regret approaches 0 as N → ∞. This gives the
following bound on H-DAgger-MC’s performance in terms
of model regret.

Theorem 8. In H-DAgger-MC, the policies π̂1:N are such
that for any policy π,

E
s∼µ

[
V π(s)− V π̄(s)

]
≤ 4

1− γ
cπν (ε̄R + ε̄rrgt) + ε̄mc

≤ 4

1− γ
cπν

(
ε̄erwd + 2M

T−1∑
t=1

γt−1(ε̄tP + ε̄tprgt)
)

+ ε̄mc

and if the learning algorithms are no-regret then asN →∞,
ε̄rrgt → 0 and ε̄tprgt → 0 for each 1 ≤ t ≤ T − 1.

Theorem 8 says that ifR contains a low-error reward model
relative to the learned dynamics models then, as discussed
above, if ε̄mc is small and ν visits important states, the
resulting policy will yield good performance. If P and R
contain perfect models, π̄ will be comparable to the plan
generated by the perfect model.

As noted by Talvitie (2017), this result does not promise that
H-DAgger-MC will eventually achieve the performance of
the best available set of dynamics models. The model at each
rollout depth is trained to minimize prediction error given
the input distribution provided by the shallower models
without regard for the effect on deeper models. It is possible
that better overall error could be achieved by increasing the
prediction error at one depth in exchange for a favorable
state distribution for deeper models. Similarly, as discussed
in Section 4, H-DAgger-MC will not necessarily achieve the
performance of the best available combination of dynamics
and reward models. The dynamics model is trained without
regard for the impact on the reward model. It could be that
a dynamics model with higher prediction error would allow
for lower hallucinated reward error. H-DAgger-MC does
not take this possibility into account.

References
Ross, S. and Bagnell, D. Agnostic system identification for

model-based reinforcement learning. In Proceedings of
the 29th International Conference on Machine Learning
(ICML), pp. 1703–1710, 2012.

Talvitie, E. Agnostic system identification for monte carlo
planning. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI), pp. 2986–2992, 2015.

Talvitie, E. Self-correcting models for model-based rein-
forcement learning. In Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence (AAAI), pp.
2597–2603, 2017.

