
Learning the Reward Function for a Misspecified Model

Erik Talvitie 1

Abstract
In model-based reinforcement learning it is typi-
cal to decouple the problems of learning the dy-
namics model and learning the reward function.
However, when the dynamics model is flawed, it
may generate erroneous states that would never
occur in the true environment. It is not clear a
priori what value the reward function should as-
sign to such states. This paper presents a novel
error bound that accounts for the reward model’s
behavior in states sampled from the model. This
bound is used to extend the existing Hallucinated
DAgger-MC algorithm, which offers theoretical
performance guarantees in deterministic MDPs
that do not assume a perfect model can be learned.
Empirically, this approach to reward learning can
yield dramatic improvements in control perfor-
mance when the dynamics model is flawed.

1. Introduction
In the reinforcement learning problem, an agent interacts
with an environment, receiving rewards along the way that
indicate the quality of its decisions. The agent’s task is to
learn to behave in a way that maximizes reward. Model-
based reinforcement learning (MBRL) techniques approach
this problem by learning a predictive model of the envi-
ronment and applying a planning algorithm to the model
to make decisions. Intuitively and theoretically (Szita &
Szepesvári, 2010), there are many advantages to learning
a model of the environment, but MBRL is challenging in
practice, since even seemingly minor flaws in the model or
the planner can result in catastrophic failure. As a result,
model-based methods have generally not been successful
in large-scale problems, with only a few notable exceptions
(e.g. Abbeel et al., 2007).

This paper addresses an important but understudied problem

1Department of Computer Science, Franklin & Marshall Col-
lege, Lancaster, Pennsylvania, USA. Correspondence to: Erik
Talvitie <erik.talvitie@fandm.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Figure 1. The Shooter domain.

in MBRL: learning a reward function. It is common for
work in model learning to ignore the reward function (e.g.
Bellemare et al., 2014; Oh et al., 2015; Chiappa et al., 2017)
or, if the model will be used for planning, to assume the
reward function is given (e.g. Ross & Bagnell, 2012; Talvitie,
2017; Ebert et al., 2017). Indeed, it is true that if an accurate
model of the environment’s dynamics can be learned, reward
learning is relatively straightforward – the two problems can
be productively decoupled. However, in this paper we will
see that when the model class is misspecified (i.e. that the
representation does not admit a perfectly accurate model),
as is inevitable in problems of genuine interest, the two
learning problems are inherently entangled.

1.1. An Example

To better understand how the limitations of the dynamics
model impact reward learning, consider Shooter, a simpli-
fied video game example introduced by Talvitie (2015),
pictured in Figure 1. At the bottom of the screen is a space-
ship which can move left and right and fire bullets, which
fly upward. When the ship fires a bullet the agent receives
-1 reward. Near the top of the screen are three targets. When
a bullet hits a target in the middle (bullseye), the target ex-
plodes and the agent receives 20 reward; otherwise a hit
is worth 10 reward. Figure 1 shows the explosions that
indicate how much reward the agent receives.

It is typical to decompose the model learning problem into
two objectives: dynamics learning and reward learning. In
the former the agent must learn to map an input state and
action to the next state. In the latter the agent must learn
to map a state and action to reward. In this example the
agent might learn to associate the presence of explosions
with reward. However, this decomposed approach can fail
when the dynamics model is imperfect.



Learning the Reward Function for a Misspecified Model

For instance, say the dynamics model in this case is a fac-
tored MDP, which predicts the value of each pixel in the
next image based on the 7 × 5 neighborhood centered on
the pixel. Figure 2b shows a short sample rollout from
such a model, sampling each state based on the previous
sampled state. The second image in the rollout illustrates
the model’s flaw: when predicting the pixel marked with a
question mark the model cannot account for the presence
of the bullet under the target. Hence, errors appear in the
subsequent image (marked with red outlines).

What reward should be associated with this erroneous im-
age? The value the learned model assigns will have a dra-
matic impact on the extent to which the model is useful for
planning and yet it is clear that no amount of traditional data
associating environment states with rewards can answer this
question. Even a provided, “perfect” reward function would
not answer this question; a reward function could assign any
value to this state and still be perfectly accurate in states that
are reachable in the environment. Intuitively it seems that
the best case for planning would be to predict 20 reward for
the flawed state, preserving the semantics that a target has
been hit in the bullseye. Note, however that this interpreta-
tion of the image is specific to this particular flawed model;
the reward model’s quality depends on its behavior in states
generated by the model rather than the environment.

The remainder of this paper formalizes this intuition. Sec-
tion 3 presents a novel error bound on value functions in
terms of reward error, taking into account the rewards in
flawed states generated by the model. In Section 4 the prac-
tical implications of this theoretical insight are discussed,
leading to an extension of the existing Hallucinated DAgger-
MC algorithm, which provides theoretical guarantees in
deterministic MDPs, even when the model class is misspec-
ified. Section 5 demonstrates empirically that the approach
suggested by the theoretical results can produce good plan-
ning performance with a flawed model, while reward models
learned in the typical manner (or even “perfect” reward func-
tions) can lead to catastrophic planning failure.

2. Background
We focus on Markov decision processes (MDP). The en-
vironment’s initial state s1 is drawn from a distribution µ.
At each step t the environment is in a state st. The agent
selects an action at which causes the environment to transi-
tion to a new state sampled from the transition distribution:
st+1 ∼ P atst . The environment also emits a reward, Ratst .
We assume that rewards are bounded within [0,M ].

A policy π specifies a way to behave in the MDP. Let
π(a | s) be the probability that π chooses action a in state s.
For a sequence of actions a1:t let P (s′ | s, a1:t) = P a1:ts (s′)
be the probability of reaching s′ by starting in s and taking

Figure 2. A flawed model may generate states for which the reward
function is undefined.

the actions in the sequence. For any state s, action a, and
policy π, let Dt

s,a,π be the state-action distribution obtained
after t steps, starting with state s and action a and thereafter
following policy π. For a state action distribution ξ, let
Dt
ξ,π = E(s,a)∼ξD

t
s,a,π . We let S be the set of states reach-

able in finite time by some policy with non-zero probability.
One may only observe the behavior of P and R in states
contained in S.

The T -step state-action value of a policy, QπT (s, a) repre-
sents the expected discounted sum of rewards obtained by
taking action a in state s and executing π for an additional
T − 1 steps: QπT (s, a) =

∑T
t=1 γ

t−1 E(s′,a′)∼Dts,a,π R
a′

s′ .
Let the T -step state value V πT (s) = Ea∼πs [Q

π
T (s, a)]. Let

Qπ = Qπ∞, and V π = V π∞. The agent’s goal will be to
learn a policy π that maximizes Es∼µ[V π(s)].

In MBRL we seek to learn a dynamics model P̂ , approx-
imating P , and a reward model R̂, approximating R, and
then to use the combined model (P̂ , R̂) to produce a policy
via a planning algorithm. We let D̂, Q̂, and V̂ represent
the corresponding quantities using the learned model. We
assume that P̂ and R̂ are defined over Ŝ ⊇ S; there may
be states in Ŝ for which P and R are effectively undefined,
and it may not be known a priori which states these are.

Let P represent the dynamics model class, the set of models
the learning algorithm could possibly produce and corre-
spondingly letR be the reward model class. In this work we
are most interested in the common case that the dynamics
model is misspecified: there is no P̂ ∈ P that matches P in
every s ∈ S . In this case it is impossible to learn a perfectly
accurate model; the agent must make good decisions despite
flaws in the learned model. The results in this paper also
permit the reward model to be similarly misspecified.

2.1. Bounding Planning Performance

For ease of analysis we focus our attention on the simple one-
ply Monte Carlo planning algorithm (one-ply MC), similar



Learning the Reward Function for a Misspecified Model

to the “rollout algorithm” (Tesauro & Galperin, 1996). For
every state-action pair (s, a), the planner executes N T -step
sample rollouts using P̂ , starting at s, taking action a, and
then following a rollout policy ρ. At each step of the rollout,
R̂ gives the reward. Let Q̄(s, a) be the average discounted
return of the rollouts starting with state s and action a. For
large N , Q̄ will closely approximate Q̂ρT (Kakade, 2003).
The execution policy π̂ will be greedy with respect to Q̄.
We can place bounds on the quality of π̂.

For a policy π and state-action distribution ξ, let εξ,π,Tval be
the error in the T -step state-action values the model assigns
to the policy: εξ,π,Tval = E(s,a)∼ξ

[
|QπT (s, a) − Q̂πT (s, a)|

]
.

For a state distribution µ and policy π let Dµ,π̂(s, a) =∑∞
t=0 γ

tDt+1
µ,π (s, a). The following is straightforwardly

adapted from an existing bound (Talvitie, 2015; 2017).

Lemma 1. Let Q̄ be the value function returned by applying
depth T one-ply Monte Carlo to the model P̂ with rollout
policy ρ. Let π̂ be greedy w.r.t. Q̄. For any policy π and
state-distribution µ,

E
s∼µ

[
V π(s)− V π̂(s)

]
≤ 4

1− γ
εξ,ρ,Tval + εmc,

where ξ(s, a) = 1
2Dµ,π̂(s, a) + 1

4Dµ,π(s, a) +
1
4

(
(1− γ)µ(s)π̂s(a) + γ

∑
z,bDµ,π(z, b)P bz (s)π̂s(a)

)
and εmc = 4

1−γ ‖Q̄− Q̂
ρ
T ‖∞ + 2

1−γ ‖BV
ρ
T − V

ρ
T ‖∞ (here

B is the Bellman operator).

The εmc term captures error due to properties of the one-
ply MC algorithm: error in the sample average Q̄ and the
sub-optimality of the T -step value function with respect to
ρ. The εξ,ρ,Tval term captures error due to the model. The
model’s usefulness for planning is tied to the accuracy of
the value it assigns to the rollout policy. Thus, in order to
obtain a good plan π̂, we aim to minimize εξ,ρ,Tval .

2.2. Error in the Dynamics Model

If the reward function is known, a bound on εξ,ρ,Tval in terms
of the one-step prediction error of the dynamics model can
be adapted from the work of Ross & Bagnell (2012) .

Lemma 2. For any policy π and state-action distribution ξ,

εξ,π,Tval ≤ M

1− γ

T−1∑
t=1

(γt − γT ) E
(s,a)∼Dtξ,π

[
‖P as − P̂ as ‖1

]
.

Combining Lemmas 1 and 2 yields an overall bound on
control performance in terms of model error. However,
recent work (Talvitie, 2017) offers a tighter bound in a
special case. Let the true dynamics P be deterministic,
and let the rollout policy ρ be blind (Bowling et al., 2006);
the action selected by ρ is conditionally independent of the
current state, given the history of actions. Then for any

state-action distribution ξ, let Ht
ξ,ρ be the joint distribution

over environment state, model state, and action if a single
action sequence is sampled from ρ and then executed in
both the model and the environment. So,H1

ξ,ρ(s1, z1, a1) =
ξ(s1, a1) when z1 = s1 (0 otherwise) and for all t ≥ 2,

Ht
ξ,ρ(st, zt, at) =

E
(s1,a1)∼ξ

[∑
a2:t−1

ρ(a2:t | a1)P
a1:t−1
s1 (st)P̂

a1:t−1
s1 (zt)

]
.

Since P is deterministic, let σa1:ts be the unique state that
results from starting in state s and taking the action sequence
a1:t. Then Talvitie (2017) offers the following result:
Theorem 3. If P is deterministic, then for any blind policy
ρ and any state-action distribution ξ,

εξ,ρ,Tval ≤ M

T∑
t=1

γt−1 E
(s,a)∼ξ

[
‖Dt

s,a,ρ − D̂t
s,a,ρ‖1

]
(1)

≤ 2M

T−1∑
t=1

γt E
(s,z,a)∼Htξ,ρ

[
1− P̂ az (σas )

]
(2)

≤ 2M

1− γ

T−1∑
t=1

(γt − γT ) E
(s,a)∼Dtξ,ρ

[
1− P̂ as (σas )

]
. (3)

Inequality 3 is Lemma 2 in the deterministic case, the bound
in terms of the one-step prediction error of P̂ . Inequality
1 gives the bound in terms of the error in the discounted
distribution of states along T -step rollouts. Though this is
the tightest bound of the three, in practice it is difficult to
optimize this objective directly. Inequality 2 gives the bound
in terms of hallucinated one-step error, so called because
it considers the accuracy of the model’s predictions based
on states generated from its own sample rollouts (z), rather
than states generated by the environment (s).

To optimize hallucinated error, the model can be rolled out
in parallel with the environment, and trained to predict the
next environment state from each “hallucinated” state in the
model rollout. Talvitie (2017) shows that this approach can
dramatically improve planning performance when the model
class is mispecified. Similar approaches have also had em-
pirical success in MBRL tasks (Talvitie, 2014; Venkatraman
et al., 2016) and sequence prediction tasks (Venkatraman
et al., 2015; Oh et al., 2015; Bengio et al., 2015).

Talvitie (2017) shows that the relative tightness of the hal-
lucinated error bound does not hold for general stochastic
dynamics or for arbitrary rollout policies. However, note
that these assumptions are not as limiting as they first appear.
By far the most common rollout policy chooses actions uni-
formly randomly, and is thus blind. Furthermore, though P
is assumed to be deterministic, it is also assumed to be too
complex to be practically captured by P̂ . From the agent’s
perspective, un-modeled complexity will manifest as ap-
parent stochasticity. For example Oh et al. (2015) learned



Learning the Reward Function for a Misspecified Model

dynamics models of Atari 2600 games, which are fully de-
terministic (Hausknecht et al., 2014); human players often
perceive them to be stochastic due to their complexity. For
the remainder of the paper we focus on the special case of
deterministic dynamics and blind rollout policies.

3. Incorporating Reward Error
As suggested by Talvitie (2017), there is a straightforward
extension of Theorem 3 to account for reward error.
Theorem 4. If P is deterministic, then for any blind policy
ρ and any state-action distribution ξ,

εξ,ρ,Tval ≤
T∑
t=1

γt−1 E
(s′,a′)∼Dtξ,ρ

[∣∣Ra′s′ − R̂a′s′ ∣∣] (4)

+M

T∑
t=1

γt−1 E
(s,a)∼ξ

[
‖Dt

s,a,ρ − D̂t
s,a,ρ‖1

]
≤

T∑
t=1

γt−1 E
(s′,a′)∼Dtξ,ρ

[∣∣Ra′s′ − R̂a′s′ ∣∣] (5)

+ 2M

T−1∑
t=1

γt E
(s,z,a)∼Htξ,ρ

[
1− P̂ az (σas )

]
≤

T∑
t=1

γt−1 E
(s′,a′)∼Dtξ,ρ

[∣∣Ra′s′ − R̂a′s′ ∣∣] (6)

+
2M

1− γ

T−1∑
t=1

(γt − γT ) E
(s,a)∼Dtξ,ρ

[
1− P̂ as (σas )

]
.

Proof. The derivation of inequality 4 is below. The rest
follow immediately from Theorem 3.

εξ,ρ,Tval = E
(s,a)∼ξ

[
|QρT (s, a)− Q̂ρT (s, a)|

]
= E

(s,a)∼ξ

[∣∣∣∣ T∑
t=1

γt−1
∑

(s′,a′)

(
Dt
s,a,ρ(s

′, a′)Ra
′

s′

− D̂t
s,a,ρ(s

′, a′)R̂a
′

s′

)∣∣∣∣
]

= E
(s,a)∼ξ

[∣∣∣∣ T∑
t=1

γt−1
∑

(s′,a′)

(
Dt
s,a,ρ(s

′, a′)Ra
′

s′

−Dt
s,a,ρ(s

′, a′)R̂a
′

s′ +Dt
s,a,ρ(s

′, a′)R̂a
′

s′

− D̂t
s,a,ρ(s

′, a′)R̂a
′

s′

)∣∣∣∣
]

= E
(s,a)∼ξ

[∣∣∣∣ T∑
t=1

γt−1
∑

(s′,a′)

(
Dt
s,a,ρ(s

′, a′)(Ra
′

s′ − R̂a
′

s′ )

+ (Dt
s,a,ρ(s

′, a′)− D̂t
s,a,ρ(s

′, a′))R̂a
′

s′

)∣∣∣∣
]

≤
T∑
t=1

γt−1 E
(s′,a′)∼Dtξ,ρ

∣∣Ra′s′ − R̂a′s′ ∣∣
+M

T∑
t=1

γt−1 E
(s,a)∼ξ

[∥∥Dt
s,a,ρ − D̂t

s,a,ρ

∥∥],
which gives the result.

As is typical, these bounds break the value error into two
parts: reward error and dynamics error. The reward error
measures the accuracy of the reward model in environment
states encountered by policy ρ. The dynamics error mea-
sures the probability that the model will generate the correct
states in rollouts, effectively assigning maximum reward
error (M ) when the dynamics model generates incorrect
states. This view corresponds to common MBRL practice:
train the dynamics model to assign high probability to cor-
rect environment states and the reward model to accurately
map environment states to rewards. However, as discussed
in Section 1.1, these bounds are overly conservative (and
thus loose): generating an erroneous state need not be catas-
trophic if the associated reward is still reasonable. We can
derive a bound that accounts for this.
Theorem 5. If P is deterministic, then for any blind policy
ρ and any state-action distribution ξ,

εξ,ρ,Tval ≤
T∑
t=1

γt−1E(s,z,a)∼Htξ,ρ

[∣∣Ras − R̂az ∣∣].
Proof.

εξ,ρ,Tval = E(s1,a1)∼ξ
[∣∣QTρ (s1, a1)− Q̂Tρ (s1, a1)

∣∣]
= E

(s1,a1)∼ξ

[∣∣∣∣∣
T∑
t=1

γt−1
∑
st,at

Dt
s1,a1,ρ(st, at)R

at
st

−
∑
zt,at

D̂t
s1,a1,ρ(zt, at)R̂

at
zt

∣∣∣∣∣
]

= E
(s1,a1)∼ξ

[∣∣∣∣∣(Ra1s1 − R̂a1s1 )+

T∑
t=2

γt−1
∑
a2:t

ρ(a2:t | a1)

(∑
st

P a1:t−1
s1 (st)R

at
st −

∑
zt

P̂ a1:t−1
s1 (zt)R̂

at
zt

)∣∣∣∣∣
]
.

Now note that for t ≥ 2,∑
st

P a1:t−1
s1 (st)R

at
st −

∑
zt

P̂ a1:t−1
s1 (zt)R̂

at
zt

=
∑
st

P a1:t−1
s1 (st)R

at
st

∑
zt

P̂ a1:t−1
s1 (zt)

−
∑
zt

P̂ a1:t−1
s1 (zt)R̂

at
zt

∑
st

P a1:t−1
s1 (st)

=
∑
st,zt

P a1:t−1
s1 (st)P̂

a1:t−1
s1 (zt)

(
Ratst − R̂

at
zt

)



Learning the Reward Function for a Misspecified Model

Thus

εξ,ρ,Tval ≤ E
(s1,a1)∼ξ

[∣∣Ra1s1 − R̂a1s1 ∣∣+

T∑
t=2

γt−1

∑
a2:t

ρ(a2:t | a1)
∑
st,zt

P a1:t−1
s1 (st)P̂

a1:t−1
s1 (zt)

∣∣Ratst − R̂atzt ∣∣
]

=

T∑
t=1

γt−1 E
(s,z,a)∼Htξ,ρ

[∣∣Ras − R̂az ∣∣].
Similar to the hallucinated one-step error for the dynamics
model (inequality 2), Theorem 5 imagines that the model
and the environment are rolled out in parallel. It measures
the error between the rewards generated in the model rollout
and the rewards in the corresponding steps of the environ-
ment rollout. We call this the hallucinated reward error.
However, unlike the bounds in Theorem 4, which are fo-
cused on the model placing high probability on “correct”
states, the hallucinated reward error may be small even if
the state sequence sampled from the dynamics model is
“incorrect”, as long as the sequence of rewards is similar. As
such, we can show that this bound is tighter than inequality
5 and thus more closely related to planning performance.

Theorem 6. If P is deterministic, then for any blind policy
ρ and any state-action distribution ξ,

T∑
t=1

γt−1E(s,z,a)∼Htξ,ρ

[∣∣Ras − R̂az ∣∣]
≤

T∑
t=1

γt−1 E
(s′,a′)∼Dtξ,ρ

[∣∣Ra′s′ − R̂a′s′ ∣∣]
+ 2M

T−1∑
t=1

γt E
(s,z,a)∼Htξ,ρ

[
1− P̂ az (σas )

]
.

Proof.

T∑
t=1

γt−1 E
(s,z,a)∼Htξ,ρ

[∣∣R(s, a)− R̂(z, a)
∣∣]

=

T∑
t=1

γt−1
∑
s,z,a

Ht
ξ,ρ(s, z, a)

∣∣R(s, a)− R̂(z, a)
∣∣

=

T∑
t=1

γt−1
∑
s,a

Ht
ξ,ρ(s, s, a)

∣∣R(s, a)− R̂(s, a)
∣∣

+

T∑
t=1

γt−1
∑

s,z 6=s,a

Ht
ξ,ρ(s, z, a)

∣∣R(s, a)− R̂(z, a)
∣∣.

This breaks the expression into two terms. Now consider

the first term:

T∑
t=1

γt−1
∑
s,a

Ht
ξ,ρ(s, s, a)

∣∣R(s, a)− R̂(s, a)
∣∣

≤
T∑
t=1

γt−1
∑
s,a

Dt
ξ,ρ(s, a)

∣∣R(s, a)− R̂(s, a)
∣∣. (7)

Now consider the second term:

T∑
t=1

γt−1
∑

s,z 6=s,a

Ht
ξ,ρ(s, z, a)

∣∣R(s, a)− R̂(z, a)
∣∣

≤M
T∑
t=1

γt−1
∑

s,z 6=s,a

Ht
ξ,ρ(s, z, a).

Recall that H1
ξ,ρ(s, z, a) = 0 if s 6= z. Thus,

M

T∑
t=1

γt−1
∑

s,z 6=s,a

Ht
ξ,ρ(s, z, a)

= M

T−1∑
t=1

γt
∑

s,z 6=s,a

Ht+1
ξ,ρ (s, z, a)

= M
∑

s′,z′,a′

( ∑
s,z 6=s

P a
′

s′ (s)P̂
a′

z′ (z)

)
T−1∑
t=1

γtHt
ξ,ρ(s

′, z′, a′)

= M
∑

s′,z′,a′

(
1− P̂ a

′

z′ (σ
a′

s′ )
) T−1∑
t=1

γtHt
ξ,ρ(s

′, z′, a′)

= M

T−1∑
t=1

γt E
(s,z,a)∼Htξ,ρ

[1− P̂ az (σas )]. (8)

Combining lines 7 and 8 yields the result.

The next section discusses the practical and conceptual im-
plications of this result for MBRL algorithms and extends
an existing MBRL algorithm to incorporate this insight.

4. Implications for MBRL
This is not the first observation that the reward model should
be specialized to the dynamics model . Sorg et al. (2010b) ar-
gued as we have that when the model or planner are limited
in some way, reward functions other than the true reward
may lead to better planning performance. Accordingly, pol-
icy gradient approaches have been employed to learn reward
functions for use with online planning algorithms, provid-
ing a benefit even when the reward function is known (Sorg
et al., 2010a; 2011; Bratman et al., 2012; Guo et al., 2016).
Tamar et al. (2016) take this idea to its logical extreme,
treating the entire model and even the planning algorithm
itself as a policy parameterization, adapting them to directly



Learning the Reward Function for a Misspecified Model

improve control performance rather than to minimize any
measure of prediction error. Though appealing in its di-
rectness, this approach offers little theoretical insight into
what makes a model useful for planning. Furthermore, there
are advantages to optimizing quantities other than control
performance; this allows the model to exploit incoming data
even when it is unclear how to improve the agent’s policy
(for instance if the agent has seen little reward). Theorem
5 provides more specific guidance about how to choose
amongst a set of flawed models. Rather than attempting to
directly optimize control performance, this result suggests
that we can take advantage of reward error signals while
still offering guarantees in terms of control performance.

It is notable that, unlike Theorem 4, Theorem 5 does not
contain a term measuring dynamics error. Certainly the
dynamics model is implicitly important; for some choices
of P̂ the hallucinated reward error can be made very small
while for others it may be irreducibly high (for instance if
P̂ simply loops on a single state). Nevertheless, low halluci-
nated reward error does not require that the dynamics model
place high probability on “correct” states. In fact, it may be
that dynamics entirely unrelated to the environment yield
the best reward predictions. This intriguingly suggests that
the dynamics model and reward model parameters could
be adapted together to optimize hallucinated reward error.
Arguably, the recently introduced Predictrons (Silver et al.,
2017) and Value Prediction Networks (Oh et al., 2017) are
attempts to do just this – they adapt the model’s dynamics
solely to improve reward prediction. We can see Theorem 5
as theoretical support for these approaches and encourage-
ment of more study in this direction. Still, in practice it may
be much harder to learn to predict reward sequences than
state sequences, especially when the reward signal is sparse.
Also, the relationship between reward prediction error and
dynamics model parameters can be highly complex, which
may make theoretical performance guarantees difficult.

Another possible interpretation of Theorem 5 is that the
reward model should be customized to the dynamics model.
That is, if we hold the dynamics model fixed, then the result
gives a clear objective for the reward model. Theorem 6
suggests an algorithmic structure where the dynamics model
is trained via its own objective, and the reward model is then
trained to minimize hallucinated error with respect to the
learned dynamics model. The clear downside of this ap-
proach is that it will not in general find the best combination
of dynamics model and reward model; it could be that a
less accurate dynamics model results in lower hallucinated
reward error. The advantage is that it allows us to effectively
exploit the prediction error signal for the dynamics model
and removes the circular dependence between the dynamics
model and the reward model.

In this paper we explore this avenue by extending the ex-

isting Hallucinated DAgger-MC algorithm (Talvitie, 2017).
Because the resulting algorithm is very similar to the orig-
inal, we leave a detailed description and analysis to the
appendix and here focus on key, high-level points. Section
5 presents empirical results illustrating the practical impact
of training the reward model to minimize hallucinated error.

4.1. Hallucinated DAgger-MC with Reward Learning

The “Data Aggregator” (DAgger) algorithm (Ross & Bag-
nell, 2012) was the first practically implementable MBRL al-
gorithm with performance guarantees agnostic to the model
class. It did, however, require that the planner be near opti-
mal. DAgger-MC (Talvitie, 2015) relaxed this assumption,
accounting for the limitations of a particular suboptimal
planner (one-ply MC). Hallucinated DAgger-MC (or H-
DAgger-MC) (Talvitie, 2017) altered DAgger-MC to opti-
mize the hallucinated error, rather than the one-step error.
All of these algorithms were presented under the assumption
that the reward function was known a priori. As we will see
in Section 5, the reward function cannot be ignored; even
when the reward function is given, these algorithms can fail
catastrophically due to the interaction between the reward
function and small errors in the dynamics model.

At a high level, H-DAgger-MC proceeds in iterations. In
each iteration a batch of data is gathered by sampling state-
action pairs using a mixture of the current plan and an
“exploration distribution” (to ensure that important states are
visited, even if the plan would not visit them). The rollout
policy is used to generate parallel rollouts in the environment
and model from these sampled state-action pairs, which
form the training examples (with model state as input and
environment state as output). The collected data is used to
update the dynamics model, which is then used to produce
a new plan to be used in the next iteration. We simply
augment H-DAgger-MC, adding a reward learning step to
each iteration (rather than assuming the reward is given).
In each rollout, training examples mapping “hallucinated”
model states to the real environment rewards are collected
and used to update the reward model.

The extended H-DAgger-MC algorithm offers theoretical
guarantees similar to those of the original algorithm. Essen-
tially, if

• the exploration distribution is similar to the state visita-
tion distribution of a good policy,

• εmc is small,

• the learning algorithms for the dynamics model and
reward model are both no-regret, and

• the reward model classR contains a low hallucinated
reward error model with respect to the lowest halluci-
nated prediction error model in P ,



Learning the Reward Function for a Misspecified Model

then in the limit H-DAgger-MC will produce a good policy.
As discussed in Section 4, this does not guarantee that H-
DAgger-MC will find the best performing combination of
dynamics model and reward model, since the training of the
dynamics model does not take hallucinated reward error into
account. It is, however, an improvement over the original H-
DAgger-MC result in that good performance can be assured
even if there is no low error dynamics model in P , as long
as there is a low error reward model inR.

For completeness’ sake, a more detailed description and
analysis of the algorithm can be found in the appendix.
Here we turn to an empirical evaluation of the algorithm.

5. Experiments
In this section we illustrate the impact of optimizing hallu-
cinated reward error in the Shooter example described in
Section 1 using both DAgger-MC and H-DAgger-MC1. The
one-ply MC planner used 50 uniformly random rollouts of
depth 20 per action at every step. The exploration distri-
bution was generated by following the optimal policy with
(1−γ) probability of termination at each step. The discount
factor was γ = 0.9. In each iteration 500 training rollouts
were generated and the resulting policy was evaluated in an
episode of length 30. The discounted return obtained by the
policy in each iteration is reported, averaged over 50 trials.

The dynamics model for each pixel was learned using Con-
text Tree Switching (Veness et al., 2012), similar to the
FAC-CTW algorithm (Veness et al., 2011). At each position
the model takes as input the values of the pixels in a w × h
neighborhood around the position in the previous timestep.
Data was shared across all positions. The reward was ap-
proximated with a linear function for each action, learned
via stochastic weighted gradient descent. The feature repre-
sentation contained a binary feature for each possible 3× 3
configuration of pixels at each position. This representation
admits a perfectly accurate reward model. The qualitative
observations presented in this section were robust to a wide
range of choices of step size for gradient descent. Here,
in each experiment the best performing step size for each
approach is selected from 0.005, 0.01, 0.05, 0.1, and 0.5.

In the experiments a practical alteration has been made
to the H-DAgger-MC algorithm. H-DAgger-MC requires
an “unrolled” dynamics model (with a separate model for
each step of the rollout, each making predictions based on
the output of the previous model). While this is important
for H-DAgger-MC’s theoretical guarantees, Talvitie (2017)
found empirically that a single dynamics model for all steps
could be learned, provided that the training rollouts had
limited depth. Following Talvitie (2017), in the first 10

1Source code for these experiments is available at http://
github.com/etalvitie/hdaggermc.

iterations only the first example from each training rollout
is added to the dynamics model dataset; thereafter only the
first two examples are added. The entire rollout was used
to train the reward model. DAgger-MC does not require
an unrolled dynamics model or truncated training rollouts
and was implemented as originally presented, with a single
dynamics model and full training rollouts (Talvitie, 2015).

5.1. Results

We consider both DAgger-MC and H-DAgger-MC with
a perfect reward model, a reward model trained only on
environment states during rollouts, and a reward model
trained on “hallucinated” states as described in Section 4.1.
The perfect reward model is one that someone familiar with
the rules of the game would likely specify; it simply checks
for the presence of explosions in the three target positions
and gives the appropriate value if an explosion is present or
0 otherwise (subtracting 1 if the action is “shoot”). Results
are presented in three variations on the Shooter problem.

5.1.1. NO MODEL LIMITATIONS

In the first experiment we apply these algorithms to Shooter,
as described in Section 1. Here, the dynamics model uses a
7× 7 neighborhood, which is sufficient to make perfectly
accurate predictions for every pixel. Figure 3a shows the
discounted return of the policies generated by DAgger-MC
and H-DAgger-MC, averaged over 50 independent trials.
The shaded region surrounding each curve represents a 95%
confidence interval. The gray line marked “Random” shows
the average discounted return of the uniform random policy
(with a 95% confidence interval). The gray line marked
“Perfect Model” shows the average discounted return of the
one-ply MC planner using a perfect model.

Unsurprisingly, the performance DAgger-MC is comparable
to that of planning with the perfect model. As observed by
Talvitie (2017), with the perfect reward model H-DAgger-
MC performs slightly worse than DAgger-MC; the dynam-
ics model in H-DAgger-MC receives noisier data and is thus
less accurate. Interestingly, we can now see that the learned
reward model yields better performance than the perfect re-
ward model, even without hallucinated training! The perfect
reward model relies on specific screen configurations that
are less likely to appear in flawed sample rollouts, but the
learned reward model generalizes to screens not seen during
training. Of course, it is coincidental that this generalization
is beneficial; under standard training the reward model is
only trained in environment states, giving no guidance in
erroneous model states. Hallucinated training specifically
trains the reward model to make reasonable predictions
during model rollouts, so it yields better performance, com-
parable with that of DAgger-MC. Thus we see that learning
the reward function in this way mitigates a shortcoming of

http://github.com/etalvitie/hdaggermc
http://github.com/etalvitie/hdaggermc


Learning the Reward Function for a Misspecified Model

0 50 100 150 200

Iteration

0

2

4

6

8

10

12

A
vg

.
D

is
co

un
te

d
R

et
ur

n Perfect Model

Random

Perfect Reward
Standard Training

Hallucinated

DAgger-MC

0 50 100 150 200

Iteration

0

2

4

6

8

10

12

A
vg

.
D

is
co

un
te

d
R

et
ur

n Perfect Model

Random

Perfect Reward
Standard Training

Hallucinated

H-DAgger-MC

(a) No model limitations

0 50 100 150 200

Iteration

0

2

4

6

8

10

12

A
vg

.
D

is
co

un
te

d
R

et
ur

n Perfect Model

Random

Perfect Reward
Standard Training

Hallucinated

DAgger-MC

0 50 100 150 200

Iteration

0

2

4

6

8

10

12

A
vg

.
D

is
co

un
te

d
R

et
ur

n Perfect Model

Random

Perfect Reward
Standard Training

Hallucinated

H-DAgger-MC

(b) Moving bullseyes (2nd-order Markov)

0 50 100 150 200

Iteration

0

2

4

6

8

10

12

A
vg

.
D

is
co

un
te

d
R

et
ur

n Perfect Model

Random

Perfect Reward
Standard Training

Hallucinated

DAgger-MC

0 50 100 150 200

Iteration

0

2

4

6

8

10

12

A
vg

.
D

is
co

un
te

d
R

et
ur

n Perfect Model

Random

Perfect Reward
Standard Training

Hallucinated

H-DAgger-MC

(c) Pixel models use 5× 7 neighborhood

Figure 3. Performance of DAgger-MC and H-DAgger-MC in three variations on the Shooter domain.

H-DAgger-MC, making it more effective in practice when a
perfectly accurate model can be learned.

5.1.2. FAILURE OF THE MARKOV ASSUMPTION

Next we consider a version of shooter presented by Talvitie
(2017) in which the bullseye in each target moves from
side to side, making the environment second-order Markov.
Because the model is Markov, it cannot accurately predict
the movement of the bullseyes, though the representation is
sufficient to accurately predict every other pixel.

Figure 3b shows the results. As Talvitie (2017) observed,
DAgger-MC fails catastrophically in this case. Though the
model’s limitation only prevents it from accurately predict-
ing the bullseyes, the resulting errors compound during
rollouts, quickly rendering them useless. As previously ob-
served, H-DAgger-MC performs much better, as it trains the
model to produce more stable rollouts. In both cases we see
again that the learned reward models outperform the perfect
reward model, and hallucinated reward training yields the
best performance, even allowing DAgger-MC to perform
better than the random policy.

5.1.3. FLAWED FACTORED STRUCTURE

We can see the importance of hallucinated reward training
even more clearly when we consider the original Shooter
domain (with static bullseyes), but limit the size of the neigh-
borhood used to predict each pixel, as described in Section
1.1. Figure 3c shows the results. Once again DAgger-MC
fails. Again we see that the learned reward models yield bet-
ter performance than the perfect reward function, and that

hallucinated training guides the reward model to be useful
for planning, despite the flaws in the dynamics model.

In this case, we can see that H-DAgger-MC also fails when
combined with the perfect reward model, and performs
poorly with the reward model trained only on environment
states. Hallucinated training helps the dynamics model
produce stable sample rollouts, but does not correct the fun-
damental limitation: the dynamics model cannot accurately
predict the shape of the explosion when a target is hit. As
a result, a reward model that bases its predictions only the
explosions that occur in the environment will consistently
fail to predict reward when the agent hits a target in sample
rollouts. Hallucinated training, in contrast, specializes the
reward model to the flawed dynamics model, allowing for
performance comparable to planning with a perfect model.

6. Conclusion
This paper has introduced hallucinated reward error, which
measures the extent to which the rewards in a sample rollout
from the model match the rewards in a parallel rollout from
the environment. Under some conditions, this quantity is
more tightly related to control performance than the more
traditional measure of model quality (reward error in envi-
ronment states plus error in state transition). Empirically we
have seen that when the dynamics model is flawed, reward
functions learned in the typical manner and even “perfect”
reward functions given a priori can lead to catastrophic
planning failure. When the reward function is trained to
minimize hallucinated reward error, it specifically accounts
for the model’s flaws, significantly improving performance.



Learning the Reward Function for a Misspecified Model

Acknowledgements
This work was supported by NSF grant IIS-1552533.
Thanks also to Michael Bowling for his valuable input
and to Joel Veness for his freely available FAC-CTW
and CTS implementations (http://jveness.info/
software/).

References
Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. An appli-

cation of reinforcement learning to aerobatic helicopter
flight. In Advances in Neural Information Processing
Systems 20 (NIPS), pp. 1–8, 2007.

Bellemare, M. G., Veness, J., and Talvitie, E. Skip con-
text tree switching. In Proceedings of the 31st Inter-
national Conference on Machine Learning (ICML), pp.
1458–1466, 2014.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-
uled sampling for sequence prediction with recurrent neu-
ral networks. In Advances in Neural Information Process-
ing Systems 28 (NIPS), pp. 1171–1179, 2015.

Bowling, M., McCracken, P., James, M., Neufeld, J., and
Wilkinson, D. Learning predictive state representations
using non-blind policies. In Proceedings of the 23rd
International Conference on Machine Learning (ICML),
pp. 129–136, 2006.

Bratman, J., Singh, S., Sorg, J., and Lewis, R. Strong mit-
igation: Nesting search for good policies within search
for good reward. In Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 407–414, 2012.

Chiappa, S., Racanière, S., Wierstra, D., and Mohamed, S.
Recurrent environment simulators. In Proceedigns of the
International Conference on Learning Representations
(ICLR), 2017.

Ebert, F., Finn, C., Lee, A. X., and Levine, S. Self-
supervised visual planning with temporal skip connec-
tions. In Proceedings of the 1st Annual Conference on
Robot Learning (CoRL), volume 78 of Proceedings of
Machine Learning Research (PMLR), pp. 344–356, 2017.

Guo, X., Singh, S. P., Lewis, R. L., and Lee, H. Deep learn-
ing for reward design to improve monte carlo tree search
in ATARI games. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1519–1525, 2016.

Hausknecht, M., Lehman, J., Miikkulainen, R., and Stone, P.
A neuroevolution approach to general atari game playing.
IEEE Transactions on Computational Intelligence and AI
in Games, 6(4):355–366, 2014.

Kakade, S. M. On the sample complexity of reinforcement
learning. PhD thesis, University of London, 2003.

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. Action-
conditional video prediction using deep networks in atari
games. In Advances in Neural Information Processing
Systems 28 (NIPS), pp. 2845–2853, 2015.

Oh, J., Singh, S., and Lee, H. Value prediction network. In
Advances in Neural Information Processing Systems 30,
pp. 6120–6130, 2017.

Ross, S. and Bagnell, D. Agnostic system identification for
model-based reinforcement learning. In Proceedings of
the 29th International Conference on Machine Learning
(ICML), pp. 1703–1710, 2012.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A.,
Harley, T., Dulac-Arnold, G., Reichert, D. P., Rabinowitz,
N., Barreto, A., and Degris, T. The predictron: End-to-
end learning and planning. In Proceedings of the 34th
International Conference on Machine Learning (ICML),
pp. 3191–3199, 2017.

Sorg, J., Lewis, R. L., and Singh, S. Reward design via
online gradient ascent. In Advances in Neural Information
Processing Systems 23 (NIPS), pp. 2190–2198, 2010a.

Sorg, J., Singh, S. P., and Lewis, R. L. Internal rewards
mitigate agent boundedness. In Proceedings of the 27th
International Conference on Machine Learning (ICML),
pp. 1007–1014, 2010b.

Sorg, J., Singh, S. P., and Lewis, R. L. Optimal rewards
versus leaf-evaluation heuristics in planning agents. In
Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence (AAAI), pp. 465–470, 2011.

Szita, I. and Szepesvári, C. Model-based reinforcement
learning with nearly tight exploration complexity bounds.
In Proceedings of the 27th International Conference on
Machine Learning (ICML), pp. 1031–1038, 2010.

Talvitie, E. Model regularization for stable sample rollouts.
In Proceedings of the 30th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 780–789, 2014.

Talvitie, E. Agnostic system identification for monte carlo
planning. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI), pp. 2986–2992, 2015.

Talvitie, E. Self-correcting models for model-based rein-
forcement learning. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI), pp.
2597–2603, 2017.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P.
Value iteration networks. In Advances in Neural Infor-
mation Processing Systems 29 (NIPS), pp. 2154–2162,
2016.

http: //jveness.info/software/
http: //jveness.info/software/


Learning the Reward Function for a Misspecified Model

Tesauro, G. and Galperin, G. R. On-line policy improve-
ment using monte-carlo search. In Advances in Neural
Information Processing Systems 9 (NIPS), pp. 1068–1074,
1996.

Veness, J., Ng, K. S., Hutter, M., Uther, W. T. B., and Silver,
D. A Monte-Carlo AIXI Approximation. Journal of
Artificial Intelligence Research (JAIR), 40:95–142, 2011.

Veness, J., Ng, K. S., Hutter, M., and Bowling, M. Con-
text tree switching. In Proceedings of the 2012 Data
Compression Conference (DCC), pp. 327–336, 2012.

Venkatraman, A., Hebert, M., and Bagnell, J. A. Improving
multi-step prediction of learned time series models. In
Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI), pp. 3024–3030, 2015.

Venkatraman, A., Capobianco, R., Pinto, L., Hebert, M.,
Nardi, D., and Bagnell, J. A. Improved learning of dy-
namics models for control. In 2016 International Sympo-
sium on Experimental Robotics, pp. 703–713. Springer,
2016.


