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A. Proof of Lemma 10
Notice that when n ≥ c0` ln(5/δ) where ` ≥ d, we have
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and so the result follows from Lemma 7.

B. Proof of Theorem 12
Let ` = 2+6d+εd

ε2 . Lemma 11 implies that with probability at least 1− δ, for every x ∈ X ,
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C. Proof of Theorem 15
Let A−1 =

∑d
i=1 λiviv

T
i be its eigen-decomposition (so that vi’s form an orthonormal basis). Note that ‖vi‖ = 1. By

Lemma 10, for each vi, with probability at least (1− δ/d), we have
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Let λ′i = ‖vi‖2M(λ∗)−1 = nλi for every i ∈ {1, 2, 3, . . . , d}. We have
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Via a union bound, we know that with probability at least (1 − δ), (17) holds for every eigenvector vi. When this event
happens, for every vector x such that ‖x‖2 ≤ 1, let us write x =
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where the first inequality is due to Cauchy-Schwartz inequality. Since
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continuing with (18) we have
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holds for every x such that ‖x‖2 ≤ 1.

D. Proof of Lemma 17
Let Er denote the event that |xTθ̂r − xTθ| ≤ εr/2,∀x ∈ S. By Theorem 12, we have Pr[Er] ≥ 1− δr. Let E denote the
event
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rest of the proof upon event E .

(i) We show that S[1] ∈ Sr (so the best arm is in the output set) by induction on r. The base case follows since S[1] ∈ S = S1.
Moreover, if S[1] ∈ Sk for some k ≥ 1, we have that ST
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Therefore {S[1]} ⊆ Stp+1+1 ⊆ {S[1], . . . , S[p]} and hence the algorithm stops after tp+1 rounds. Thus, the first part of this
lemma is proved.
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where the last equality follows from εtp+1
= Θ(∆p+1) and tp+1 = Θ(ln ∆−1

p+1). Therefore, the proof of this lemma is
complete.

E. Proof of Lemma 20
Let εr = 1/2r. Set Y = {y = x− x′ | x, x′ ∈ S}. Let E(1)

r be the event

|xTθ̂r − xTθ| ≤ εr/2,∀x ∈ T, (20)

and let E(2)
r be the event

|yTθ̂r − yTθ| ≤ Errλ∗T (y, `r, θ) ≤ errλ∗T (y, `r),∀y ∈ Y. (21)

By Theorem 12 and a union bound, we have Pr[E(1)
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|S| . By Lemma 7 and a union bound, we have Pr[E(2)
r ] ≥

1 − |S|−1
|S| · δr. Let Er = E(1)

r ∧ E(2)
r and E =

∧+∞
r=1 Er. Hence via a union bound, we have Pr[E ] ≥ 1 −∑+∞

r=1 δr =

1− (6/π2)δ ·∑+∞
r=1 1/r2 ≥ 1− δ.



Best Arm Identification in Linear Bandits

We now condition on the event E till the end of the proof. Therefore, for all x′, x ∈ S and r ≥ 1, we have

|(x′ − x)Tθ̂r − (x′ − x)Tθ| ≤ min{errλ∗T (x′ − x, `r), Êrrλ∗T (x′ − x, `r)}.

(i) We prove that S[1] ∈ Sr by induction on r. The base case follows since S[1] ∈ S = S1. Furthermore, if S[1] ∈ Sk,
we have (xak − S[1])

Tθ̂k ≤ (xak − S[1])
Tθ + min{errλ∗T (xak − S[1], `r), Êrrλ∗T (xak − S[1], `r)} ≤ min{errλ∗T (xak −

S[1], `r), Êrrλ∗T (xak − S[1], `r)}. Hence S[1] ∈ Sk+1.

To show that Y -ELIMTILp outputs at most p arms, let ti be the smallest index such that ∆i > εti−1 (so ∆i ∈ (εti−1, εti−2]),
with ε0 defined to be 1. We prove that if i 6= 1, then S[i] 6∈ Sti+1. Indeed since S[1] ∈ Sti , if S[i] ∈ Sti then
(xati −S[i])
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S[i], `r), Êrrλ∗T (xar − S[i], `r)}, and so S[i] 6∈ Sti+1.

Therefore, {S[1]} ⊆ Stp+1+1 ⊆ {S[1], . . . , S[p]} and hence the algorithm stops after tp+1 rounds. Thus, the first part of this
lemma is proved.

(ii) Note that c1 ≤ 2, the sample complexity of Line 5 is O
(
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Therefore, using the same proof, mutatis mutandis, as that of Lemma 17 (ii), total number of samples consumed is bounded
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and the proof of this lemma is now complete.

F. Proof of Theorem 22
Let Er, r ≥ 0 be the event that algorithm Y -ELIMTILbd/2rc(Sr,X ∩ span(Sr), δr) outputs a set of at most bd/2rc arms

with the best arm included, and the sample complexity is O
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(i) We first claim that the final output is the best arm. It suffices to prove that X[1] ∈ Sr for all r ≥ 0. We prove this claim by
induction on r. The base case follows since X[1] ∈ X = S0. If X[1] ∈ Sk holds, for some k ≥ 0, since Ek holds, we know
that Sk+1 contains the best arm of Sk which is X[1] by assumption. Therefore, X[1] ∈ Sk+1, and (i) is proved.
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G. Details for computing λ∗X and M(λ∗X )

Given a distribution λ over X , M(λ) is computed by
∑N
i=1 λixix

T
i . To compute λ∗X , we use entropic mirror descent

introduced in (Beck & Teboulle, 2003). The details are included in Algorithm 5. For our experiments, we used ε = 0.1 and
ηt = 0.001.
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Algorithm 5 The entropic mirror descent algorithm for computing λ∗X .

1: Input: Arms set X , dimension d, Lipschitz constant Lf of function log detM(λ) and tolerance ε.
2: Initialize t← 1 and λ(1) ← (1/N, . . . , 1/N).
3: while |maxx∈X x

TM(λ(t))−1x− d| ≥ ε do
4: ηt ←

√
2 lnN
Lf

1√
t
.

5: Compute gradient g(t)
i ← Tr(M(λ(t))−1(xix

T
i )).

6: Update λ(t+1)
i ← λ

(t)
i exp(ηtg

(t)
i )∑N

i=1 λ
(t)
i exp(ηtg

(t)
i )

.

7: t← t+ 1.
8: Output: λ(t).


