A. Proof of Lemma 10

Notice that when $n \geq c_{0} \ell \ln (5 / \delta)$ where $\ell \geq d$, we have

$$
\begin{aligned}
& \operatorname{err}_{\lambda^{*}}\left(x, c_{0} \ell\right) \leq \sqrt{\frac{4 L^{2}\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2}}{c_{0} \ell}+\frac{\frac{8}{9} L^{2}\left(\|x\|_{2}^{2}+2\|x\|_{2}\|x\|_{M\left(\lambda^{*}\right)^{-1}} \sqrt{d}+\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2} d\right)}{c_{0}^{2} \ell^{2}}} \\
& \\
& \quad+\sqrt{2} \kappa \sqrt{\frac{\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2}}{c_{0} \ell} \sqrt{\frac{3 d}{c_{0} \ell}}+\frac{\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2}}{c_{0} \ell}} \\
& \leq \sqrt{\frac{\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2}+\|x\|_{2}^{2}+\|x\|_{2}\|x\|_{M\left(\lambda^{*}\right)^{-1}} \sqrt{d}}{\ell}+\frac{\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2} d}{3 \ell^{2}}}+\sqrt{\frac{2\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2} \sqrt{d / \ell}}{3 \ell}+\frac{\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2}}{\ell}} \\
& \leq \sqrt{\frac{2\|x\|_{2}^{2}+2 \sqrt{d}\|x\|_{2}\|x\|_{M\left(\lambda^{*}\right)^{-1}}+(4+2 \sqrt{d / \ell})\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2}}{\ell}}
\end{aligned}
$$

and so the result follows from Lemma7.

B. Proof of Theorem 12

Let $\ell=\frac{2+6 d+\epsilon d}{\epsilon^{2}}$. Lemma 11 implies that with probability at least $1-\delta$, for every $x \in \mathcal{X}$,

$$
\begin{aligned}
\left|x^{\mathrm{T}} \theta-x^{\mathrm{T}} \widehat{\boldsymbol{\theta}}\right| & \leq \sqrt{\frac{2+6 d+2 d \sqrt{d / \ell}}{\ell}} \\
& =\sqrt{\frac{2+6 d}{2+6 d+\epsilon d} \epsilon^{2}+\frac{2 d^{\frac{3}{2}}}{(2+6 d+\epsilon d)^{\frac{3}{2}}} \epsilon^{3}} \\
& =\epsilon \sqrt{1-\frac{\epsilon d}{2+6 d+\epsilon d}+\sqrt{\frac{4 d}{2+6 d+\epsilon d}} \cdot \frac{\epsilon d}{2+6 d+\epsilon d}} \\
& \leq \epsilon .
\end{aligned}
$$

C. Proof of Theorem 15

Let $A^{-1}=\sum_{i=1}^{d} \lambda_{i} v_{i} v_{i}^{T}$ be its eigen-decomposition (so that v_{i} 's form an orthonormal basis). Note that $\left\|v_{i}\right\|=1$. By Lemma 10 for each v_{i}, with probability at least $(1-\delta / d)$, we have

$$
\left|v_{i}^{\mathrm{T}}(\theta-\widehat{\boldsymbol{\theta}})\right| \leq \sqrt{\frac{2+(4+2 \sqrt{d / \ell})\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2}+2 \sqrt{d}\|x\|_{M\left(\lambda^{*}\right)^{-1}}}{\ell}}
$$

Let $\lambda_{i}^{\prime}=\left\|v_{i}\right\|_{M\left(\lambda^{*}\right)^{-1}}^{2}=n \lambda_{i}$ for every $i \in\{1,2,3, \ldots, d\}$. We have

$$
\begin{equation*}
\left(v_{i}^{\mathrm{T}}(\theta-\widehat{\boldsymbol{\theta}})\right)^{2} \leq \frac{2+(4+2 \sqrt{d / \ell}) \lambda_{i}^{\prime}+2 \sqrt{\lambda_{i}^{\prime} d}}{\ell} \tag{17}
\end{equation*}
$$

Via a union bound, we know that with probability at least $(1-\delta), 17$ holds for every eigenvector v_{i}. When this event happens, for every vector x such that $\|x\|_{2} \leq 1$, let us write $x=\sum_{i=1}^{d} a_{i} v_{i}$. We have $\sum_{i=1}^{d} a_{i}^{2} \leq 1$ and we have

$$
\begin{align*}
&\left|x^{\mathrm{T}}(\theta-\widehat{\boldsymbol{\theta}})\right|=\left|\sum_{i=1}^{d} a_{i} v_{i}^{\mathrm{T}}(\theta-\widehat{\boldsymbol{\theta}})\right| \leq d^{1 / 2}\left(\sum_{i=1}^{d} a_{i}^{2}\left(v_{i}^{\mathrm{T}}(\theta-\widehat{\boldsymbol{\theta}})\right)^{2}\right)^{1 / 2} \\
& \leq\left(\frac{d}{\ell}\right)^{1 / 2}\left(\sum_{i=1}^{d} a_{i}^{2}\left(2+(4+2 \sqrt{d / \ell}) \lambda_{i}^{\prime}+2 \sqrt{\lambda_{i}^{\prime} d}\right)\right)^{1 / 2}, \tag{18}
\end{align*}
$$

where the first inequality is due to Cauchy-Schwartz inequality. Since

$$
\begin{align*}
\sum_{i=1}^{d} a_{i}^{2}\left(2+(4+2 \sqrt{d / \ell}) \lambda_{i}^{\prime}\right. & \left.+2 \sqrt{\lambda_{i}^{\prime} d}\right) \leq \sum_{i=1}^{d} a_{i}^{2}\left(2+(4+2 \sqrt{d / \ell}) \lambda_{i}^{\prime}+\lambda_{i}^{\prime}+d\right) \\
& =(2+d) \sum_{i=1}^{d} a_{i}^{2}+(5+2 \sqrt{d / \ell}) \sum_{i=1}^{d} a_{i}^{2} \lambda_{i}^{\prime} \leq(2+d)+(5+2 \sqrt{d / \ell})\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2} \tag{19}
\end{align*}
$$

continuing with 18 we have

$$
\left|x^{\mathrm{T}}(\theta-\widehat{\boldsymbol{\theta}})\right| \leq \sqrt{\frac{(2+d) d+(5 d+2 d \sqrt{d / \ell})\|x\|_{M\left(\lambda^{*}\right)^{-1}}^{2}}{\ell}}
$$

holds for every x such that $\|x\|_{2} \leq 1$.

D. Proof of Lemma 17

Let \mathcal{E}_{r} denote the event that $\left|x^{\mathrm{T}} \widehat{\theta}_{r}-x^{\mathrm{T}} \theta\right| \leq \epsilon_{r} / 2, \forall x \in S$. By Theorem 12 , we have $\operatorname{Pr}\left[\mathcal{E}_{r}\right] \geq 1-\delta_{r}$. Let \mathcal{E} denote the event $\bigwedge_{r=1}^{+\infty} \mathcal{E}_{r}$. Via a union bound, we get $\operatorname{Pr}[\mathcal{E}] \geq 1-\sum_{r=1}^{+\infty} \delta_{r}=1-\left(6 / \pi^{2}\right) \delta \cdot \sum_{r=1}^{+\infty} 1 / r^{2} \geq 1-\delta$. We condition the rest of the proof upon event \mathcal{E}.
(i) We show that $S_{[1]} \in S_{r}$ (so the best arm is in the output set) by induction on r. The base case follows since $S_{[1]} \in S=S_{1}$. Moreover, if $S_{[1]} \in S_{k}$ for some $k \geq 1$, we have that $S_{[1]}^{\mathrm{T}} \widehat{\theta}_{k}+\epsilon_{k} \geq S_{[1]}^{\mathrm{T}} \theta+\epsilon_{k} / 2 \geq x_{a_{k}}^{\mathrm{T}} \theta+\epsilon_{k} / 2 \geq x_{a_{k}}^{\mathrm{T}} \widehat{\theta}$, and so $S_{[1]} \in S_{k+1}$.
To show that ElimTil ${ }_{p}$ outputs at most p arms, let t_{i} be the smallest index such that $\Delta_{i}>\epsilon_{t_{i}-1}$ (so $\Delta_{i} \in\left(\epsilon_{t_{i}-1}, \epsilon_{t_{i}-2}\right]$), with ϵ_{0} defined to be 1. We prove that if $i \neq 1$, then $S_{[i]} \notin S_{t_{i}+1}$. Indeed since $S_{[1]} \in S_{t_{i}}$, if $S_{[i]} \in S_{t_{i}}$ then $S_{[i]}^{\mathrm{T}} \widehat{\theta}_{t_{i}} \leq S_{[i]}^{\mathrm{T}} \theta+\epsilon_{t_{i}} / 2<S_{[1]}^{\mathrm{T}} \theta-\epsilon_{t_{i}-1}+\epsilon_{t_{i}} / 2=\left(S_{[1]}^{\mathrm{T}} \theta-\epsilon_{t_{i}} / 2\right)-\epsilon_{t_{i}} \leq S_{[1]}^{\mathrm{T}} \widehat{\theta}_{t_{i}}-\epsilon_{t_{i}} \leq x_{a_{t_{i}}}^{\mathrm{T}} \widehat{\theta}_{t_{i}}-\epsilon_{t_{i}}$, and so $S_{[i]} \notin S_{t_{i}+1}$. Therefore $\left\{S_{[1]}\right\} \subseteq S_{t_{p+1}+1} \subseteq\left\{S_{[1]}, \ldots, S_{[p]}\right\}$ and hence the algorithm stops after t_{p+1} rounds. Thus, the first part of this lemma is proved.
(ii) Note that the sample complexity of line 5 is $O\left(\frac{c_{0} d}{\epsilon_{r}^{2}} \ln \frac{|S|}{\delta_{r}}\right)$. Also, the algorithm stops after t_{p+1} rounds. Therefore, the total number of samples consumed is bounded by

$$
\begin{aligned}
& O\left(\frac{c_{0} d}{\epsilon_{t_{p+1}}^{2}} \ln \frac{|S|}{\delta_{t_{p+1}}}\right)=O\left(\frac{c_{0} d}{\epsilon_{t_{p+1}}^{2}}\left(\ln \delta^{-1}+\ln |S|+\ln \left(t_{p+1}\right)\right)\right) \\
&=O\left(\frac{c_{0} d}{\Delta_{p+1}^{2}}\left(\ln \delta^{-1}+\ln |S|+\ln \ln \Delta_{p+1}^{-1}\right)\right)
\end{aligned}
$$

where the last equality follows from $\epsilon_{t_{p+1}}=\Theta\left(\Delta_{p+1}\right)$ and $t_{p+1}=\Theta\left(\ln \Delta_{p+1}^{-1}\right)$. Therefore, the proof of this lemma is complete.

E. Proof of Lemma 20

Let $\epsilon_{r}=1 / 2^{r}$. Set $Y=\left\{y=x-x^{\prime} \mid x, x^{\prime} \in S\right\}$. Let $\mathcal{E}_{r}^{(1)}$ be the event

$$
\begin{equation*}
\left|x^{\mathrm{T}} \widehat{\theta}_{r}-x^{\mathrm{T}} \theta\right| \leq \epsilon_{r} / 2, \forall x \in T \tag{20}
\end{equation*}
$$

and let $\mathcal{E}_{r}^{(2)}$ be the event

$$
\begin{equation*}
\left|y^{\mathrm{T}} \widehat{\theta}_{r}-y^{\mathrm{T}} \theta\right| \leq \operatorname{Err}_{\lambda_{T}^{*}}\left(y, \ell_{r}, \theta\right) \leq \operatorname{err}_{\lambda_{T}^{*}}\left(y, \ell_{r}\right), \forall y \in Y \tag{21}
\end{equation*}
$$

By Theorem 12 and a union bound, we have $\operatorname{Pr}\left[\mathcal{E}_{r}^{(1)}\right] \geq 1-\frac{\delta_{r}}{|S|}$. By Lemma 7 and a union bound, we have $\operatorname{Pr}\left[\mathcal{E}_{r}^{(2)}\right] \geq$ $1-\frac{|S|-1}{|S|} \cdot \delta_{r}$. Let $\mathcal{E}_{r}=\mathcal{E}_{r}^{(1)} \wedge \mathcal{E}_{r}^{(2)}$ and $\mathcal{E}=\bigwedge_{r=1}^{+\infty} \mathcal{E}_{r}$. Hence via a union bound, we have $\operatorname{Pr}[\mathcal{E}] \geq 1-\sum_{r=1}^{+\infty} \delta_{r}=$ $1-\left(6 / \pi^{2}\right) \delta \cdot \sum_{r=1}^{+\infty} 1 / r^{2} \geq 1-\delta$.

We now condition on the event \mathcal{E} till the end of the proof. Therefore, for all $x^{\prime}, x \in S$ and $r \geq 1$, we have

$$
\left|\left(x^{\prime}-x\right)^{\mathrm{T}} \widehat{\theta}_{r}-\left(x^{\prime}-x\right)^{\mathrm{T}} \theta\right| \leq \min \left\{\operatorname{err}_{\lambda_{T}^{*}}\left(x^{\prime}-x, \ell_{r}\right), \widehat{\operatorname{Err}}_{\lambda_{T}^{*}}\left(x^{\prime}-x, \ell_{r}\right)\right\}
$$

(i) We prove that $S_{[1]} \in S_{r}$ by induction on r. The base case follows since $S_{[1]} \in S=S_{1}$. Furthermore, if $S_{[1]} \in S_{k}$, we have $\left(x_{a_{k}}-S_{[1]}\right)^{\mathrm{T}} \widehat{\theta}_{k} \leq\left(x_{a_{k}}-S_{[1]}\right)^{\mathrm{T}} \theta+\min \left\{\operatorname{err}_{\lambda_{T}^{*}}\left(x_{a_{k}}-S_{[1]}, \ell_{r}\right), \widehat{\operatorname{Err}} \lambda_{\lambda_{T}^{*}}\left(x_{a_{k}}-S_{[1]}, \ell_{r}\right)\right\} \leq \min \left\{\operatorname{err}_{\lambda_{T}^{*}}\left(x_{a_{k}}-\right.\right.$ $\left.\left.S_{[1]}, \ell_{r}\right), \widehat{\operatorname{Err}}_{\lambda_{T}^{*}}\left(x_{a_{k}}-S_{[1]}, \ell_{r}\right)\right\}$. Hence $S_{[1]} \in S_{k+1}$.
To show that \mathcal{Y}-ELimTiL ${ }_{p}$ outputs at most p arms, let t_{i} be the smallest index such that $\Delta_{i}>\epsilon_{t_{i}-1}$ (so $\Delta_{i} \in\left(\epsilon_{t_{i}-1}, \epsilon_{t_{i}-2}\right]$), with ϵ_{0} defined to be 1 . We prove that if $i \neq 1$, then $S_{[i]} \notin S_{t_{i}+1}$. Indeed since $S_{[1]} \in S_{t_{i}}$, if $S_{[i]} \in S_{t_{i}}$ then $\left(x_{a_{t_{i}}}-S_{[i]}\right)^{\mathrm{T}} \widehat{\theta}_{t_{i}} \geq\left(S_{[1]}-S_{[i]}\right)^{\mathrm{T}} \widehat{\theta}_{t_{i}} \geq\left(S_{[1]}-S_{[i]}\right)^{\mathrm{T}} \theta-\epsilon_{r}=\Delta_{i}-\epsilon_{r}>\epsilon_{r} \geq \operatorname{err}_{\lambda_{T}^{*}}\left(x_{a_{r}}-S_{[i]}, \ell_{r}\right) \geq \min \left\{\operatorname{err}_{\lambda_{T}^{*}}\left(x_{a_{r}}-\right.\right.$ $\left.\left.S_{[i]}, \ell_{r}\right), \widehat{\operatorname{Err}}_{\lambda_{T}^{*}}\left(x_{a_{r}}-S_{[i]}, \ell_{r}\right)\right\}$, and so $S_{[i]} \notin S_{t_{i}+1}$.
Therefore, $\left\{S_{[1]}\right\} \subseteq S_{t_{p+1}+1} \subseteq\left\{S_{[1]}, \ldots, S_{[p]}\right\}$ and hence the algorithm stops after t_{p+1} rounds. Thus, the first part of this lemma is proved.
(ii) Note that $c_{1} \leq 2$, the sample complexity of Line 5 is $O\left(\frac{c_{0} d}{\epsilon_{r}^{2}} \ln \frac{|S|}{\delta_{r}}\right)$. Also, the algorithm stops after t_{p+1} rounds. Therefore, using the same proof, mutatis mutandis, as that of Lemma 17(ii), total number of samples consumed is bounded by

$$
O\left(\frac{c_{0} d}{\Delta_{p+1}^{2}}\left(\ln \delta^{-1}+\ln |S|+\ln \ln \Delta_{p+1}^{-1}\right)\right)
$$

and the proof of this lemma is now complete.

F. Proof of Theorem 22

Let $\mathcal{E}_{r}, r \geq 0$ be the event that algorithm \mathcal{Y}-ELImTiL ${ }_{\left\lfloor d / 2^{r}\right\rfloor}\left(S_{r}, \mathcal{X} \cap \operatorname{span}\left(S_{r}\right), \delta_{r}\right)$ outputs a set of at most $\left\lfloor d / 2^{r}\right\rfloor$ arms with the best arm included, and the sample complexity is $O\left(\frac{c_{0}\left\lfloor d / 2^{r}\right\rfloor}{\Delta_{\left\lfloor d / 2^{r}\right\rfloor+1}^{2}}\left(\ln \delta_{r}^{-1}+\ln |\mathcal{X}|+\ln \ln \Delta_{\left\lfloor d / 2^{r}\right\rfloor+1}^{-1}\right)\right)$. By Lemma 20. we have $\operatorname{Pr}\left[\mathcal{E}_{r}\right] \geq 1-\delta_{r}$. Let \mathcal{E} be the event $\bigwedge_{r=0}^{+\infty} \mathcal{E}_{r}$. Via a union bound, we see that $\operatorname{Pr}[\mathcal{E}] \geq 1-\sum_{r=0}^{+\infty} \delta_{r}=$ $1-6 / \pi^{2} \cdot \delta \cdot \sum_{r=1}^{+\infty} 1 / r^{2} \geq 1-\delta$. The proof is conditioned upon event \mathcal{E} occurring.
(i) We first claim that the final output is the best arm. It suffices to prove that $\mathcal{X}_{[1]} \in S_{r}$ for all $r \geq 0$. We prove this claim by induction on r. The base case follows since $\mathcal{X}_{[1]} \in \mathcal{X}=S_{0}$. If $\mathcal{X}_{[1]} \in S_{k}$ holds, for some $k \geq 0$, since \mathcal{E}_{k} holds, we know that S_{k+1} contains the best arm of S_{k} which is $\mathcal{X}_{[1]}$ by assumption. Therefore, $\mathcal{X}_{[1]} \in S_{k+1}$, and (i) is proved.
(ii) Let $r_{0}=\left\lfloor\log _{2} d\right\rfloor$. Since \mathcal{E} is true, the total sample complexity is bounded by

$$
\begin{aligned}
& \sum_{r=0}^{r_{0}} O\left(\frac{c_{0} \cdot\left\lfloor d / 2^{r}\right\rfloor}{\Delta_{\left\lfloor d / 2^{r}\right\rfloor+1}^{2}}\left(\ln \delta_{r}^{-1}+\ln |\mathcal{X}|+\ln \ln \Delta_{\left\lfloor d / 2^{r}\right\rfloor+1}^{-1}\right)\right) \\
= & \sum_{r=0}^{r_{0}} O\left(\frac{c_{0} \cdot\left(\left\lfloor d / 2^{r}\right\rfloor-\left\lfloor d / 2^{r+1}\right\rfloor\right)}{\Delta_{\left\lfloor d / 2^{r}\right\rfloor+1}^{2}}\left(\ln \delta_{r}^{-1}+\ln |\mathcal{X}|+\ln \ln \Delta_{\left\lfloor d / 2^{r}\right\rfloor+1}^{-1}\right)\right) \\
= & \sum_{r=0}^{r_{0}-1} \sum_{i=\left\lfloor d / 2^{r+1}\right\rfloor+1}^{\left\lfloor d / 2^{r}\right\rfloor} O\left(\frac{c_{0}}{\Delta_{i}^{2}}\left(\ln \delta^{-1}+\ln |\mathcal{X}|+\ln \ln \Delta_{i}^{-1}\right)\right) \\
= & O\left(\sum_{i=2}^{d} \frac{c_{0}}{\Delta_{i}^{2}}\left(\ln \delta^{-1}+\ln |\mathcal{X}|+\ln \ln \Delta_{i}^{-1}\right)\right) .
\end{aligned}
$$

G. Details for computing $\lambda_{\mathcal{X}}^{*}$ and $M\left(\lambda_{\mathcal{X}}^{*}\right)$

Given a distribution λ over $\mathcal{X}, M(\lambda)$ is computed by $\sum_{i=1}^{N} \lambda_{i} x_{i} x_{i}^{\mathrm{T}}$. To compute $\lambda_{\mathcal{X}}^{*}$, we use entropic mirror descent introduced in (Beck \& Teboulle, 2003). The details are included in Algorithm 5 For our experiments, we used $\epsilon=0.1$ and $\eta_{t}=0.001$.

```
Algorithm 5 The entropic mirror descent algorithm for computing \(\lambda_{\mathcal{X}}^{*}\).
    Input: Arms set \(\mathcal{X}\), dimension \(d\), Lipschitz constant \(L_{f}\) of function \(\log \operatorname{det} M(\lambda)\) and tolerance \(\epsilon\).
    Initialize \(t \leftarrow 1\) and \(\lambda^{(1)} \leftarrow(1 / N, \ldots, 1 / N)\).
    while \(\left|\max _{x \in \mathcal{X}} x^{\mathrm{T}} M\left(\lambda^{(t)}\right)^{-1} x-d\right| \geq \epsilon\) do
        \(\eta_{t} \leftarrow \frac{\sqrt{2 \ln N}}{L_{f}} \frac{1}{\sqrt{t}}\).
        Compute gradient \(g_{i}^{(t)} \leftarrow \operatorname{Tr}\left(M\left(\lambda^{(t)}\right)^{-1}\left(x_{i} x_{i}^{T}\right)\right)\).
        Update \(\lambda_{i}^{(t+1)} \leftarrow \frac{\lambda_{i}^{(t)} \exp \left(\eta_{t} g_{i}^{(t)}\right)}{\sum_{i=1}^{N} \lambda_{i}^{(t)} \exp \left(\eta_{t} g_{i}^{(t)}\right)}\).
        \(t \leftarrow t+1\).
    Output: \(\lambda^{(t)}\).
```

