Best Arm Identification in Linear Bandits

A. Proof of Lemma [10]

Notice that when n > ¢o¢1n(5/6) where ¢ > d, we have
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and so the result follows from Lemmal[7l

B. Proof of Theorem [12]

Let/ = W. Lemmaimplies that with probability at least 1 — §, for every x € X,
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C. Proof of Theorem 13
Let A~ = Zle A\iv;v] be its eigen-decomposition (so that v;’s form an orthonormal basis). Note that ||v;|| = 1. By

Lemma 10} for each v;, with probability at least (1 — 6/d), we have
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Let X; = [[v;]|3;(pe)-1 = nAi forevery i € {1,2,3,...,d}. We have
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Via a union bound, we know that with probability at least (1 — ¢), (I7) holds for every eigenvector v;. When this event
happens, for every vector x such that ||z||2 < 1, let us write z = Zle a;v;. We have Ele a? < 1 and we have
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where the first inequality is due to Cauchy-Schwartz inequality. Since
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continuing with (I8) we have

N 24+ d)d + (5d + 2d+/d/O)|| |2,y 1
‘xT(e_a)‘S\/< ) + ( g\ﬁ/) By

holds for every z such that ||z||2 < 1.

D. Proof of Lemma
Let &, denote the event that \zTé\r — 270 <e€./2,Vr € S. By Theorem we have Pr[€,] > 1 — §,.. Let £ denote the
event A\ £,.. Via a union bound, we get Pr[€] > 1 — 3724, =1 — (6/72)5 - 3,°5 1/r? > 1 — §. We condition the

rest of the proof upon event &.

(1) We show that Sj;; € S, (so the best arm is in the output set) by induction on r. The base case follows since S € S = 5.

Moreover, if S};] € S for some k > 1, we have that SE]@\k Fep > SE{]G—i—ek/Z >al O+ep/2 > xgﬁ, and so S}j) € Sk41.

To show that ELIMTIL,, outputs at most p arms, let ¢; be the smallest index such that A; > €;,_1 (80 A; € (e4,—1, €,—2]),
with € defined to be 1. We prove that if i # 1, then S;;; ¢ Si,41. Indeed since Sy € Sy, if S € Sy, then
Sg]gtl S SEE]G"‘EQ/? < Sﬁ]g —€,—1 + Gti/2 = (SE]G - Eti/Z) — €, S S[rl;]&tl — €, S xgii gti — €t and so S[l] ¢ Sti+1'
Therefore {Sp1;} € St,,,+1 € {Sn), -+, S } and hence the algorithm stops after ¢, 1 rounds. Thus, the first part of this
lemma is proved.

(ii) Note that the sample complexity of lineis (0] (%d In ‘éﬂ) Also, the algorithm stops after ¢, rounds. Therefore, the
total number of samples consumed is bounded by
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where the last equality follows from €;,,, = ©(A,11) and t,41 = O(In A}, ). Therefore, the proof of this lemma is

p+1
complete.

E. Proof of Lemma
Lete, =1/2".SetY ={y =2 — 2’ | z,2’ € S}. Let £ be the event
1270, — 270 < e,/2,Vz € T, (20)
and let 5,@) be the event
|yT§r - yT0| < Err)x} (Y, 4r,0) < CTT\: (y, 4r),Vy € Y. (21)
By Theorem |12{and a union bound, we have Pr[&(l)] >1- l‘ss’" . By Lemmaand a union bound, we have Pr[ET(Q)} >
1— |5‘V|57|1 S Let& = EVAED and £ = f:f &,. Hence via a union bound, we have Pr[€] > 1 — ;le) Oy =

1—(6/72)8- 37X 1/r2>1—06.
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We now condition on the event & till the end of the proof. Therefore, for all ',z € S and r > 1, we have

(2 — )76, — (2 — 2)76| < min{erry: (¢’ — xlr),ﬁ—l})\fr (2 — 2, 0.)}.

(i) We prove that Sj;) € S, by induction on r. The base case follows since Sj;) € S = S;. Furthermore, if Sjy; € Sk,
we have (4, — 5[1])T(§k < (@ay, — Spy)T0 + min{erryx (24, — S[l],&),ﬁg)\; (Tay, — Spps br)} < min{errys (24, —
S[l],&«),ﬁ—ﬁ)\} (.%'ak — S[l],&«)}. Hence S[l] S Sk+1.

To show that Y-ELIMTIL,, outputs at most p arms, let ¢; be the smallest index such that A; > €;,_1 (s0 A; € (€,-1, €,—2]),
with € defined to be 1. We prove that if i # 1, then S;;; ¢ St 1. Indeed since Sy € Sy, if S € Sy, then
(Ta,, — S[i])Té\ti > (Spy— Sm)Tati > Sy =S —er=Ai—6 > €6 > erryx (zq, — Spij, £r) > min{erry: (v4, —
Siigs ), Extag (2a, — Spij, )}, and s0 Sy & St,1.

Therefore, {Sp1} € Si,,,+1 € {Sn), -, S} and hence the algorithm stops after ¢, ; rounds. Thus, the first part of this
lemma is proved.

(ii) Note that ¢; < 2, the sample complexity of Line [5|is O (%d In %) Also, the algorithm stops after ¢, rounds.

Therefore, using the same proof, mutatis mutandis, as that of Lemma (ii), total number of samples consumed is bounded
by

0 <(ln§—1 +In|S|+ lnlnA;_il)> ,

and the proof of this lemma is now complete.

F. Proof of Theorem 22|
Let &.,7 > 0 be the event that algorithm Y-ELIMTIL|4/2- (S, X N span(S,.), d,) outputs a set of at most |d/2" | arms

with the best arm included, and the sample complexity is O M(ln 571+ In|X|+Inln ATH ) ). By Lemma
A% r ld/2r|+1
we have Pr[€,] > 1 — §,. Let € be the event /\:;08 &,. Via a union bound, we see that Pr[€] > 1 — 327045, =

r=0 """
1—6/7%-6-3°1/r2 > 1 — §. The proof is conditioned upon event € occurring.

(1) We first claim that the final output is the best arm. It suffices to prove that X[y € S, for all 7 > 0. We prove this claim by
induction on r. The base case follows since X[l} € X =5y If X[l] € S, holds, for some k£ > 0, since &£, holds, we know
that Sy 11 contains the best arm of S}, which is A1) by assumption. Therefore, X[y} € Sky1, and (i) is proved.

(ii) Let ro = |logs d]. Since € is true, the total sample complexity is bounded by
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G. Details for computing \%, and M (%)

Given a distribution A over X', M (\) is computed by Zivzl Niz;zl. To compute A%, we use entropic mirror descent
introduced in (Beck & Teboulle, [2003)). The details are included in AlgorithmE} For our experiments, we used € = 0.1 and
1 = 0.001.
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Algorithm 5 The entropic mirror descent algorithm for computing A%..

1: Input: Arms set X, dimension d, Lipschitz constant L of function log det M () and tolerance e.
2: Initialize ¢ « 1 and A() « (1/N,...,1/N).
3: while | max,cx 2TM(A®) "1z —d| > edo
& e 2RN L
5 Compute gradient ¢\" + Tr(M(A®)~1(z;2T)).
(t+1) ALY exp(egi”)
6 Update \; +— ST Aﬁ”pe:p!(}mgit))'
7
8

: t+—t+1.
: Output: A,




