
Decoupling Gradient-Like Learning Rules from Representations

A. Derivation of Metric Tensor and Update Direction
In this appendix we provide intuition for what l̃ does relative to l, and show how Gxi encodes the dissimilarity function in (1).
We begin by considering the stochastic gradient descent learning rule as an example to understand what the ∂f(·, βi)/∂βi
terms in a learning rule do, and how they should be changed to decouple the decisions of which learning rule to use and
which parameterized function to use. For simplicity, in this appendix we consider the setting where βi := θi−1 and we use
the shorthand θi := li(f, θ0, ω). Also, recall that in all appendices we use the shorthands: d := dx,θ0,ωi , and Gxi := Gxi .

The stochastic gradient descent update to make f approximate some target function, f?, can be written as:

θi = θi−1 + αi

(
f?(Xi−1(ω))− f(Xi−1(ω), θi−1)

)
︸ ︷︷ ︸

=:δi−1

∂f

∂θi−1
(Xi−1(ω), θi−1), (3)

where Xi−1 : Ω→ X is a random variable, and where (αi)
∞
i=1 is a sequence of small positive real-valued step sizes. For

brevity, hereafter we write Xi−1 as shorthand for Xi−1(ω). In (3) the δi−1 term is an error term. If δi−1 is positive, it means
that θi should be selected to make f(Xi−1, θi) larger than f(Xi−1, θi−1). Similarly, if δi−1 is negative, then it means that
θi should be selected to make f(Xi−1, θi) smaller than f(Xi−1, θi−1). This intuition is accomplished in (3) by multiplying
δi−1 by ∂f

∂θi−1
(Xi−1, θi−1), which is a direction of change to θi−1 that increases the value of f(Xi−1, θi−1).

However, there are many directions, ∆i−1, of change to the parameters, θi−1, that would cause f(Xi−1, θi−1) to increase.
In general, we could change the learning rule to be:

θi = θi−1 + δi−1∆i−1,

for any ∆i−1 such that (for infinitesimal αi) f(Xi−1, θi−1 + αi∆i−1) ≥ f(Xi−1, θi−1). However, some directions, ∆i−1,
are “better” than others. The error term, δi−1, describes whether f(Xi−1, θi−1) should be bigger or smaller, but does
not describe whether f(x, θi−1) should be bigger or smaller for any x 6= Xi−1. Some directions, ∆i−1, might cause
f(Xi−1, θi−1 + αi∆i−1) to increase slowly as αi increases, but f(x, θi−1 + αi∆i−1) to increase or decrease quickly as αi
increases, for some x 6= Xi−1. These ∆i−1 are not desirable because δi−1 does not describe whether f(x, θi−1) should be
bigger or smaller. We desire a direction, ∆i−1, that does the opposite: it should cause f(Xi−1, θi−1 + αi∆i−1) to increase
quickly with αi, and f(x, θi−1 + αi∆i−1) to change slowly with αi for all x 6= Xi−1.

We will focus our attention of the first constraint: we will find a direction, ∆i−1, that causes f(Xi−1, θi−1 + αi∆i−1) to
increase as quickly as possible with αi. That is, we will select ∆i−1 to be a direction (vector of length one) such that for a
step of infinitesimal length, αi, f(Xi−1, θi + αi∆i−1) is maximized. More formally, we will select

∆i−1 := lim
αi→0

arg max
∆i−1∈{∆∈Rn:‖∆‖=1}

f(Xi−1, θi−1 + αi∆i−1)

(a)
= lim
αi→0

arg max
∆i−1∈{∆∈Rn:‖∆‖=1}

∂f

∂θi−1
(Xi−1, θi−1)ᵀ(αi∆i−1) +O(α2

i )

= lim
αi→0

arg max
∆i−1∈{∆∈Rn:‖∆‖=1}

∂f

∂θi−1
(Xi−1, θi−1)ᵀ(αi∆i−1)

= arg max
∆i−1∈{∆∈Rn:‖∆‖=1}

∂f

∂θi−1
(Xi−1, θi−1)ᵀ∆i−1, (4)

where (a) comes from a Taylor expansion. By the method of Lagrange multipliers and the observation that ‖∆‖ = 1 implies
that ‖∆‖2 = 1, we have that any ∆i−1 that satisfies (4) must also satisfy:

0 =
∂

∂∆i−1

(
∂f

∂θi−1
(Xi−1, θi−1)ᵀ∆i−1 − λ

(
‖∆i−1‖2 − 1

))
=

∂

∂∆i−1

(
∂f

∂θi−1
(Xi−1, θi−1)ᵀ∆i−1 − λ

(
∆ᵀ
i−1∆i−1 − 1

))
(5)

=
∂f

∂θi−1
(Xi−1, θi−1)− 2λ∆i−1,
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and so
∆i−1 =

1

2λ

∂f

∂θi−1
(Xi−1, θi−1),

where λ is a scalar. It is straightforward to verify that this direction is the unique solution, ∆i−1, and not just a critical point
of the Lagrangian. If we ignore the scalar terms (e.g., by viewing them as part of the step size, αi), we have the direction:

∆i−1 =
∂f

∂θi−1
(Xi−1, θi−1), (6)

which is the direction of change to θi−1 used by stochastic gradient descent in (3). It is also the direction of change to θi−1

that is used by non-gradient learning rules, like temporal-difference learning (Sutton, 1988), that use updates of the form:

θi = θi−1 + δi−1∆i−1,

where here δi−1 denotes an error term called the temporal difference error. In general, for learning rules that satisfy
Assumption 1, the ∂f(·, θi−1i)/∂θi−1 terms denote different ∆i−1 terms, evaluated using different x ∈ X .

The problem with learning rules that use (6)—learning rules that satisfy Assumption 1—is that they make an implicit
assumption that the distance between f(Xi−1, θi−1) and f(Xi−1, θi−1+α∆θi) should be measured using Euclidean distance
in the parameters when selecting ∆i−1. That is, they use ‖∆‖2 := ∆ᵀ∆ during the derivation of ∆i−1—specifically to
obtain (5) during the derivation.

The problem with using learning rules that satisfy Assumption 1, which use Euclidean distance in the parameters when
deriving ∆i−1, is that they intertwine the choices of which learning rule to use and which parameterized function to use. To
see how this intertwining occurs, consider a parameterized function, g, that is congruent to f , with submersion ψ. Using f
and Euclidean distance in the parameterization, the squared distance between f(Xi−1, θi−1) and f(Xi−1, θi−1 + ∆)) is
∆ᵀ∆. However, using g and the Euclidean distance in the parameterization, the squared distance between the same two
functions, g(Xi−1, ψ(θi−1)) and g(Xi−1, ψ(θi−1 + ∆)), is

(ψ(θi−1 + ∆)− ψ(θi−1))
ᵀ

(ψ(θi−1 + ∆)− ψ(θi−1)) ,

which is not necessarily the same. These differing notions of distance will result in different solutions to (4), and thus
different update directions. This is reflected by the fact that learning rules that satisfy Assumption 1 are not covariant or
j-order covariant for any j ∈ N>0 and non-degenerate G.

Furthermore, for some parameterizations, Euclidean distance in the parameters may be a poor notion of distance. For
example, in a deep neural network, a weight at an early layer of the network may have little impact on the output of
the network, while a weight near the output of the network might have a large impact. Using Euclidean distance in the
parameters means that small changes to these two weights incur the same amount of distance, and so the direction of steepest
ascent will favor larger changes to the weight later in the network, since small changes thereto can have a bigger influence
on the network’s output. Amari (1998) was the first to suggest that this line of reasoning could explain the tendency of
algorithms for training neural networks to require many iterations of the learning rule to properly set the values of weights
early in the network.

This raises the question: what notion of distance (or more generally, what dissimilarity function) should be used when
computing ∆i−1—the direction of steepest ascent of f(Xi−1, ·) at θi−1? We would like to use (1), so that

‖∆i−1‖2 := dist(θi−1, θi−1 + ∆i−1)2

=
1

2

∫
X 2

(f(x, θi−1)− f(x, θi−1 + ∆i−1))(f(y, θi−1)− f(y, θi−1 + ∆i−1)p(dx, dy),

where p(dx, dy) := pi(f(·, βi), ω, z, dx, dy), where z ∈ X corresponds to z in (2). Although this definition of ‖·‖ is
desirable, it does not ensure that a simple closed form exists for ∆i−1. So, instead we use

‖∆i−1‖2 := τ2
(
dist(θi−1, θi−1 + ·)2, θi−1, θi−1 + ∆i−1

)
.

That is, we use a second order Taylor approximation of the dissimilarity function, d as our definition of squared distance.
Although this second order Taylor approximation does not result in a definition of squared distance that yields covariant
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updates, Theorem 1 shows that it is sufficient to yield first-order covariant updates. Also, notice that this use a second
order Taylor approximation to a dissimilarity function is not unprecedented: Amari’s natural gradient method using the
Fisher information matrix equates to using a second order Taylor approximation of Kullback–Leibler divergence to measure
squared distances when computing ∆i−1 (Thomas et al., 2016, Appendix A).

The use of a second-order Taylor approximation of dist(θi−1, θi−1 + ·)2 results in a closed form for the ∆i−1 that satisfy
(4) because:

τ2
(
dist(θ, ·)2, θ, θ + ∆

)
= dist(θ, θ)2︸ ︷︷ ︸

=(a)

+

(
∂ dist

∂γ
(α, γ)2

∣∣
α=θ
γ=θ

)ᵀ

︸ ︷︷ ︸
=(b)

∆ +
1

2
∆ᵀ
(
∂2 dist

∂γ2
(α, γ)2

∣∣
α=θ
γ=θ

)
∆

=
1

2
∆ᵀ
(
∂2 dist

∂γ2
(f, α, γ)2

∣∣
α=θ
γ=θ

)
∆,

since it is straightforward to verify that (a) and (b) are both zero.2 Furthermore,(
∂2 dist

∂γ2
(f, α, γ)2

∣∣
α=θ
γ=θ

)
=

∫
X 2

∂f

∂θ
(x, θ)

∂f

∂θ
(y, θ)ᵀp(dx, dy).

So,

τ2
(
dist(θ, ·)2, θ, θ + ∆

)
=∆ᵀ

(∫
X 2

∂f

∂θ
(x, θ)

∂f

∂θ
(y, θ)ᵀp(dx, dy)

)
∆,

and thus
‖∆i−1‖2 := ∆ᵀ

i−1G
x
i (f, θi−1)∆i−1.

Using this squared norm and the method of Lagrange multipliers as before, the solutions to (4) satisfy

0 =
∂

∂∆i−1

(
∂f

∂θi−1
(x, θi−1)ᵀ∆i−1 −

1

2
λ
(
∆ᵀ
i−1G

x
i (f, θi−1)∆i−1 − 1

))
=

∂f

∂θi−1
(x, θi−1)− λGxi (f, θi−1)∆i−1,

and so ∆i−1 = 1
λG

x
i (f, θi−1)+ ∂f

∂θi−1
(x, θi−1), or ignoring the scalar terms as before (by viewing them as part of the step

sizes),

∆i−1 = Gxi (f, θi−1)+ ∂f

∂θi−1
(x, θi−1).

This definition of ∆i−1 is exactly what is used by l̃.

B. Proof of Theorem 1

We begin by establishing properties that we use later. Also, for brevity and to avoid clutter, we use several shorthand
notations in all of the appendices: ∇ψ := ∂ψ

∂βi
(βi), ∇f := ∂f

∂βi
(x, βi), ∇2f := ∂2f

∂β2
i
(x, βi), ∇g := ∂g

∂ψ(βi)
(x, ψ(βi)), and

∇2g := ∂2g
∂ψ(βi)2

(x, ψ(βi)).

Property 1 (Jacobian Property). If f and g are congruent representations, then for all x ∈ X and θ ∈ Rn,

∂f

∂θ
(x, θ) =

(
∂ψ

∂θ
(θ)

)ᵀ
∂g

∂ψ(θ)
(x, ψ(θ)).

Proof.
∂f

∂θ
(x, θ)

(a)
=
∂g

∂θ
(x, ψ(θ)) =

(
∂ψ

∂θ
(θ)

)ᵀ
∂g

∂ψ(θ)
(x, ψ(θ)),

where (a) holds because f(x, θ) = g(x, ψ(θ)) for all x ∈ X and θ ∈ Rn by the assumption that f and g are congruent
representations.

2Notice that here we have switched notation for differentiation. This is because ∂d
∂θi−1

(θi−1, θi−1) is ambiguous since the derivative
is with respect to the second argument of d, not the first.
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Property 2. For all parameterized functions, f ∈ P , all g ∈ P that are congruent to f , all z ∈ X , all θ0 ∈ Θι, all ω ∈ Ω,
and all i ∈ N>0,

Gzi (f, βi) = ∇ψᵀGzi (g, ψ(βi))∇ψ.

Proof.

Gzi (f, βi) :=

∫
X 2

∂f(x, βi)

∂βi

∂f(y, βi)

∂βi

ᵀ

dpi(f(·, βi), ω, z, dx, dy)

(a)
=

∫
X 2

∇ψᵀ ∂g(x, ψ(βi))

∂ψ(βi)

∂g(y, ψ(βi))

∂ψ(βi)

ᵀ

∇ψ dpi(f(·, βi), ω, z, dx, dy)

(b)
=∇ψᵀ

∫
X 2

∂g(x, ψ(βi))

∂ψ(βi)

∂g(y, ψ(βi))

∂ψ(βi)

ᵀ

dpi(g(·, ψ(βi)), ω, z, dx, dy)∇ψ

=∇ψᵀGzi (g, ψ(βi))∇ψ,

where (a) comes from Property 1 and (b) holds because ∇ψ does not depend on x or y and because f(·, βi) = g(·, ψ(βi))
by the assumption that g is congruent to f .

Property 3. If l′ is a first-order covariant update with respect to a sequence (βi)
∞
i=1, then for all i ∈ N>0, θ0 ∈ Θι, and

ω ∈ Ω,
∇gᵀ∇ψ (l′i(f, θ0, ω)− βi) = ∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)).

Proof. We begin by writing out the Taylor expansions in the definition of first-order covariance:

τ1(f(x, ·), βi, l′i(f, θ0, ω)) =τ1(g(x, ·), ψ(βi), l
′
i(g, ψ(θ0), ω))

f(x, βi) +∇fᵀ(l′i(f, θ0, ω)− βi) =g(x, ψ(βi)) +∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi))

∇fᵀ(l′i(f, θ0, ω)− βi)
(a)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi))

∇gᵀ∇ψ (l′i(f, θ0, ω)− βi)
(b)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)),

where (a) comes from the first terms on each side canceling by the definition of ψ and (b) comes from Property 1.

To establish Theorem 1 we show that for all g ∈ G that are congruent to f ,

τ1(f(x, ·), βi, l̃i(f, θ0, ω)) = τ1(g(x, ·), ψ(βi), l̃i(g, ψ(θ0), ω)). (7)

To establish (7), we write out the Taylor expansions, as in the proof of Property 3. This gives an equality which, if satisfied,
implies that l̃ is first-order covariant with respect to (βi)

∞
i=1 and G.

τ1(f(x, ·), βi, l̃i(f, θ0, ω)) =τ1(g(x, ·), ψ(βi), l̃i(g, ψ(θ0), ω))

f(x, βi) +∇fᵀ(l̃i(f, θ0, ω)− βi) =g(x, ψ(βi)) +∇gᵀ(l̃i(g, ψ(θ0), ω)− ψ(βi))

∇fᵀ(l̃i(f, θ0, ω)− βi)
(a)
=∇gᵀ(l̃i(g, ψ(θ0), ω)− ψ(βi))

∇gᵀ∇ψ (l̃i(f, θ0, ω)− βi)
(b)
=∇gᵀ(l̃i(g, ψ(θ0), ω)− ψ(βi)). (8)

We will show that this condition is met.

∇gᵀ∇ψ(l̃i(f, θ0, ω)− βi)
(a)
=∇gᵀ∇ψ

(
l′i(f, θ0, ω)− βi +

∫
X
G·i(f, βi)

+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

)
=∇gᵀ∇ψ (l′i(f, θ0, ω)− βi) +∇gᵀ∇ψ

∫
X
G·i(f, βi)

+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

(b)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ∇ψ

∫
X
G·i(f, βi)

+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

(c)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ∇ψ

∫
X

[∇ψᵀG·i(g, ψ(βi))∇ψ]
+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)j (9)
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where (a) comes from substituting in the definition of l̃i(f, θ1:i, ω), (b) holds by Property 3, and (c) comes from Property 2.
Notice that∇ψᵀ ∈ Rn×m has full column rank (since m ≤ n),∇ψ ∈ Rm×n has full row rank, and rank(Gxi (g, ψ(βi))) =
m by the definition of G in Theorem 1. Thus, by Sylvester’s rank inequality we have that rank(Gxi (g, ψ(βi))∇ψ) ≥
rank(Gxi (g, ψ(βi))) + rank(∇ψ)−m = m+m−m = m. Also, due to its dimensions, rank(Gxi (g, ψ(βi))∇ψ) ≤ m,
and so we can conclude that rank(Gxi (g, ψ(βi))∇ψ) = m. So, ∇ψᵀ has full column rank and Gxi (g, ψ(βi))∇ψ has full
row rank. So, by two applications of the rule that (AB)+ = B+A+ if A has full column rank and B has full row rank
(Greville & Nall, 1966), we have that:

(∇ψᵀG·i(g, ψ(βi))∇ψ)
+

= ∇ψ+G·i(g, ψ(βi))
+(∇ψᵀ)+.

Continuing (9), we therefore have that:

∇gᵀ∇ψ(l̃i(f, θ0, ω)− βi)

=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ∇ψ
∫
X
∇ψ+G·i(g, ψ(βi))

+(∇ψᵀ)+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ∇ψ∇ψ+

∫
X
G·i(g, ψ(βi))

+(∇ψᵀ)+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

(a1)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ

∫
X
G·i(g, ψ(βi))

+(∇ψᵀ)+ ∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·)

(b)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ

∫
X
G·i(g, ψ(βi))

+(∇ψᵀ)+∇ψᵀ ∂g

∂ψ(βi)
(·, ψ(βi)) dµi(f(·, βi), ω, ·)

(a2)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ

∫
X
G·i(g, ψ(βi))

+ ∂g

∂ψ(βi)
(·, ψ(βi)) dµi(f(·, βi), ω, ·)

(c)
=∇gᵀ(l′i(g, ψ(θ0), ω)− ψ(βi)) +∇gᵀ

∫
X
G·i(g, ψ(βi))

+ ∂g

∂ψ(βi)
(·, ψ(βi)) dµi(g, ψ(θ0), ω, ·)

=∇gᵀ
(
l̃i(g, ψ(θ0), ω)− ψ(βi)

)
, (10)

where (a1) and (a2) hold because∇ψ has linearly independent rows because it is full rank, and has more columns than rows
by the requirement that m ≤ n in the definition of congruent representations, and so∇ψ+ is a right-inverse, (b) holds by
Property 1 and (c) holds because f(·, βi) = g(·, ψ(βi)) by the assumption that g is congruent to f . Notice that (10) is equal
to the right side of (8), and so we conclude.

C. Proof of Theorem 2

Since w? is a critical point:

0 =

∫
X

(1− 1̂(·, w?)) ∂1̂

∂w?
(·, w?) dµi(f(·, βi), ω, ·)

0 =

∫
X

(
1− (w?)ᵀ

∂f

∂βi
(·, βi)

)
∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·).

Rearranging terms, we obtain a new expression that is equal to a term in the learning rule, l:∫
X

∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·) =

∫
X

(
(w?)ᵀ

∂f

∂βi
(·, βi)

)
∂f

∂βi
(·, βi) dµi(f(·, βi), ω, ·) (11)

=

∫
X

∂f

∂βi
(·, βi)

∂f

∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·)w?, (12)

Replacing the left side of (11) in a learning rule, l, that satisfies Assumption 1, with (12), we have that l can be written as:

li(f, θ0, ω) = l′i(f, θ0, ω) +

[∫
X

∂f

∂βi
(·, βi)

∂f

∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·)

]
w?.

Similarly, l̃ from Theorem 1 can be written as

l̃i(f, θ0, ω) = l′i(f, θ0, ω) +

[∫
X
G·i(f, βi)

+ ∂f

∂βi
(·, βi)

∂f

∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·)

]
w?. (13)
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Since
Gxi (f, βi) =

∫
X

∂f

∂βi
(·, βi)

∂f

∂βi
(·, βi)ᵀ dµi(f(·, βi), ω, ·),

or
Gxi (f, βi) =

∂f

∂βi
(x, βi)

∂f

∂βi
(x, βi)

ᵀ,

and Gxi (f, βi) is full rank, terms in (13) cancel to give:

l̃i(f, θ0, ω) = l′i(f, θ0, ω) + w?.

D. Proof of Theorem 3

We show that every learning rule, l, that is second-order covariant with respect to any sequence, (βi)
∞
i=1, and a set G, must use

the trivial update, li(f, θ0, ω) := βi for all parameterized functions, f , where 1) n = k = 1, 2) both g(x, θ) := f(x, ln(θ))

and h(x, θ) := f(x, ln(θ)/2) are in G and congruent to f and 3) both ∂g
∂θ (·, βi) and ∂2g

∂θ2 (·, βi) are not collinear and ∂h
∂θ (·, βi)

and ∂2h
∂θ2 (·, βi) are not collinear.

To show this result, we will assume that l is a second-order covariant learning rule and will then show that, under these
conditions, li(f, θ0, ω) := βi. Since l is second-order covariant with respect to (βi)

∞
i=1 and G, we have that:

τ2(f(x, ·), βi, li(f, θ0, ω)) = τ2(g(x, ·), ψ(βi), li(g, ψ(θ0), ω)) = τ2(h(x, ·), φ(βi), li(h, φ(θ0), ω)),

and so:

a∇f +
a2

2
∇2f = b∇g +

b2

2
∇2g = c∇h+

c2

2
∇2h, (14)

where a := li(f, θ0, ω) − βi, b := li(g, ψ(θ0), ω) − ψ(βi), c := li(h, φ(θ0), ω) − φ(βi), ∇h := ∂h
∂φ(βi)

(x, φ(βi)), and

∇2h := ∂2h
∂φ(βi)2

(x, φ(βi)).

We will show that, given f and the g and h specified in the theorem, (14) is only satisfied by a = 0, b = 0, and c = 0, which
by the definitions of a, b, and c implies our result. Specifically, let:

g(ψ(θ)) := f(ln(ψ(θ)))

h(φ(θ)) := f

(
1

2
ln(φ(θ))

)
.

So, g and h are congruent to f with submersions ψ(θ) = eθ and φ(θ) = e2θ, respectively. Thus, we have the following:

∇ψ = eβi

∇φ = 2e2βi

∇2ψ = eβi

∇2φ = 4e2βi

∇f = ∇ψ∇g = eβi∇g
∇f = ∇φ∇h = 2e2βi∇h

∇2f = ∇2g∇ψ2 +∇g∇2ψ = e2βi∇2g + eβi∇g
∇2f = ∇2h∇φ2 +∇h∇2φ = 4e4βi∇2h+ 4e2βi∇h.

From (14) we have the requirement that for all x ∈ X :

b∇g +
b2

2
∇2g =a∇f +

a2

2
∇2f

=aeβi∇g +
a2

2

(
e2βi∇2g + eβi∇g

)
=

(
aeβi +

a2

2
eβi

)
∇g +

a2

2
e2βi∇2g. (15)
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Recall that∇g and∇2g (and∇h and ∇2h) are not collinear functions. Thus, the only way for (15) to hold for all x is if

b = aeβi +
a2

2
eβi , (16)

and
b2

2
=
a2

2
e2βi . (17)

Similarly, from (14) we have the requirement that for all x ∈ X :

c∇h+
c2

2
∇2h =a∇f +

a2

2
∇2f

=2ae2βi∇h+
a2

2

(
4e4βi∇2h+ 4e2βi∇h

)
=

(
2ae2βi +

a2

2
4e2βi

)
∇h+ a22e4βi∇2h,

and thus we have that

c = 2ae2βi +
a2

2
4e2βi , (18)

and
c2

2
= a22e4βi . (19)

It is straightforward to verify using a computer algebra system like Wolfram Alpha that the only values for a, b, c that
satisfy (16), (17), (18), and (19) simultaneously occur when a = b = c = 0. Since a = b = c = 0 corresponds to the trivial
learning rule, li(f, θ0, ω) = βi, we conclude.


