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A. Gaussian Models: remarks and proofs
In this section we consider the case where the transition and reward models are Gaussian distributions.

A task Mj = 〈S,A,Pj ,Rj , γ〉 is jointly Gaussian when it has:

• Gaussian Reward: for any (s, a) ∈ S ×A

Rj(·|s, a) = N (µ(j)
r (s, a), σ2

j (s, a)). (7)

• Gaussian Transitions: for any (s, a) ∈ S ×A

Pj(·|s, a) = N (µ(j)
p (s, a),Σj(s, a)) (8)

.

In this setting, by using a Gaussian process to estimate the transition and reward models, we can compute the expected
importance weights, where the expectation is taken under the distribution induced by the GPs’ predictions, in closed form.
Note that, since reward and transition weights are independent, we can independently consider Assumptions 7 and 8 for
the computation of wr and wp, respectively.

Theorem 4 (Reward Weights in Gaussian Models). Assume each task to have Gaussian reward distribution Rj(·|s, a) =

N
(
µ

(j)
r (s, a), σ2

j (s, a)
)

with unknown mean. Given the available samples in D̃, we build an estimate of the reward

distribution such that, for any MDP Mj , r(j)(s, a) ∼ N (µGPj (s, a), σ2
GPj

(s, a)). Then, given a sample 〈s, a, r〉 from

the j-th MDP, its importance weight w =
N(r|r(0)(s,a),σ2

0(s,a))
N(r|r(j)(s,a),σ2

j (s,a))
∼ G, where G is the distribution induced by the GPs’

predictions. Let C =
σ2
j (s,a)

σ2
j (s,a)−σ2

GPj
(s,a)

and suppose σ2
GPj

(s, a) < σ2
j (s, a), then

EG [w] = C
N

(
r
∣∣µGP0

(s,a),σ2
0(s,a)+σ2

GP0
(s,a)

)
N

(
r
∣∣µGPj

(s,a),σ2
j (s,a)−σ2

GPj
(s,a)

) . (6)

Proof. In order to simplify our notation, we consider the dependence on (s, a, r) implicit. We have:

E [w] =

∫ ∫
w N

(
r(0)
∣∣µGP0

, σ2
GP0

)
N
(
r(j)
∣∣µGPj

, σ2
GPj

)
dr(0)dr(j)

=

∫ ∫
w

exp

(
− (r(0)−µGP0

)2

2σ2
GP0

)
√

2πσ2
GP0

exp

(
− (r(j)−µGPj

)2

2σ2
GPj

)
√

2πσ2
GPj

dr(0)dr(j)

=

∫ exp
(
− (r−r(0))2

2σ2
0

)
√

2πσ2
0

exp

(
− (r(0)−µGP0

)2

2σ2
GP0

)
√

2πσ2
GP0

dr(0)

∫ √
2πσ2

j

exp
(
− (r−r(j))2

2σ2
j

) exp

(
− (r(j)−µGPj

)2

2σ2
GPj

)
√

2πσ2
GPj

dr(j).

The first integral is over the product of two Gaussian densities, which is known to be (Bromiley, 2003):

N
(
r(0)
∣∣µ̄0, σ̄

2
0

)
N
(
r
∣∣µGP0 , σ

2
0 + σ2

GP0

)
, (9)

where the values of the mean µ̄0 and variance σ̄2
0 of the first density are not important to complete this proof since such

density integrates out. By adopting the same procedure as the one described in (Bromiley, 2003), we can write the ratio of
the two Gaussian densities in the second integral as:

σ2
j

σ2
j − σ2

GPj

N
(
r(j)
∣∣µ̄j , σ̄2

j

)
N
(
r
∣∣µGPj

, σ2
j − σ2

GPj

) , (10)
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where, again, the values of µ̄j and σ̄2
j are not relevant to our proof. Finally, we can write:

E [w(r)] =

∫
N
(
r(0)
∣∣µ̄0, σ̄

2
0

)
N
(
r
∣∣µGP0 , σ

2
0 + σ2

GP0

)
dr(0)

∫
σ2
j

σ2
j − σ2

GPj

N
(
r(j)
∣∣µ̄j , σ̄2

j

)
N
(
r
∣∣µGPj , σ

2
j − σ2

GPj

)dr(j)

=
σ2
j

σ2
j − σ2

GPj

N
(
r
∣∣µGP0

, σ2
0 + σ2

GP0

)
N
(
r
∣∣µGPj , σ

2
j − σ2

GPj

) ∫ N (r(0)
∣∣µ̄0, σ̄

2
0

)
dr(0)

∫
N
(
r(j)
∣∣µ̄j , σ̄2

j

)
dr(j)

=
σ2
j

σ2
j − σ2

GPj

N (r
∣∣µGP0

, σ2
0 + σ2

GP0
)

N (r
∣∣µGPj

, σ2
j − σ2

GPj
)
.

We can derive a similar result for the transition model by considering Assumption 8.

Theorem 5 (Transition Weights in Gaussian Models). Assume each task to have Gaussian transition distri-
bution Pj(·|s, a) = N (µ

(j)
p (s, a),Σj(s, a)) with unknown mean. Furthermore, suppose that Σj(s, a) =

diag
(
δ2
j,1(s, a), δ2

j,2(s, a), . . . , δ2
j,D(s, a)

)
. Given the available samples in D̃, we build an estimate of the transition distri-

bution such that, for any MDP Mj and state component d, p(j)
d (s, a) ∼ N (µGPj,d

(s, a), σ2
GPj,d

(s, a)). Then, given a sam-

ple 〈s, a, s′〉 from the j-th MDP, the importance weight for the transition model given byw =
∏D
d=1

N
(
s′d

∣∣p(0)d (s,a),δ20,d(s,a)
)

N
(
s′d

∣∣p(j)d (s,a),δ2j,d(s,a)
)

is distributed according to some distribution G induced by the GPs’ predictions. LetCd =
δ2j,d(s,a)

δ2j,d(s,a)−σ2
GPj,d

(s,a)
and suppose

σ2
GPj,d

(s, a) < δ2
j,d(s, a) for all d, then

EG [w] =

D∏
d=1

Cd
N
(
s′d
∣∣µGP0,d

(s, a), δ2
0,d(s, a) + σ2

GP0,d
(s, a)

)
N
(
s′d
∣∣µGPj,d

(s, a), δ2
j,d(s, a)− σ2

GPj,d
(s, a)

) . (11)

Proof. Notice that the density Pj(·|s, a) decomposes into:

Pj(·|s, a) =

D∏
d=1

N
(
·
∣∣µ(j)
p,d(s, a), δ2

j,d(s, a)
)
. (12)

By noticing that the d-th GP for task j provides an independent estimate of the transition mean’s d-th component, p(j)
d , the

proof of Theorem 4 can be straightforwardly applied to each component of s′, thus proving the theorem.

B. Proofs of Theorems
Theorem 2. Let H ⊂ B(X,Fmax) be a functional space. Suppose we have a dataset of N i.i.d. samples D =
{(xi, yi)} distributed according to Q(X,Y ) = q(Y |X)µ(X), while P (X,Y ) = p(Y |X)µ(X) is the target dis-
tribution. Assume |Y | ≤ Fmax almost surely. Let w(x, y) = p(y|x)

q(y|x) , w̃(x, y) be any positive function, ĥ(x) =

arg minf∈H ÊD
[
w̃(X,Y )|f(X)− Y |2

]
, h∗(x) = Ep[Y |x], g(x) = Eq[w̃(x, Y )|x]−1, andM(w̃) =

√
EQ[w̃(X,Y )2]+√

ÊD[w̃(X,Y )2], where ÊD denotes the empirical expectation on D. Furthermore, assume d = Pdim({|f(x) − y|2 :

f ∈ H}) <∞ and EQ[w̃(X,Y )2] <∞. Then, for any δ > 0, the following holds with probability at least 1− 2δ:

‖ĥ− h∗‖µ ≤ inf
f∈H

‖f − h∗‖µ + Fmax

√
‖g‖1,µ

+ 213/8Fmax

√
M(w̃)

(
d log 2Ne

d + log 4
δ

N

) 3
16

+ 2Fmax‖w̃ − w‖Q
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Proof. Applying Hölder’s inequality, for all f ∈ H:

EQ
[(
w̃(X,Y )|f(X)− Y |2

)2] ≤ 16F 4
maxEQ[w̃(X,Y )2] <∞. (13)

Thus, by applying Corollary 1 of (Cortes et al., 2010) to Lh(x, y) = w̃(x, y)|h(x)− y|2, we can write:

EQ[w̃(X,Y )|ĥ(X)− Y |2] ≤ 1

N

N∑
i=1

w̃(xi, yi)|ĥ(xi)− yi|2 + 213/4F 2
max

√
EQ [w̃(X,Y )2]

8
3

√
d log 2Ne

d + log 4
δ

N
. (14)

Let us now expand the left-hand side of (14):

EQ
[
w̃(X,Y )|ĥ(X)− Y |2

]
= Eµ

[
Eq
[
w̃(X,Y )

(
ĥ2(X) + Y 2 − 2ĥ(X)Y

)
| X
]]

= Eµ
[
ĥ2(X)Eq[w̃(X,Y ) | X] + Eq[w̃(X,Y )Y 2 | X]− 2ĥ(X)Eq[w̃(X,Y )Y | X]

±E2
q[w̃(X,Y )Y | X]± ĥ2(X)

]
= Eµ

[(
ĥ(X)− Eq[w̃(X,Y )Y | X]

)2

+ ĥ2(X)Eq[w̃(X,Y ) | X] + Eq[w̃(X,Y )Y 2 | X]

−E2
q[w̃(X,Y )Y | X]− ĥ2(X)

]
= ‖ĥ− h̃‖2µ + Eµ[ĥ2(X) (Eq[w̃(X,Y )− 1 | X])] +K,

(15)

where K = Eµ[Eq[w̃(X,Y )Y 2 | X] − E2
q[w̃(X,Y )Y | X]] is a constant term (independent of ĥ) and h̃(x) =

Eq[w̃(x, Y )Y | x] is the regression function weighted by w̃. Plugging this into (14) we get:

‖ĥ− h̃‖2µ + Eµ[ĥ2(X) (Eq[w̃(X,Y )− 1 | X])] +K ≤

1

N

N∑
i=1

w̃(xi, yi)|ĥ(xi)− yi|2 + 213/4F 2
max

√
EQ[w̃(X,Y )]

8
3

√
d log 2Ne

d + log 4
δ

N
.

(16)

Consider now the hypothesis h0 ∈ H such that h0 = argmin
f∈H

‖f − h̃‖2µ. Since h0 is in H and ĥ was defined as the

hypothesis minimizing the empirical weighted loss, we have:

1

N

N∑
i=1

w̃(xi, yi)|ĥ(xi)− yi|2 ≤
1

N

N∑
i=1

w̃(xi, yi)|h0(xi)− yi|2. (17)

Similarly to what we did for ĥ, we can bound the empirical error of h0. According to Corollary 1 of (Cortes et al., 2010),
we have that for any δ > 0, with probability at least 1− δ:

1

N

N∑
i=1

w̃(xi, yi)|h0(xi)− yi|2 ≤ EQ[w̃(X,Y )|h0(X)− Y |2] + 213/4F 2
max

√
ÊD[w̃(X,Y )]

8
3

√
d log 2Ne

d + log 4
δ

N
. (18)

By adopting (15) to expand the expected error of h0, we obtain:

1

N

N∑
i=1

w̃(xi, yi)|h0(xi)− yi|2 ≤

inf
f∈H
‖f − h̃‖2µ + Eµ[h2

0(X) (Eq[w̃(X,Y )− 1 | X])] +K + 213/4F 2
max

√
ÊD[w̃(X,Y )]

8
3

√
d log 2Ne

d + log 4
δ

N
.

(19)
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If we now put (16) and (19) together by means of (17), we get that, with probability at least 1− 2δ:

‖ĥ− h̃‖2µ ≤ inf
f∈H
‖f − h̃‖2µ + Eµ[

(
h2

0(X)− ĥ2(X)
)

(Eq[w̃(X,Y )− 1 | X])]

+ 213/4F 2
max

(√
EQ[w̃(X,Y )2] +

√
ÊD[w̃(X,Y )2]

)
8
3

√
d log 2Ne

d + log 4
δ

N

≤ inf
f∈H
‖f − h̃‖2µ + F 2

maxEµ [|Eq[w̃(X,Y ) | X]− 1|]

+ 213/4F 2
max

(√
EQ[w̃(X,Y )2] +

√
ÊD[w̃(X,Y )2]

)
8
3

√
d log 2Ne

d + log 4
δ

N

= inf
f∈H
‖f − h̃‖2µ + F 2

max‖g‖1,µ + 213/4F 2
maxM(w̃)

(
d log 2Ne

d + log 4
δ

N

) 3
8

.

(20)

By taking the square root of both sides of (20) and using
√∑

i ai ≤
∑
i

√
ai for ai ≥ 0, we obtain:

‖ĥ− h̃‖µ ≤ inf
f∈H
‖f − h̃‖µ + Fmax

√
‖g‖1,µ + 213/8Fmax

√
M(w̃)

(
d log 2Ne

d + log 4
δ

N

) 3
16

. (21)

Furthermore:
inf
f∈H
‖f − h̃‖µ ≤ inf

f∈H
‖f − h?‖µ + ‖h? − h̃‖µ. (22)

We can now bound the expected error of ĥ with respect to h? by:

‖ĥ− h?‖µ ≤ ‖ĥ− h̃‖µ + ‖h̃− h?‖µ. (23)

We already provided a bound on the first term, so let us analyze the second one. We have:

‖h̃− h?‖2µ = Eµ[|h̃(X)− h?(X)|2]

= Eµ[|Eq[w̃(X,Y )Y | X]− Ep[Y | X]|2]

= Eµ[|Eq[w̃(X,Y )Y | X]− Eq[w(X,Y )Y | X]|2]

= Eµ[|Eq[Y (w̃(X,Y )− w(X,Y )) | X]|2]

≤ Eµ[Eq[|Y |2|w̃(X,Y )− w(X,Y )|2 | X]]

≤ F 2
maxEQ

[
|w̃(X,Y )− w(X,Y )|2

]
= F 2

max‖w̃ − w‖2Q.

(24)

where the first inequality is due to Jensen’s inequality. Thus, ‖h̃ − h?‖µ ≤ Fmax‖w̃ − w‖Q. By combining (21), (22),
(23), and (24), we have:

‖ĥ− h?‖µ ≤ ‖ĥ− h̃‖µ + ‖h̃− h?‖µ

≤ inf
f∈H
‖f − h̃‖µ + Fmax

√
‖g‖1,µ + 213/8Fmax

√
M(w̃)

(
d log 2Ne

d + log 4
δ

N

) 3
16

+ ‖h̃− h?‖µ

≤ inf
f∈H
‖f − h?‖µ + Fmax

√
‖g‖1,µ + 213/8Fmax

√
M(w̃)

(
d log 2Ne

d + log 4
δ

N

) 3
16

+ 2‖h̃− h?‖µ

≤ inf
f∈H
‖f − h?‖µ + Fmax

√
‖g‖1,µ + 213/8Fmax

√
M(w̃)

(
d log 2Ne

d + log 4
δ

N

) 3
16

+ 2Fmax‖w̃ − w‖Q

which concludes the proof.
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Lemma 1. Let H ⊂ B(S × A, Qmax) be a functional space. Call gr(s, a) = ERS
[w̃r(r|s, a)] − 1 and M(w̃r) =√

EφR
S

[w̃r(r|s, a)2] +

√
ÊD[w̃r(r|s, a)2], where φRS (r|s, a) = µ(s, a)Rs(r|s, a) and D is a dataset of N i.i.d. samples.

Assume d = Pdim({|f(s, a)− r|2 : f ∈ H}) <∞ and EφR
S

[w̃r(r|s, a)2] <∞. Let R̂ be as defined in (2). Then, for any
δ > 0, with probability at least 1− 2δ:

||R− R̂||µ ≤ inf
f∈H
||f −R||µ + rmax

√
||gr||1,µ

+ 213/8Qmax
√
M(w̃r)

(
d log 2Ne

d + log 4
δ

N

) 3
16

+ 2rmax||w̃r − wr||φR
S
.

(25)

Proof. The result follows straightforwardly by applying Theorem 2.

Lemma 2. Let H ⊂ B(S × A, Qmax) be a functional space. Call gp(s, a) = EPS
[w̃p(s

′|s, a)] − 1 and M(w̃p) =√
EφP

S
[w̃p(s′|s, a)2] +

√
ÊD[w̃p(s′|s, a)2], where φPS (r|s, a) = µ(s, a)Ps(r|s, a) and D is a dataset of N i.i.d. samples.

Assume d = Pdim({|f(s, a) − r|2 : f ∈ H}) < ∞ and EφP
S

[w̃p(s
′|s, a)2] < ∞. Let Qk+1 be as defined in (4) and

denote L̃∗Q(s, a) := R̂(s, a) +
∫
S PT (ds′|s, a) maxa′ Q(s′, a). Then, for any δ > 0, with probability at least 1− 2δ:

||L̃∗Qk −Qk+1||µ ≤ inf
f∈H
||f − L̃∗Qk||µ +Qmax

√
||gp||1,µ

+ 213/8Qmax

√
M(w̃p)

(
d log 2Ne

d + log 4
δ

N

) 3
16

+ 2Qmax||w̃p − wp||φP
S
.

(26)

Proof. The result follows straightforwardly by applying Theorem 2.

Theorem 3. Let H ⊂ B(S × A, Qmax) be a hypothesis space, µ a distribution over S × A, (Qi)
k+1
i=0 a sequence of

Q-functions as defined in Equation (4), and L∗ the optimal Bellman operator of the target task. Suppose to have a dataset
of N i.i.d. samples D drawn from the source task MS according to a joint distribution φS . Let wp, wr denote the ideal
importance weights defined in (5) and (3), and w̃r(r|s, a), w̃p(s′|s, a) denote arbitrary positive functions with bounded

second moments. Define gr(s, a) = ERS
[w̃r(r|s, a)|s, a]− 1, M(w̃r) =

√
EφR

S
[w̃r(r|s, a)2] +

√
ÊD[w̃r(r|s, a)2], where

φRS (r|s, a) = µ(s, a)RS(r|s, a). Similarly, define gp, M(w̃p), and φPS (s′|s, a) for the transition model. Then, for any
δ > 0, with probability at least 1− 4δ:

‖L∗Qk −Qk+1‖µ ≤ Qmax

√
‖gp‖1,µ + 2rmax

√
‖gr‖1,µ

+ 2Qmax‖w̃p − wp‖φP
S
+ 4rmax‖w̃r − wr‖φR

S

+ inf
f∈H
‖f − (L∗)k+1Q0‖µ + 2 inf

f∈H
‖f −R‖µ

+
Qmax

2−
13
8

(√
M(w̃p) + 2

√
M(w̃r)

)(d log 2Ne
d

+ log 4
δ

N

) 3
16

+

k−1∑
i=0

(γCAE(µ))
i+1‖εk−i−1‖µ,

where CAE is the concentrability coefficient of one-step transitions as defined in (Farahmand, 2011, Definition 5.2).

Proof. We can decompose the error at iteration k into:

‖εk‖µ = ‖L∗Qk −Qk+1‖µ
≤ ‖L∗Qk − L̃∗Qk‖µ + ‖L̃∗Qk −Qk+1‖µ
= ‖R− R̂‖µ + ‖L̃∗Qk −Qk+1‖µ, (27)
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where, for any pair (s, a), L̃∗Q(s, a) := R̂(s, a) +
∫
S PT (ds′|s, a) maxa′ Q(s′, a) is the optimal Bellman operator of the

target task using the approximated reward function defined in (2). The two terms in (27) can be bounded straightforwardly
by applying Lemma 1 and Lemma 2, respectively. The application of Lemma 2 to the second term gives rise to inff∈H ‖f−
L̃∗Qk‖µ, which can be further bounded by noticing that:

inf
f∈H
‖f − L̃∗Qk‖µ ≤ inf

f∈H
‖f − L∗Qk‖µ + ‖L∗Qk − L̃∗Qk‖µ. (28)

The second term in (28) is again ‖R− R̂‖µ, while the first term has already been bounded in Theorem 5.3 of (Farahmand,
2011):

inf
f∈H
‖f − L∗Qk‖µ ≤ inf

f∈H
‖f − (L∗)k+1Q0‖µ +

k−1∑
i=0

(γCAE(µ))i+1‖εk−i−1‖µ. (29)

Then, by combining the bounds from Lemma 1 and Lemma 2 with (28) and (29), we can write:

‖εk‖µ ≤ ‖R− R̂‖µ + ‖L̃∗Qk −Qk+1‖µ
≤ ‖R− R̂‖µ + inf

f∈H
||f − L̃∗Qk||µ +Qmax

√
||gp||1,µ

+ 213/8Qmax

√
M(w̃p)

(
d log 2Ne

d + log 4
δ

N

) 3
16

+ 2Qmax||w̃p − wp||φP
S

≤ 2‖R− R̂‖µ + inf
f∈H
‖f − (L∗)k+1Q0‖µ +

k−1∑
i=0

(γCAE(µ))i+1‖εk−i−1‖µ +Qmax

√
||gp||1,µ

+ 213/8Qmax

√
M(w̃p)

(
d log 2Ne

d + log 4
δ

N

) 3
16

+ 2Qmax||w̃p − wp||φP
S

≤ Qmax

√
‖gp‖1,µ + 2rmax

√
‖gr‖1,µ + 2Qmax‖w̃p − wp‖φP

S
+ 4rmax‖w̃r − wr‖φR

S

+ inf
f∈H
‖f − (L∗)k+1Q0‖µ + 2 inf

f∈H
‖f −R‖µ

+ 2
13
8 Qmax

(√
M(w̃p) + 2

√
M(w̃r)

)(
d log 2Ne

d + log 4
δ

N

) 3
16

+

k−1∑
i=0

(γCAE(µ))i+1‖εk−i−1‖µ,

where we recall that gp(s, a) = EPS
[w̃p(s

′|s, a)|s, a] − 1, M(w̃p) =
√

EφP
S

[w̃p(s′|s, a)2] +

√
ÊD[w̃p(s′|s, a)2], and

φPS (s′|s, a) = µ(s, a)PS(s′|s, a). This concludes the proof.

C. Additional Details on the Experiments
C.1. Puddle World

Our first experimental domain is a modified version of the puddle world environment presented in (Sutton, 1996). Puddle
world is a two-dimensional continuous grid with a goal area and some elliptical “puddles”. The goal is to drive the agent
from a starting position to the goal area while avoiding the puddles. The state-space is [0, 10]2, while the action-space is
discrete and allows the agent to move in the four cardinal directions. At each time-step, the agent receives a reward of −1
plus a penalization proportional to the distance from all puddles: R(s, a) = −1− 100

∑
u∈U Wu(s), where U is the set of

puddles and Wu(s) is the weight of puddle u for state s. In the goal the reward is zero. In our experiments, we modeled
Wu(s) as a bivariate Gaussian. Each action moves the agent by α in the corresponding direction. In particular, we consider
two versions of the environment: I) shared dynamics where α = 1 and II) puddle-based dynamics where puddles also
slow-down the agent by: α = (1 + 5

∑
u∈U Wu(s′))−1. Finally, a white Gaussian noise of σ2

r = 0.01 and σ2
p = 0.04 is

added to the reward and the transition model, respectively. In our experiments we set γ = 0.99 and a maximum horizon of
50 time-steps.
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Figure 4. From left to right: the target task and the three source tasks. The agent always starts in the bottom-left corner and must reach
the goal area (shown in green). Puddles are shown in black.

We provide additional details on the puddle world experiments. The target task and the three source tasks can be seen in
Figure 4. Notice that the optimal paths to solve each task have at least a small overlapping, thus allowing some knowledge
transfer. However, the optimal policy for one task is likely to cross a puddle if carelessly used in another domain. This
makes the transfer problem more challenging since the algorithm has to figure out which samples should be retained and
which should be discarded.

In both experiments, 20 episodes were generated beforehand from each source task. For IWFQI, a Gaussian process was
fitted on each of the three source datasets using the squared exponential kernel. The noises of the reward and transition
models were estimated as 10 times their true value. In each algorithm, FQI was run for 50 iterations using Extra-Trees with
50 estimators and a minimum of 2 samples to split a node. Results were averaged over 20 independent runs.

C.2. Acrobot

We provide a precise description of the two tasks used in the Acrobot experiment. For both tasks, the state-space is
composed of the two link angles (θ1, θ2) and their velocities (θ̇1, θ̇2). The transition dynamics are the ones described in
(Sutton & Barto, 1998). The agent can only apply a torque of +2 or −2 to the joint between the two links. The initial state
is (θ1, 0, 0, 0), where θ1 ∼ U(−2, 2). Performance is evaluated starting from multiple states (θ1, 0, 0, 0), with θ1 evenly
spaced in [−2, 2]. The swing-up task has reward:

Rsw(θ1, θ2, θ̇1, θ̇2) = −cos(θ1)− cos(θ1 + θ2)− 2, (30)

and terminates whenever −cos(θ1)− cos(θ1 + θ2) > 1 or 100 time-steps are reached. The constant-spin task has reward:

Rcs(θ1, θ2, θ̇1, θ̇2) = −|θ̇1 − π|, (31)

and terminates whenever 100 time-steps are reached.

We collect 100 episodes from the first source task (corresponding to 3400 samples) and 50 episodes from the second source
task (corresponding to 5000 samples). For all algorithms, FQI uses extra-trees with 50 estimators and a minimum of 20
samples to split a node. Data is collected in batches of 10 episodes using an ε-greedy policy (ε = 0.1). For IWFQI, GPs
use the squared exponential kernel with parameters estimated by maximum likelihood on the data.

To further demonstrate the advantages of our approach, we show what happens when only the constant-spin source task is
available. Clearly, most of the reward samples should be discarded, and conversely for the transition samples. As we can
see from Figure 5a and 5b, RBT now performs significantly worse than FQI. This is due to the fact that, by transferring
samples jointly, it cannot avoid introducing bias. Our approach, on the other hand, is able to discard the reward samples,
thus being robust to negative transfer. Furthermore, it achieves a little improvement over FQI due to the few samples
transferred.

C.3. Water Reservoir Control

All tasks used in this experiment are modeled according to the dynamics described in the paper. For the sake of simplicity,
each water reservoir is supposed to have capacity of 500 Mm3, minimum storage of 50 Mm3, flooding threshold of
300 Mm3, and per-day demand of 10 Mm3. Due to the different geographic locations, each task has different inflow
function ij(t) = īj(t) + N (0, σ2

p), where σ2
p = 2.0 is the fixed noise variance. The different mean-inflow functions are

shown in Figure 6a. Furthermore, each water reservoir weighs the flooding and demand objectives differently. This is
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Figure 5. Transfer of samples from the constant-spin task to the swing-up task. (a) discounted expected reward and (b) number of steps
before reaching a goal state.

modeled by changing the respective weights α and β. The values for all tasks are reported in Table 1. Notice that there
is no source task that is globally similar to the target: either some reward structure is shared or some transition structure
is, never both. This makes transfer very challenging since samples have to be accurately selected to prevent detrimental
consequences.

In this experiment, we run FQI using extra-trees for 80 iterations with 100 estimators and a minimum of 10 samples to
split a node. GPs use the anisotropic squared exponential kernel. For each of the 6 source reservoirs, we gather 30 years of
historical data where controls are applied by a human operator’s policy. We learn the target task by collecting batches of 1
year, each using an ε-greedy policy (ε = 0.3) on the previously learned Q-function. Evaluation is performed by averaging
10 trajectories of 1 year, each starting from January 1st and with an initial storage of 200 Mm3 of water.

To better demonstrate the difficulty of this control problem, we run FQI for 500 episodes (equivalent to 500 years of in-
teraction). Furthermore, to make the problem simpler, we allow the agent to sample the state-action space arbitrarily, so
as to have a better exploration. The result is shown in Figure 6b. Although we significantly simplified the problem and
we allowed FQI to gather an enormous amount of data, the algorithm still needs almost 500 years to achieve optimal per-
formance. This demonstrates that solving this task by directly interacting with the real environment is clearly impractical.
Thus, transfer of previous knowledge is, in this case, mandatory to achieve good performance.

Table 1. Reward parameters for the different water reservoirs.
Parameter Target Source 1 Source 2 Source 3 Source 4 Source 5 Source 6
α 0.3 0.8 0.35 0.7 0.4 0.6 0.45
β 0.7 0.2 0.65 0.3 0.6 0.4 0.55
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Figure 6. Water reservoir control. (a) Inflow profiles for all tasks. (b) Learning without transfer for 500 years.


