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A. Proofs

A.1. Proof of Lemma 1

Proof. We derive the best response of the attacker by using the first order condition. Let rX0 ca({✓i}ni=1,X
0
) denote the

gradient of ca with respect to X
0
. Then
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Due to convexity of ca, let rX0 ca = 0, we have
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A.2. Proof of Lemma 2

Proof. 1. First, we prove that An = �I+
Pn

i=1 ✓i✓
>
i is invertible, and its inverse matrix, A�1

n , is positive definite by
using mathematical induction.

When n = 1, A1 = �I+ ✓1✓>
1 . As �I is an invertible square matrix and ✓1 is a column vector, by using Sherman-

Morrison formula, A1 is invertible.
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).

For any non-zero column vector u, we have

u>A�1
1 u =

�u>u+ u>u✓>
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1 u

�(�+ ✓>
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.

As u>u > 0 and � > 0, according to Cauchy-Schwarz inequality,

u>u✓>
1 ✓1 � u>✓1✓

>
1 u,

Then, u>A�1
1 u > 0. Thus, A�1

1 is a positive definite matrix.

We then assume that when n = k(k � 1), Ak is invertible and A�1
k is positive definite. Then, when n = k + 1,

Ak+1 = Ak + ✓k+1✓
>
k+1.

As Ak is invertible, ✓k+1 is a column vector. By using Sherman-Morrison formula, we have that Ak+1 is invertible,
and
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Then,
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As A�1
k is a positive definite matrix, we have u>A�1

k u > 0 and ✓>
k+1A

�1
k ✓k+1 > 0. By using Extended Cauchy-

Schwarz inequality, we have
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Then, A�1
k+1 is positive definite. Hence, An = �I+

Pn
i=1 ✓i✓

>
i is invertible, and A�1

n is positive definite. Similarly,
we can prove that A�i is invertible, and A�1

�i is positive definite.

2. We have proved that An and A�i are invertible. Then, the result can be obtained by using Sherman-Morrison formula.

3. Let A�i,�j = A�i � ✓j✓>
j . As A�i,�j is a symmetric matrix, its inverse, A�1

�i,�j is also symmetric. Using a
similar approach to the one above, we can prove that A�i,�j is invertible and A�1

�i,�j is positive definite. By using
Sherman-Morrison formula, we have
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We then iteratively apply Sherman-Morrison formula and get
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A.3. Proof of Theorem 2

Proof. As presented in Lemma 3, we have
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where j 6= i, and 41(✓) is a continuous function of ✓ = {✓i}ni=1. As the action space ⇥ is bounded, then 0  41(✓) < 1.
Hence, we have
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where 42(✓) is a continuous function of ✓ and 0  42(✓) < 1. Let A�i,�j,�k = A�i,�j � ✓k✓>
k , then, similarly,
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where 0  43(✓) < 1, using the same approach,(✓>
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2 can be further and iteratively relaxed as follows,
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where 0  44(✓) < 1. Combining the results above, we can iteratively relax `(B�iA
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�i✓i,y) as follows,
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where 0  45(✓) < 1 and 0  4(✓) < 1. Then,
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Hence,
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where ✏ is a constant such that ✏ = � ⇤max✓{4(✓)} < 1.

A.4. Proof of Theorem 4

Proof. We have known that hN ,⇥, (eci)i has at least NE, and each learner has an nonempty, compact and convex action
space ⇥. Hence, we can apply Theorem 2 and Theorem 6 of Rosen (1965). That is, for some fixed {ri}ni (0 < ri <
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1,
Pn

i=1 ri = 1), if the matrix in Eq. (1) is positive definite, then hN ,⇥, (eci)i has a unique NE.
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where P and Q are block diagonal matrices such that Pii = X>X, Pij = 0, Qii = 4✓i✓>
i + ✓>

i ✓iI and Qij = 0,
8i, j 2 N , j 6= i. S and T are block symmetric matrices such that Sii = ✓>

i ✓iI, Sij = ✓>
i ✓jI, Tii =

P
j 6=i ✓j✓

>
j and

Tij = ✓j✓>
i , 8i, j 2 N , j 6= i.

Next, we prove that P is positive definite, and Q, S and T are positive semi-definite. Let u = [u>
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n ]
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vectors, there exists at least one ui such that Xui 6= 0. Hence, u>Pu > 0 which indicates that P is positive definite.
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there exists at least one lower triangular matrix L⇤ 2 Rn⇥n with non-negative diagonal elements (Higham, 1990) such
that
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T is a positive semi-definite matrix.

Combining the results above, Jr(✓) is a positive definite matrix which indicates that hN ,⇥, (eci)i has a unique NE. As
Theorem 3 points out, the game has at least one symmetric NE. Therefore, the NE is unique and must be symmetric.
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B. Experiment Results

B.1. Supplementary results for the redwine dataset

Figure 1. Overestimated z, �̂ = 0.5, �̂ = 0.8.The average RMSE across different values of actual � and � on redwine dataset. From left
to right: MLSG, Lasso, Ridge, OLS.

Figure 2. Overestimated z, �̂ = 1.5, �̂ = 0.8. The average RMSE across different values of actual � and � on redwine dataset. From left
to right: MLSG, Lasso, Ridge, OLS.

Figure 3. Underestimated z, �̂ = 1.5, �̂ = 0.8. The average RMSE across different values of actual � and � on redwine dataset. From
left to right: MLSG, Lasso, Ridge, OLS.

B.2. Supplementary results for the boston dataset

Figure 4. The defender knows �, �, and z. RMSE of y
0

and y on boston dataset. The defender knows �, �, and z.
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Figure 5. Overestimated z, �̂ = 0.3, �̂ = 0.8. The average RMSE across different values of actual � and � on boston dataset. From left
to right: MLSG, Lasso, Ridge, OLS.

Figure 6. Underestimated z, �̂ = 0.3, �̂ = 0.8. The average RMSE across different values of actual � and � on boston dataset. From left
to right: MLSG, Lasso, Ridge, OLS.

B.3. Supplementary results for the PDF dataset

Figure 7. Overestimated z, �̂ = 1.5, �̂ = 0.5. The average RMSE across different values of actual � and � on PDF dataset. From left to
right: MLSG, Lasso, Ridge, OLS.
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