Adversarial Regression with Multiple Learners Supplementary Material

Liang Tong Sixie Yu Scott Alfeld Yevgeniy Vorobeychik

A. Proofs

A.1. Proof of Lemma 1

Proof. We derive the best response of the attacker by using the first order condition. Let $\nabla_{X^{\prime}} c_{a}\left(\left\{\boldsymbol{\theta}_{i}\right\}_{i=1}^{n}, \mathbf{X}^{\prime}\right)$ denote the gradient of c_{a} with respect to \mathbf{X}^{\prime}. Then

$$
\nabla_{X^{\prime}} c_{a}=2 \sum_{i=1}^{n}\left(\mathbf{X}^{\prime} \boldsymbol{\theta}_{i}-\mathbf{z}\right) \boldsymbol{\theta}_{i}^{\top}+2 \lambda\left(\mathbf{X}^{\prime}-X\right)
$$

Due to convexity of c_{a}, let $\nabla_{X^{\prime}} c_{a}=\mathbf{0}$, we have

$$
\mathbf{X}^{*}=\left(\lambda \mathbf{X}+\mathbf{z} \sum_{i=1}^{n} \boldsymbol{\theta}_{i}^{\top}\right)\left(\lambda \mathbf{I}+\sum_{i=1}^{n} \boldsymbol{\theta}_{i} \boldsymbol{\theta}_{i}^{\top}\right)^{-1}
$$

A.2. Proof of Lemma 2

Proof. 1. First, we prove that $\mathbf{A}_{n}=\lambda \mathbf{I}+\sum_{i=1}^{n} \boldsymbol{\theta}_{i} \boldsymbol{\theta}_{i}^{\top}$ is invertible, and its inverse matrix, \mathbf{A}_{n}^{-1}, is positive definite by using mathematical induction.
When $n=1, \mathbf{A}_{1}=\lambda \mathbf{I}+\boldsymbol{\theta}_{1} \boldsymbol{\theta}_{1}^{\top}$. As $\lambda \mathbf{I}$ is an invertible square matrix and $\boldsymbol{\theta}_{1}$ is a column vector, by using ShermanMorrison formula, \mathbf{A}_{1} is invertible.

$$
\mathbf{A}_{1}^{-1}=\frac{1}{\lambda}\left(\mathbf{I}-\frac{\boldsymbol{\theta}_{1} \boldsymbol{\theta}_{1}^{\top}}{\lambda+\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\theta}_{1}}\right) .
$$

For any non-zero column vector \mathbf{u}, we have

$$
\mathbf{u}^{\top} \mathbf{A}_{1}^{-1} \mathbf{u}=\frac{\lambda \mathbf{u}^{\top} \mathbf{u}+\mathbf{u}^{\top} \mathbf{u} \boldsymbol{\theta}_{1}^{\top} \boldsymbol{\theta}_{1}-\mathbf{u}^{\top} \boldsymbol{\theta}_{1} \boldsymbol{\theta}_{1}^{\top} \mathbf{u}}{\lambda\left(\lambda+\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\theta}_{1}\right)}
$$

As $\mathbf{u}^{\top} \mathbf{u}>0$ and $\lambda>0$, according to Cauchy-Schwarz inequality,

$$
\mathbf{u}^{\top} \mathbf{u} \boldsymbol{\theta}_{1}^{\top} \boldsymbol{\theta}_{1} \geq \mathbf{u}^{\top} \boldsymbol{\theta}_{1} \boldsymbol{\theta}_{1}^{\top} \mathbf{u}
$$

Then, $\mathbf{u}^{\top} \mathbf{A}_{1}^{-1} \mathbf{u}>0$. Thus, \mathbf{A}_{1}^{-1} is a positive definite matrix.
We then assume that when $n=k(k \geq 1), \mathbf{A}_{k}$ is invertible and \mathbf{A}_{k}^{-1} is positive definite. Then, when $n=k+1$,

$$
\mathbf{A}_{k+1}=\mathbf{A}_{k}+\boldsymbol{\theta}_{k+1} \boldsymbol{\theta}_{k+1}^{\top}
$$

As \mathbf{A}_{k} is invertible, $\boldsymbol{\theta}_{k+1}$ is a column vector. By using Sherman-Morrison formula, we have that \mathbf{A}_{k+1} is invertible, and

$$
\mathbf{A}_{k+1}^{-1}=\mathbf{A}_{k}^{-1}-\frac{\mathbf{A}_{k}^{-1} \boldsymbol{\theta}_{k+1} \boldsymbol{\theta}_{k+1}^{\top} \mathbf{A}_{k}^{-1}}{1+\boldsymbol{\theta}_{k+1}^{\top} \mathbf{A}_{k}^{-1} \boldsymbol{\theta}_{k+1}}
$$

Then,

$$
\mathbf{u}^{\top} \mathbf{A}_{k+1}^{-1} \mathbf{u}=\frac{\mathbf{u}^{\top} \mathbf{A}_{k}^{-1} \mathbf{u}+\mathbf{u}^{\top} \mathbf{A}_{k}^{-1} \mathbf{u} \cdot \boldsymbol{\theta}_{k+1}^{\top} \mathbf{A}_{k}^{-1} \boldsymbol{\theta}_{k+1}-\mathbf{u}^{\top} \mathbf{A}_{k}^{-1} \boldsymbol{\theta}_{k+1} \cdot \boldsymbol{\theta}_{k+1}^{\top} \mathbf{A}_{k}^{-1} \mathbf{u}}{1+\boldsymbol{\theta}_{k+1}^{\top} \mathbf{A}_{k}^{-1} \boldsymbol{\theta}_{k+1}}
$$

As \mathbf{A}_{k}^{-1} is a positive definite matrix, we have $\mathbf{u}^{\top} \mathbf{A}_{k}^{-1} \mathbf{u}>0$ and $\boldsymbol{\theta}_{k+1}^{\top} \mathbf{A}_{k}^{-1} \boldsymbol{\theta}_{k+1}>0$. By using Extended CauchySchwarz inequality, we have

$$
\mathbf{u}^{\top} \mathbf{A}_{k}^{-1} \mathbf{u} \boldsymbol{\theta}_{k+1}^{\top} \mathbf{A}_{k}^{-1} \boldsymbol{\theta}_{k+1}>\mathbf{u}^{\top} \mathbf{A}_{k}^{-1} \boldsymbol{\theta}_{k+1} \boldsymbol{\theta}_{k+1}^{\top} \mathbf{A}_{k}^{-1} \mathbf{u}
$$

Then, \mathbf{A}_{k+1}^{-1} is positive definite. Hence, $\mathbf{A}_{n}=\lambda \mathbf{I}+\sum_{i=1}^{n} \boldsymbol{\theta}_{i} \boldsymbol{\theta}_{i}^{\top}$ is invertible, and \mathbf{A}_{n}^{-1} is positive definite. Similarly, we can prove that \mathbf{A}_{-i} is invertible, and \mathbf{A}_{-i}^{-1} is positive definite.
2. We have proved that \mathbf{A}_{n} and \mathbf{A}_{-i} are invertible. Then, the result can be obtained by using Sherman-Morrison formula.
3. Let $\mathbf{A}_{-i,-j}=\mathbf{A}_{-i}-\boldsymbol{\theta}_{j} \boldsymbol{\theta}_{j}^{\top}$. As $\mathbf{A}_{-i,-j}$ is a symmetric matrix, its inverse, $\mathbf{A}_{-i,-j}^{-1}$ is also symmetric. Using a similar approach to the one above, we can prove that $\mathbf{A}_{-i,-j}$ is invertible and $\mathbf{A}_{-i,-j}^{-1}$ is positive definite. By using Sherman-Morrison formula, we have

$$
\mathbf{A}_{-i}^{-1}=\mathbf{A}_{-i,-j}^{-1}-\frac{\mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j} \boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1}}{1+\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j}}
$$

Then,

$$
\begin{aligned}
\boldsymbol{\theta}_{i}^{\top} \mathbf{A}_{-i}^{-1} \boldsymbol{\theta}_{i} & =\boldsymbol{\theta}_{i}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}-\frac{\boldsymbol{\theta}_{i}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j} \cdot \boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}}{1+\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j}} \\
& =\boldsymbol{\theta}_{i}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}-\frac{\left(\boldsymbol{\theta}_{i}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j}\right)^{2}}{1+\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j}} \\
& \leq \boldsymbol{\theta}_{i}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i} .
\end{aligned}
$$

We then iteratively apply Sherman-Morrison formula and get

$$
\begin{aligned}
\boldsymbol{\theta}_{i}^{\top} \mathbf{A}_{-i}^{-1} \boldsymbol{\theta}_{i} & \leq \boldsymbol{\theta}_{i}^{\top} \mathbf{A}_{0}^{-1} \boldsymbol{\theta}_{i} \\
& =\frac{1}{\lambda} \boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{i}
\end{aligned}
$$

A.3. Proof of Theorem 2

Proof. As presented in Lemma 3, we have

$$
\ell\left(\mathbf{X}^{*} \boldsymbol{\theta}_{i}, \mathbf{y}\right) \leq \ell\left(\mathbf{B}_{-i} \mathbf{A}_{-i}^{-1} \boldsymbol{\theta}_{i}, \mathbf{y}\right)+\frac{1}{\lambda^{2}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}\left(\boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{i}\right)^{2}
$$

By using Sherman-Morrison formula,

$$
\begin{aligned}
\ell\left(\mathbf{B}_{-i} \mathbf{A}_{-i}^{-1} \boldsymbol{\theta}_{i}, \mathbf{y}\right) & =\left\|\mathbf{B}_{-i}\left(\mathbf{A}_{-i,-j}^{-1}-\frac{\mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j} \boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1}}{1+\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j}}\right) \boldsymbol{\theta}_{i}-\mathbf{y}\right\|_{2}^{2} \\
& \leq\left\|\frac{\mathbf{B}_{-i} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}}{1+\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j}}-\mathbf{y}\right\|_{2}^{2}+\triangle_{1}(\boldsymbol{\theta})
\end{aligned}
$$

where $j \neq i$, and $\triangle_{1}(\boldsymbol{\theta})$ is a continuous function of $\boldsymbol{\theta}=\left\{\boldsymbol{\theta}_{i}\right\}_{i=1}^{n}$. As the action space $\boldsymbol{\Theta}$ is bounded, then $0 \leq \triangle_{1}(\boldsymbol{\theta})<\infty$. Hence, we have

$$
\begin{aligned}
\ell\left(\mathbf{B}_{-i} \mathbf{A}_{-i}^{-1} \boldsymbol{\theta}_{i}, \mathbf{y}\right) & \leq\left\|\frac{\mathbf{B}_{-i} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}}{1+\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j}}-\mathbf{y}\right\|_{2}^{2}+\triangle_{1}(\boldsymbol{\theta}) \\
& =\| \frac{\mathbf{B}_{-i} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}-\mathbf{y}-\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j} \mathbf{y}}{1+\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \|_{j}^{2}+\triangle_{1}(\boldsymbol{\theta})} \\
& \leq\left\|\mathbf{B}_{-i} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}-\mathbf{y}-\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j} \mathbf{y}\right\|_{2}^{2}+\triangle_{1}(\boldsymbol{\theta}) \\
& =\left\|\left(\mathbf{B}_{-i,-j}+\mathbf{z} \boldsymbol{\theta}_{j}^{\top}\right) \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}-\mathbf{y}-\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{j} \mathbf{y}\right\|_{2}^{2}+\triangle_{1}(\boldsymbol{\theta}) \\
& =\left\|\left(\mathbf{B}_{-i,-j} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}-\mathbf{y}\right)+(\mathbf{z}-\mathbf{y}) \boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}+\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{\top}\left(\boldsymbol{\theta}_{i}-\boldsymbol{\theta}_{j}\right) \mathbf{y}\right\|_{2}^{2}+\triangle_{1}(\boldsymbol{\theta}) \\
& \leq \ell\left(\mathbf{B}_{-i,-j} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}, \mathbf{y}\right)+\|(\mathbf{z}-\mathbf{y})\|_{2}^{2}\left(\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}\right)^{2}+\triangle_{2}(\boldsymbol{\theta})
\end{aligned}
$$

where $\triangle_{2}(\boldsymbol{\theta})$ is a continuous function of $\boldsymbol{\theta}$ and $0 \leq \triangle_{2}(\boldsymbol{\theta})<\infty$. Let $\mathbf{A}_{-i,-j,-k}=\mathbf{A}_{-i,-j}-\boldsymbol{\theta}_{k} \boldsymbol{\theta}_{k}^{\top}$, then, similarly, $\left(\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}\right)^{2}$ can be further relaxed as follows.

$$
\begin{aligned}
\left(\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}\right)^{2} & =\left(\boldsymbol{\theta}_{j}^{\top}\left(\mathbf{A}_{-i,-j,-k}^{-1}-\frac{\mathbf{A}_{-i,-j,-k}^{-1} \boldsymbol{\theta}_{k} \boldsymbol{\theta}_{k}^{\top} \mathbf{A}_{-i,-j,-k}^{-1}}{1+\boldsymbol{\theta}_{k}^{\top} \mathbf{A}_{-i,-j,-k}^{-1} \boldsymbol{\theta}_{k}}\right) \boldsymbol{\theta}_{i}\right)^{2} \\
& \leq\left(\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j,-k}^{-1} \boldsymbol{\theta}_{i}\right)^{2}+\triangle_{3}(\boldsymbol{\theta})
\end{aligned}
$$

where $0 \leq \triangle_{3}(\boldsymbol{\theta})<\infty$, using the same approach, $\left(\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}\right)^{2}$ can be further and iteratively relaxed as follows,

$$
\begin{aligned}
\left(\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}\right)^{2} & \leq\left(\boldsymbol{\theta}_{j}^{\top} \mathbf{A}_{0}^{-1} \boldsymbol{\theta}_{i}\right)^{2}+\triangle_{4}(\boldsymbol{\theta}) \\
& =\frac{1}{\lambda^{2}}\left(\boldsymbol{\theta}_{j}^{\top} \boldsymbol{\theta}_{i}\right)^{2}+\triangle_{4}(\boldsymbol{\theta})
\end{aligned}
$$

where $0 \leq \triangle_{4}(\boldsymbol{\theta})<\infty$. Combining the results above, we can iteratively relax $\ell\left(\mathbf{B}_{-i} \mathbf{A}_{-i}^{-1} \boldsymbol{\theta}_{i}, \mathbf{y}\right)$ as follows,

$$
\begin{aligned}
\ell\left(\mathbf{B}_{-i} \mathbf{A}_{-i}^{-1} \boldsymbol{\theta}_{i}, \mathbf{y}\right) & \leq \ell\left(\mathbf{B}_{-i,-j} \mathbf{A}_{-i,-j}^{-1} \boldsymbol{\theta}_{i}, \mathbf{y}\right)+\frac{1}{\lambda^{2}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}\left(\boldsymbol{\theta}_{j}^{\top} \boldsymbol{\theta}_{i}\right)^{2}+\triangle_{5}(\boldsymbol{\theta}) \\
& \leq \ell\left(\mathbf{X} \boldsymbol{\theta}_{i}, \mathbf{y}\right)+\frac{1}{\lambda^{2}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2} \sum_{j \neq i}\left(\boldsymbol{\theta}_{j}^{\top} \boldsymbol{\theta}_{i}\right)^{2}+\triangle(\boldsymbol{\theta})
\end{aligned}
$$

where $0 \leq \triangle_{5}(\boldsymbol{\theta})<\infty$ and $0 \leq \triangle(\boldsymbol{\theta})<\infty$. Then,

$$
\begin{aligned}
\ell\left(\mathbf{X}^{*} \boldsymbol{\theta}_{i}, \mathbf{y}\right) & \leq \ell\left(\mathbf{B}_{-i} \mathbf{A}_{-i}^{-1} \boldsymbol{\theta}_{i}, \mathbf{y}\right)+\frac{1}{\lambda^{2}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}\left(\boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{i}\right)^{2} \\
& \leq \ell\left(\mathbf{X} \boldsymbol{\theta}_{i}, \mathbf{y}\right)+\frac{1}{\lambda^{2}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2} \sum_{j=1}^{n}\left(\boldsymbol{\theta}_{j}^{\top} \boldsymbol{\theta}_{i}\right)^{2}+\triangle(\boldsymbol{\theta}) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
c_{i}\left(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{-i}\right) & =\beta \ell\left(\mathbf{X}^{*} \boldsymbol{\theta}_{i}, \mathbf{y}\right)+(1-\beta) \ell\left(\mathbf{X} \boldsymbol{\theta}_{i}, \mathbf{y}\right) \\
& \leq \ell\left(\mathbf{X} \boldsymbol{\theta}_{i}, \mathbf{y}\right)+\frac{\beta}{\lambda^{2}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2} \sum_{j=1}^{n}\left(\boldsymbol{\theta}_{j}^{\top} \boldsymbol{\theta}_{i}\right)^{2}+\epsilon
\end{aligned}
$$

where ϵ is a constant such that $\epsilon=\beta * \max _{\boldsymbol{\theta}}\{\triangle(\boldsymbol{\theta})\}<\infty$.

A.4. Proof of Theorem 4

Proof. We have known that $\left\langle\mathcal{N}, \boldsymbol{\Theta},\left(\widetilde{c}_{i}\right)\right\rangle$ has at least NE, and each learner has an nonempty, compact and convex action space Θ. Hence, we can apply Theorem 2 and Theorem 6 of Rosen (1965). That is, for some fixed $\left\{r_{i}\right\}_{i}^{n}\left(0<r_{i}<\right.$
$1, \sum_{i=1}^{n} r_{i}=1$), if the matrix in Eq. (1) is positive definite, then $\left\langle\mathcal{N}, \boldsymbol{\Theta},\left(\widetilde{c}_{i}\right)\right\rangle$ has a unique NE .

$$
\operatorname{Jr}(\boldsymbol{\theta})=\left[\begin{array}{ccc}
r_{1} \nabla_{\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{1}} \widetilde{c}_{1}(\boldsymbol{\theta}) & \ldots & r_{1} \nabla_{\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{n}} \widetilde{c}_{1}(\boldsymbol{\theta}) \tag{1}\\
\vdots & & \vdots \\
r_{n} \nabla_{\boldsymbol{\theta}_{n}, \boldsymbol{\theta}_{1}} \widetilde{c}_{n}(\boldsymbol{\theta}) & \ldots & r_{n} \nabla_{\boldsymbol{\theta}_{n}, \boldsymbol{\theta}_{n}} \widetilde{c}_{n}(\boldsymbol{\theta})
\end{array}\right]
$$

By taking second-order derivatives, we have

$$
\nabla_{\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{i}} \widetilde{c}_{i}(\boldsymbol{\theta})=2 \mathbf{X}^{\top} \mathbf{X}+\frac{2 \beta\|\mathbf{z}-\mathbf{y}\|_{2}^{2}}{\lambda^{2}}\left(4 \boldsymbol{\theta}_{i} \boldsymbol{\theta}_{i}^{\top}+2 \boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{i} \mathbf{I}+\sum_{j \neq i} \boldsymbol{\theta}_{j} \boldsymbol{\theta}_{j}^{\top}\right)
$$

and

$$
\nabla_{\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{j}} \widetilde{c}_{i}(\boldsymbol{\theta})=\frac{2 \beta\|\mathbf{z}-\mathbf{y}\|_{2}^{2}}{\lambda^{2}}\left(\boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{j} \mathbf{I}+\boldsymbol{\theta}_{j} \boldsymbol{\theta}_{i}^{\top}\right)
$$

We first let $r_{1}=r_{2}=\ldots=r_{n}=\frac{1}{n}$ and decompose $\operatorname{Jr}(\boldsymbol{\theta})$ as follows,

$$
\begin{equation*}
\operatorname{Jr}(\boldsymbol{\theta})=\frac{2}{n} \mathbf{P}+\frac{2 \beta\|\mathbf{z}-\mathbf{y}\|_{2}^{2}}{\lambda^{2} n}(\mathbf{Q}+\mathbf{S}+\mathbf{T}) \tag{2}
\end{equation*}
$$

where \mathbf{P} and \mathbf{Q} are block diagonal matrices such that $\mathbf{P}_{i i}=\mathbf{X}^{\top} \mathbf{X}, \mathbf{P}_{i j}=\mathbf{0}, \mathbf{Q}_{i i}=4 \boldsymbol{\theta}_{i} \boldsymbol{\theta}_{i}^{\top}+\boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{i} \mathbf{I}$ and $\mathbf{Q}_{i j}=\mathbf{0}$, $\forall i, j \in \mathcal{N}, j \neq i$. \mathbf{S} and \mathbf{T} are block symmetric matrices such that $\mathbf{S}_{i i}=\boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{i} \mathbf{I}, \mathbf{S}_{i j}=\boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{j} \mathbf{I}, \mathbf{T}_{i i}=\sum_{j \neq i} \boldsymbol{\theta}_{j} \boldsymbol{\theta}_{j}^{\top}$ and $\mathbf{T}_{i j}=\boldsymbol{\theta}_{j} \boldsymbol{\theta}_{i}^{\top}, \forall i, j \in \mathcal{N}, j \neq i$.
Next, we prove that \mathbf{P} is positive definite, and \mathbf{Q}, \mathbf{S} and \mathbf{T} are positive semi-definite. Let $\mathbf{u}=\left[\mathbf{u}_{1}^{\top}, \ldots, \mathbf{u}_{n}^{\top}\right]^{\top}$ be an $n d \times 1$ vector, where $\mathbf{u}_{i} \in \mathbb{R}^{d \times 1}(i \in \mathcal{N})$ are not all zero vectors.

1. $\mathbf{u}^{\top} \mathbf{P u}=\sum_{i=1}^{n} \mathbf{u}_{i}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{u}_{i}=\sum_{i=1}^{n}\left\|\mathbf{X} \mathbf{u}_{i}\right\|_{2}^{2}$. As the columns of \mathbf{X} are linearly independent and \mathbf{u}_{i} are not all zero vectors, there exists at least one \mathbf{u}_{i} such that $\mathbf{X} \mathbf{u}_{i} \neq \mathbf{0}$. Hence, $\mathbf{u}^{\top} \mathbf{P u}>0$ which indicates that \mathbf{P} is positive definite.
2. Similarly, $\mathbf{u}^{\top} \mathbf{Q u} \geq 0$ which indicates that \mathbf{Q} is a positive semi-definite matrix.
3. Let's $\mathbf{S}^{*} \in \mathbb{R}^{n \times n}$ be a symmetric matrix such that $\mathbf{S}_{i i}^{*}=\boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{i}$ and $\mathbf{S}_{i j}^{*}=\boldsymbol{\theta}_{i}^{\top} \boldsymbol{\theta}_{j}, \forall i, j \in \mathcal{N}, j \neq i$. Hence, $\mathbf{S}_{i j}=\mathbf{S}_{i j}^{*} \mathbf{I}$, $\forall i, j \in \mathcal{N}$. Note that $\mathbf{S}^{*}=\left[\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \ldots, \boldsymbol{\theta}_{n}\right]^{\top}\left[\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \ldots, \boldsymbol{\theta}_{n}\right]$ is a positive semi-definite matrix, as it is also symmetric, there exists at least one lower triangular matrix $\mathbf{L}^{*} \in \mathbb{R}^{n \times n}$ with non-negative diagonal elements (Higham, 1990) such that

$$
\mathbf{S}^{*}=\mathbf{L}^{*} \mathbf{L}^{* \top}(\text { Cholesky Decomposition })
$$

Let \mathbf{L} be a block matrix such that $\mathbf{L}_{i j}=\mathbf{L}_{i j}^{*} \mathbf{I}, \forall i, j \in \mathcal{N}$. Therefore, $\left(\mathbf{L} \mathbf{L}^{\top}\right)_{i j}=\left(\mathbf{L}^{*} \mathbf{L}^{* \top}\right)_{i j} \mathbf{I}=\mathbf{S}_{i j}^{*} \mathbf{I}=\mathbf{S}_{i j}$ which indicates that $\mathbf{S}=\mathbf{L} \mathbf{L}^{\top}$ is a positive semi-definite matrix.
4. Since

$$
\begin{aligned}
\mathbf{u}^{\top} \mathbf{T} \mathbf{u} & =\sum_{i=1}^{n} \sum_{j \neq i}\left(\mathbf{u}_{i}^{\top} \boldsymbol{\theta}_{j}\right)^{2}+\sum_{i=1}^{n} \sum_{j \neq i}\left(\mathbf{u}_{i}^{\top} \boldsymbol{\theta}_{j}\right)\left(\mathbf{u}_{j}^{\top} \boldsymbol{\theta}_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{j \neq i}\left[\frac{1}{2}\left(\mathbf{u}_{i}^{\top} \boldsymbol{\theta}_{j}\right)^{2}+\frac{1}{2}\left(\mathbf{u}_{j}^{\top} \boldsymbol{\theta}_{i}\right)^{2}+\left(\mathbf{u}_{i}^{\top} \boldsymbol{\theta}_{j}\right)\left(\mathbf{u}_{j}^{\top} \boldsymbol{\theta}_{i}\right)\right] \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j \neq i}\left(\mathbf{u}_{i}^{\top} \boldsymbol{\theta}_{j}+\mathbf{u}_{j}^{\top} \boldsymbol{\theta}_{i}\right)^{2} \\
& \geq 0
\end{aligned}
$$

\mathbf{T} is a positive semi-definite matrix.

Combining the results above, $\operatorname{Jr}(\boldsymbol{\theta})$ is a positive definite matrix which indicates that $\left\langle\mathcal{N}, \boldsymbol{\Theta},\left(\widetilde{c}_{i}\right)\right\rangle$ has a unique NE. As Theorem 3 points out, the game has at least one symmetric NE. Therefore, the NE is unique and must be symmetric.

B. Experiment Results

B.1. Supplementary results for the redwine dataset

Figure 1. Overestimated $\mathbf{z}, \hat{\lambda}=0.5, \hat{\beta}=0.8$. The average RMSE across different values of actual λ and β on redwine dataset. From left to right: MLSG, Lasso, Ridge, OLS.

Figure 2. Overestimated $\mathbf{z}, \hat{\lambda}=1.5, \hat{\beta}=0.8$. The average RMSE across different values of actual λ and β on redwine dataset. From left to right: MLSG, Lasso, Ridge, OLS.

Figure 3. Underestimated $\mathbf{z}, \hat{\lambda}=1.5, \hat{\beta}=0.8$. The average RMSE across different values of actual λ and β on redwine dataset. From left to right: MLSG, Lasso, Ridge, OLS.

B.2. Supplementary results for the boston dataset

Figure 4. The defender knows λ, β, and \mathbf{z}. RMSE of \mathbf{y}^{\prime} and \mathbf{y} on boston dataset. The defender knows λ, β, and \mathbf{z}.

Figure 5. Overestimated $\mathbf{z}, \hat{\lambda}=0.3, \hat{\beta}=0.8$. The average RMSE across different values of actual λ and β on boston dataset. From left to right: MLSG, Lasso, Ridge, OLS .

Figure 6. Underestimated $\mathbf{z}, \hat{\lambda}=0.3, \hat{\beta}=0.8$. The average RMSE across different values of actual λ and β on boston dataset. From left to right: MLSG, Lasso, Ridge, OLS.

B.3. Supplementary results for the PDF dataset

Figure 7. Overestimated $\mathbf{z}, \hat{\lambda}=1.5, \hat{\beta}=0.5$. The average RMSE across different values of actual λ and β on PDF dataset. From left to right: MLSG, Lasso, Ridge, OLS.

References

Higham, N. J. Analysis of the cholesky decomposition of a semi-definite matrix. In Reliable Numerical Computation, pp. 161-185. University Press, 1990.

Rosen, J. B. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica, pp. 520-534, 1965.

