
Competitive Multi-agent Inverse Reinforcement Learning with

Sub-optimal Demonstrations

Xingyu Wang, Diego Klabjan
Department of Industrial Engineering and Management Sciences

Northwestern University, Evanston, IL, 60208
xingyuwang2017@u.northwestern.edu, d-klabjan@northwestern.edu

May 24, 2018

1

A Appendix

A.1 Notations, Characterization of Nash Equilibriums in zero-sum dis-
counted stochastic games

We first give a formal definition of Q functions and advantage functions since they are involved in
the discussion below. Aside from the state value function vf,g(s;R), another useful metric is the
state-action value function (namely, Q-function)

Qf,gf (s, a;R) = R(s) + γEag∼g(a|s), s′∼P (s′|s,a,ag)

[
vf,g(s′;R)

]
,

Qf,gg (s, a;R) = −R(s) + γEaf∼f(a|s), s′∼P (s′|s,af ,a)

[
− vf,g(s′;R)

]
.

Based on the state value function and Q-function, the advantage function measuring benefits of
actions over current policies is defined as

Af,gf (s, af ;R) = Qf,gf (s, af ;R)− vf,g(s;R),

Af,gg (s, ag;R) = Qf,gg (s, ag;R) + vf,g(s;R).

The advantage functions can be used for characterization of optimal policies in both single-agent
and multi-agent MDPs. In the zero-sum case, we know that a Nash Equilibrium (f∗(R), g∗(R))
ensures that, for any s ∈ S and any policy pair (f, g) we have

vf
∗(R),g(s;R) ≥ vf

∗(R),g∗(R)(s;R) ≥ vf,g
∗(R)(s;R).

Therefore, f∗(R) is a solution to optimization problem

max
f

min
g

1

Ns

∑
s∈S

vf,g(s;R),

and g∗(R) is a solution to

min
g

max
f

1

Ns

∑
s∈S

vf,g(s;R).

As already mentioned above, we can characterize Nash Equilibriums in zero-sum discounted games
using advantage functions. To be specific,

(
f∗(R), g∗(R)

)
is a Nash Equilibrium if and only if for any

s,

A
f∗(R),g∗(R)
f (s, a;R) ≤ 0 for ∀a ∈ Af , and A

f∗(R),g∗(R)
f (s, a;R) = 0 if f∗(R)(a|s) > 0;

Af
∗(R),g∗(R)
g (s, a;R) ≤ 0 for ∀a ∈ Ag, and Af

∗(R),g∗(R)
g (s, a;R) = 0 if g∗(R)(a|s) > 0.

2

A.2 Details of the Nash Equilibrium Algorithm

Two deep neural networks fθf (s) and gθg (s) are used, parametrized by θf and θg respectively. Both
networks take state vector s ∈ S as input, which is completely public to both sides. Each network
outputs a probability distribution over action space, namely

fθf (s) =
(
fθf (af (1) | s), fθf (af (2) | s), . . . , fθf (af (|Af |) | s)

)
,

gθg (s) =
(
gθg (ag(1) | s), gθg (ag(2) | s), . . . , gθg (ag(|Ag|) | s)

)
.

Agents then sample actions from the probability distribution and act accordingly.
As for policy gradient methods used in our algorithm, we choose the actor-critic style Proximal

Policy Optimization algorithm (PPO) from [1] because of its superior and stable performances. To

perform actor-critic style PPO, a state value model is required and we denote it as vf,gθv (s). Again,

vf,gθv (s) is a deep neural network that takes state vector s as input, and outputs a scalar as the
estimation for state value defined in (1).

The online training on f and g relies on T -step trajectories of the game. From a randomly
initialized s0, we run the agents for T consecutive steps to obtain a trajectory as an ordered tuple(

s0, s1, . . . , sT−1, sT

)
.

At each state st, a
f
t , a

g
t are the actions taken by f, g based on the incumbent policy parameters, Rt is

the immediate reward received by f at step t, and st+1 is the next state visited by agents after their
actions.

Similar to [1], a set of target networks is maintained for generating trajectories, while the training
step based on observed trajectories updates the original networks. Parameters for target networks
are denoted as (θtarget

f , θtarget
g , θtarget

v,f , θtarget
v,g). After every Krefresh iterations, they are periodically

refreshed by (θf , θg, θv,f , θv,g) we are training. Estimation of advantage for f at each step is

Âft = δft + (γλ)δft+1 + ...+ (γλ)T−t−1δfT−1 for t = 0, 1, 2, ..., T − 1,

δft = Rt + γvf,g
θtargetv,f

(st+1)− vf,g
θtargetv,f (st)

,

and the clipped loss in PPO for f is

Lf,CLIP(θf) = −
∑
t

min
(
rft (θf)Âft , (1− ε)Â

f
t , (1 + ε)Âft

)
,

rft (θf) =
fθf (aft |st)

fθtargetf
(aft |st)

.

Similarly, we formulate the clipped loss for g as

Âgt = δgt + (γλ)δgt+1 + ...+ (γλ)T−t−1δgT−1 for t = 0, 1, 2, ..., T − 1,

δgt = −Rt + γvf,g
θtargetv,g

(st+1)− vf,g
θtargetv,g

(st),

Lg,CLIP(θg) = −
∑
t

min
(
rgt (θf)Âgt , (1− ε)Â

g
t , (1 + ε)Âgt

)
,

rgt (θg) =
gθg (agt |st)

gθtargetg
(agt |st)

.

3

The loss for updating θv,f , θv,g is

Lv(θv,f , θv,g) =
∑
t

[
(vf,gθv,f (st)− vf,target

t)2 + (vf,gθv,g (st)− vg,target
t)2

]
,

vf,target
t = vf,g

θtargetv,f

(st) + Âft , v
g,target
t = vf,g

θtargetv,g
(st) + Âgt .

The full algorithm is shown below. As we have mentioned, the proposed algorithm is similar to
GAN since g is updated at most of the iterations while in everyKcycle iterations only a small proportion
of them are meant for f step. Though we do not show this in the algorithm, we recommend the use
of a batch of agents running in parallel for collecting gradients (as in [1]). Lastly, we reiterate that
the algorithm we present is meant for finding f∗(R). The training for g∗ is conducted separately in a
similar fashion.

Algorithm 1 Adversarial Training Algorithm for Solving f∗(R) in Zero-Sum Games (Complete)

Require:
Integers Kg,Kcycle,Krefresh; learning rates λg, λf ; horizon length T .

1: Initialize: Parameters θf , θg for policy models and θv for state value model.
2: Set θtarget

f ← θf , θtarget
g ← θg, and θtarget

v ← θv .
3: for i = 1, 2, 3, do
4: Randomly initialize the starting state s0.
5: From initial state s0, run fθtargetf

(a|s), gθtargetg
(a|s) for T steps

6: Calculate estimated advantages for player f and g: Â
f/g
0 , Â

f/g
1 , ..., Â

f/g
T−1.

7: if i % Kcycle ≤ Kg then . g step
8: θg ← θg − λg∇θLg,CLIP(θ)|θ=θg
9: θv,f ← θv,f − λf∇θLv(θ, θ′)|θ=θv,f ,θ′=θv,g

10: θv,g ← θv,g − λg∇θ′Lv(θ, θ′)|θ=θv,f ,θ′=θv,g
11: else . f step
12: θf ← θf − λf∇θLf,CLIP(θ)|θ=θf
13: if i % Krefresh = 0 then . refresh target networks
14: Set θf ← θtarget

f , θg ← θtarget
g , θv,f ← θtarget

v,f , and θv,g ← θtarget
v,g .

4

A.3 Proof of Proposition 1

Proposition 1: Function F (f) has no local maxima. Namely, if at a certain f̃ there exists no
feasible strictly ascent direction for F (f̃), then

F (f̃) = max
f∈F

F (f).

Proof. Without loss of generality we can assume that there exists a state s0 under which both agents
receive zero rewards, and regardless of the actions the agents take, any s ∈ S has the same probability
to be visited at the next step. Formally,

R(s0) = 0,

p(s′|s0, a
f , ag) =

1

Ns
for ∀s′ ∈ S,∀af ∈ Af ,∀ag ∈ Ag. (1)

Given policies f, g and the discount factor γ ∈ (0, 1), we have vf,g(s0) = 1
γNs

∑
s∈S v

f,g(s). Therefore,

F (f) =
1

γ
min
g
vf,g(s0).

We hereby use this artificial starting state s0 to simplify the notation. The conclusions below are
adapted to the multi-agent setting in our case from the reinforcement learning perspective.

The policy gradient theorem (a variant of (13.5) in [2]) where the agents employ policies f and g,
the starting state is s0, and policy f is a function fθ parametrized by θ reads

∇θvf,gf (s0) =
∑
s

df,g(s)
∑
af

Qf,gf (s, af)∇θf(af |s)

=
∑
s

df,g(s)
∑
af

Af,gf (s, af)∇θf(af |s) +
∑
s

df,g(s)
∑
af

vf,g(s)∇θf(af |s)

=
∑
s

df,g(s)
∑
af

Af,gf (s, af)∇θf(af |s).

Note that the last equality holds because
∑
af f(a|s) = 1 implies that

∑
af ∇θf(af |s) = 0. Here df,g(s)

is the expected frequency of encountering state s discounted by γ. In other words, the performance
of the agent is differentiable, and the current advantage function can be used to characterize the
gradient. Particularly, under the tabular representation, a policy at each state s is

fs = (fs,1, fs,2, . . . , fs,|Af |−1, 1−
|Af |−1∑
i=1

fs,i)

where the parameter θ for policy model f are variables fs,1, fs,2, . . . , fs,|Af |−1 at s ∈ S. Therefore, for
i = 1, 2, . . . , |Af |,

∂vf,g(s0)

∂fs,i
= df,g(s)

(
Af,gf

(
s, af (i)

)
−Af,gf

(
s, af (|Af |)

))
.

Due to (1), we know that there is a positive probability to visit any s ∈ S when starting from s0.
Therefore,

df,g(s) > 0 for s ∈ S. (2)

Based on optimality condition (3.17) in [2] when competing against a policy f , for optimal policy
g∗ satisfies

vf,g
∗
(s) = −max

ag
Qf,g

∗

g (s, ag),

Qf,g
∗

g (s, ag) =
∑

s′∈S,af∼f(a|s)

p(s′|s, af , ag)
[
−R(s) + γmax

a′g
Qf,g

∗

g (s′, a′g)
]
,

5

for any s ∈ S. Similarly, when playing against a policy g, optimal policy f∗ satisfies

vf
∗,g(s) = max

af
Qf
∗,g
f (s, af),

Qf
∗,g
f (s, af) =

∑
s′∈S,ag∼g(a|s)

p(s′|s, af , ag)
[
R(s) + γmax

a′f
Qf
∗,g
f (s′, a′f)

]
,

for any s ∈ S.
The policy improvement theorem (inequalities (4.7) and (4.8) in [2]) when playing against a certain

policy g, for two policies f and f ′, states that if

vf,g(s) ≤ Qf,gf (s, f ′(a|s)) , Eaf∼f ′(a|s)Q
f,g
f (s, af)

holds for any state s, then
vf
′,g(s) ≥ vf,g(s) for s ∈ S.

Similarly, if
vf,g(s) ≥ Qf,gg (s, g′(a|s)) , Eag∼g′(a|s)Qf,gg (s, ag)

holds for any state s, then
vf,g

′
(s) ≤ vf,g(s) for s ∈ S.

Although the policy improvement theorem was initially established for pure policies, the line of
logic in its proof also holds for mixed policies.

Let us define set gP to be the set containing any possible pure policy for agent g. Then it is clear
that

min
g
vf,g(s0) = min

g∈gP
vf,g(s0).

We now switch to the main part of the proof, which includes a few claims listed below.
For a given f , we consider the performance of g on the set gP . We evaluate vf,g(s0) for every

g ∈ gP , which yields the set
{
vf,gP1 (s0), vf,gP2 (s2), . . . , vf,gPK (s0)

}
of distinct values. We rank those

values in the ascending order to get an ordered set{
v(1)(f), v(2)(f), . . .

}
.

Here v(1)(f) = ming∈gP v
f,g(s0), v(2)(f) is the second smallest value, and so on. We have

δ(f) = v(2)(f)− v(1)(f) > 0 (3)

which is a strictly positive gap between the first and second smallest performance on set gP . We also
define the best response set

gbest
P (f) = {g ∈ gP | vf,g(s0) = v(1)(f)}.

Claim 1: For a policy vector f = (fTs1 ,f
T
s2 , . . . ,f

T
sNs

)T where fsi ∈ R|Af | is the policy vector at

state si, a vector ∆f = (∆f,1,∆f,2, . . . ,∆f,si)
T where ∆f,i ∈ R|Af | and ∆T

f,i1 = 0 for i = 1, 2, . . . , Ns,
and an ε1 > 0 such that

f + ε1∆f ≥ 0, (4)

we have
gbest
P (f + ε∆f) ⊆ gbest

P (f)

for any ε > 0 small enough.

6

Proof. Because of the policy gradient theorem and the fact that R is bounded due to the finite state
space S, there exists M > 0 such that∣∣∣∂vf̃ ,g̃(s0)

∂f̃s,i

∣∣∣ < M ∀f̃ , g̃, s ∈ S, i = 1, 2, . . . , |Af | − 1.

By the assumption (4) of the claim, there exists a small enough ε2 > 0 such that for 0 < ε <

min(ε1, ε2,
δ(f)
2M), we have 0 ≤ f + ε∆f ≤ 1 (so it is still a well-defined policy) and, by the definition

of the derivative and the definition of M , for any g ∈ gP we have∣∣vf+ε∆f ,g(s0)− vf ,g(s0)
∣∣ < δ(f)

2
.

Thus, for every g ∈ gbest
P (f), since v(1)(f) = vf,g(s0), we have

vf+ε∆f ,g(s0) < v(1)(f) +
δ(f)

2
.

And for every g̃ ∈ gP \ gbest
P (f), we have

vf+ε∆f ,g̃(s0) > v(2)(f)− δ(f)

2
= v(1)(f) +

δ(f)

2
.

Therefore, for every g ∈ gbest
P (f), we have g̃ 6∈ argming v

f+ε∆f ,g(s0), which implies that given the
feasible direction ∆f for policy f with a corresponding ε1 > 0, for any small enough ε > 0 we have

gbest
P (f + ε∆f) ⊆ gbest

P (f). (5)

This shows the claim.

Claim 2: Let f be a local maximum for F . Then for any s ∈ S, the linear system

∆TAs > 0

fs + ∆ ≥ 0

(fs + ∆)T1 = 1

(6)

is infeasible with ∆ ∈ R|Af | as variables, where the advantage matrix is

As =
(
Af,gPj

(
s, af (i)

))
i,j

with gPj ∈ gbest
P (f) for j = 1, 2, . . . , |gbest

P (f)|.

Proof. We show the statement by contradiction. Let us assume the existence of a state s ∈ S for
which the linear system (6) is feasible with ∆ = (∆1,∆2, . . . ,∆|Af |)

T ∈ R|Af |. This implies that

the conditions of Claim 1 are met and thus gbest
P (f + ε∆f) ⊆ gbest

P (f) for any small enough ε > 0.
Here ∆f = (0T ,0T , . . . ,∆T , . . . ,0T)T with ∆ being at the position corresponding to state s. Due to
fTs 1 = 1, it is also obvious that ∆T1 = 0 and we have

∆|Af | = −
|Af |−1∑
i=1

∆i.

Observe that each row of As corresponds to an action in Af , and each column of As corre-
sponds to a optimal pure policy for g when playing against the given f . This suggests that for
j = 1, 2, . . . , |gbest

P (f)| we have,

|Af |−1∑
i=1

∆i

(
Af,gPj

(
s, af (i)

)
−Af,gPj

(
s, af (|Af |)

))
> 0.

7

By the policy gradient theorem, for j = 1, 2, . . . , |gbest
P (f)| we have

|Af |−1∑
i=1

∂vf,gPj (s0)

fs,i
∆i

= df,gPj (s)

|Af |−1∑
i=1

∆i

(
Af,gPj

(
s, af (i)

)
−Af,gPj

(
s, af (|Af |)

))
> 0. (7)

The last inequality holds strictly since we have already argued that df,g(s) > 0 for every s, f, g when
the starting point is the artificial state s0. Inequality (7) shows that for any g ∈ gbest

P (f), the directional
gradient for v is strictly positive along ∆.

Therefore, there exists ε3 > 0 such that for 0 < ε < ε3 we have,

vfs+ε∆,gPj (s0) > vf,gPj (s0) for j = 1, 2, . . . , |gbest
P (f)|. (8)

Given Claim 1 and (8), we know that if at a certain state s there exists a vector ∆ feasible to (6),
then there exists ε̃ > 0 such that for any 0 < ε < ε̃ we have,

F (fs + ε∆) =
1

γ
min
g∈gP

vfs+ε∆,g(s0)

=
1

γ
min

g∈gbest
P (fs+ε∆)

vfs+ε∆,g(s0)

≥ 1

γ
min

g∈gbest
P (f)

vfs+ε∆,g(s0) (due to (5))

>
1

γ
min

g∈gbest
P (f)

vf,g(s0) (due to (8))

= F (f).

We conclude that f can not be a local maximum of F (f) as long as there exists a state s such
that (6) is feasible.

Claim 3: If f is a local maximum for F , then for every state s there exists a vector ws such that

∆TAsws ≤ 0,ws ≥ 0,wT
s 1 = 1,

for any vector ∆ that makes fs + ∆ a well-defined policy at state s.

Proof. First, we reorder the actions of f so that the one with the highest probability at state s is the
last one in fs. Then, consider

∆̃T Ãs > 0

∆̃i ≥ 0 ∀i ∈ Cs
(9)

where index set Cs = {i ≤ |Af | − 1 | fs,i = 0}, vector ∆̃ ∈ R|Af |−1, and

Ãs =
(
AT
s,1 −AT

s,|Af |,A
T
s,2 −AT

s,|Af |, . . . ,A
T
s,|Af |−1 −AT

s,|Af |

)T
with As,i being the i-th row vector of As.

By Claim 2, we know that (6) is infeasible. We now argue that if (6) is infeasible, so is (9). Let us
assume that (9) has a solution ∆̃. Then there exists a small enough ε > 0 such that fs,i + ε∆̃i ≥ 0 for

all i = 1, 2, . . . , |Af | − 1. This is true since fs,i = 0, ∆̃i ≥ 0 holds for every i ∈ Cs, and for i 6∈ Cs we

8

have fs,i > 0 and thus the inequality holds for small enough ε > 0. We denote one such appropriate

value as ε1. Finally, if we let ∆ = (∆̃T ,−∆̃T1)T , then we clearly have ∆T1 = 0, and fs + ε∆ ≥ 0 for
any ε with

0 < ε < ε2 = min
(
ε1,max(0,

fs,|Af |

∆̃T1
)
)
.

Since fs,|Af | > 0, we have ε2 > 0. It is also easy to check that

∆TAs = ε∆̃T Ãs > 0.

We therefore conclude that if f is a local maximum, then (9) is infeasible.
In (9), except for the strict inequality let us denote all other constraints as B∆̃ ≥ 0. Note that B

is disposed with 0,1 on the diagonal. By the theorem of alternatives, infeasibility of (9) implies that
there exist y ≥ 0, z ≥ 0 so that

Ãsy + BTz = 0 and y 6= 0.

After rescaling y, there exist k > 0 and column vector ws ≥ 0 with wT
s 1 = 1 such that

Ãsws = −kBTz.

Then, due to B∆̃ ≥ 0 and Bu,v = 0 for u 6∈ Cs, v 6∈ Cs, for any ∆̃ with ∆̃i ≥ 0 for i ∈ Cs, we have

∆̃T Ãsws = −k∆̃TBTz ≤ 0. (10)

We define a new vector ∆ such that fs+∆ ≥ 0,∆T1 = 0. Note that these are equivalent to saying

that fs + ∆ is a policy. We have ∆i ≥ 0 for i ∈ Cs and ∆|Af | = −
∑|Af |−1
i=1 ∆i. If we let

∆̃ = (∆1,∆2, . . . ,∆|Af |−1)T ,

then we have

∆̃T Ãsws = (∆1,∆2, . . . ,∆|Af |−1)
(
AT
s,1 −AT

s,|Af |,A
T
s,2 −AT

s,|Af |, . . . ,A
T
s,|Af |−1 −AT

s,|Af |

)T
ws

=
(|Af |−1∑

i=1

∆iAs,i −
|Af |−1∑
i=1

∆iAs,|Af |

)
ws

= (∆1,∆2, . . . ,∆|Af |−1,−
|Af |−1∑
i=1

∆i)
(
AT
s,1,A

T
s,2, . . . ,A

T
s,|Af |

)T
ws

= ∆TAsws.

Together with (10), we thus have

∆TAsws ≤ 0, (11)

which shows the claim.

Let f be a local maximum of F . Treating ws defined in Claim 3 as coefficients for a convex com-

bination of opponent’s policies in set gbest
P (f) = {gf,1P , gf,2P , . . . , g

f,|gbest
P (f)|

P } (namely, the probability

that the agent plays the gf,jP at state s is equal to the j-th element of ws), we obtain a mixed policy

g̃ws at state s for the opponent agent g, the advantage function of which is A
f,g̃ws
f

(
s, af (i)

)
=
(
Asws

)
i

9

for action af (i). Regarding this advantage function, we establish that

vf,g̃
w
s (s) =

|Af |∑
i=1

fs,i Q
f,g̃ws
f

(
s, af (i)

)
for s ∈ S, implies that

0 =

|Af |∑
i=1

fs,i

(
Q
f,g̃ws
f

(
s, af (i)

)
− vf,g̃

w
s (s)

)
for s ∈ S, and thus

0 =

|Af |∑
i=1

fs,i A
f,g̃ws
f

(
s, af (i)

)
for s ∈ S, and

0 =
∑

1≤i≤|Af |,i6∈Cs

fs,i A
f,g̃ws
f

(
s, af (i)

)
for s ∈ S. (12)

Since fs is a well-defined distribution, the set Ccs = {i ∈ N | 1 ≤ i ≤ |Af |, fs,i > 0} is non-empty.
With (12) and fs ≥ 0, we see that there exist j1, j2 ∈ Ccs (j1 and j2 can be identical) such that

A
f,g̃ws
f

(
s, af (j1)

)
≤ 0, fs,j1 > 0, (13)

A
f,g̃ws
f

(
s, af (j2)

)
≥ 0, fs,j2 > 0. (14)

Claim 4: We have

A
f,g̃ws
f

(
s, af (i)

)
≤ 0 for ∀ af (i). (15)

Proof. If (15) does not hold, then there exists an index i1 such that A
f,g̃ws
f

(
s, af (i1)

)
=
(
Asws

)
i1
> 0.

Let ∆1 be the vector defined as

∆1
l =

1 if l = i1

−1 if l = j1

0 otherwise.

(Note that fs,i1 < 1, since otherwise, Ccs contains only i1, and (12) implies A
f,g̃ws
f

(
s, af (i1)

)
= 0.)

Meanwhile, given (13) we have fs,j1 > 0. Therefore, there exists a 0 < ε(1) < min(1− fs,i1 , fs,j1)
such that

0 ≤ fs + ε(1)∆
1

=
(
fs,1, fs,2, . . . , fs,i1 + ε(1), . . . , fs,j1 − ε(1), . . . , fs,|Af |

)
≤ 1,

and

ε(1)(∆
1)TAsws = ε(1)

(
A
f,g̃ws
f

(
s, af (i1)

)
−Af,g̃

w
s

f

(
s, af (j1)

))
> 0,

which contradicts Claim 3. Therefore, such i1 does not exist, and advantage for any action af (i) is
non-positive.

Claim 5: We have

A
f,g̃ws
f

(
s, af (i)

)
= 0 for ∀ af (i) with fs,i > 0. (16)

10

Proof. If (16) does not hold, then there exists an index i2 such that A
f,g̃ws
f

(
s, af (i2)

)
=
(
Asws

)
i2
< 0

and fs,i2 > 0. Let ∆2 be the vector defined as

∆2
l =

−1 if l = i2

1 if l = j2

0 otherwise.

(Note that fs,j2 < 1 because we already have fs,i2 > 0.) Therefore, there exists a 0 < ε(2) <
min(1− fs,j2 , fs,i2) such that

0 ≤ fs + ε(2)∆
2

=
(
fs,1, fs,2, . . . , fs,i2 − ε(2), . . . , fs,j2 + ε(2), . . . , fs,|Af |

)
≤ 1,

and

ε(2)(∆
2)TAsws = ε(2)

(
A
f,g̃ws
f

(
s, af (j2)

)
−Af,g̃

w
s

f

(
s, af (i2)

))
> 0,

which contradicts Claim 3. Therefore, such i2 does not exist, and advantage is zero for any action
af (i) with fs,i > 0.

In summary, the claims show that when policy f is a local maximum, we obtain a mixed policy g̃ws
for any state s. We denote the entire policy function as g̃w. Obviously, g̃w only plays optimal actions
against f and is also a best response to f . Meanwhile, under this policy g̃w, due to (15) and (16), at
any state s we have

A
f,g̃ws
f

(
s, af (i)

)
≤ 0 for i = 1, 2, . . . , |Af |,

A
f,g̃ws
f

(
s, af (i)

)
= 0 if fs,i > 0.

Therefore, f is also the best response to g̃w as prescribed by the Bellman optimality condition

vf,g̃
w

(s) = max
af∈Af

Qf,g̃
w

f (s, af) s ∈ S.

We use this to show that f is the global maximum of function F . Since f is the best response to
g̃w, for any policy f̃ , under g̃w we see that

vf,g̃
w

(s) = max
af∈Af

Qf,g̃
w

f (s, af)

≥ Eaf∼f̃(a|s)Q
f,g̃w

f (s, af)

= Qf,g̃
w

f (s, f̃(a|s))

holds for any state s. By the policy improvement theorem, we thus have

vf,g̃
w

(s) ≥ vf̃ ,g̃
w

(s) for ∀s.

Since g̃w is a best response to f , we know that

F (f) =
1

Ns

∑
s∈S

vf̃ ,g̃
w

(s).

Therefore,

F (f̃) ≤ 1

Ns

∑
s∈S

vf̃ ,g̃
w

(s) ≤ 1

Ns

∑
s∈S

vf,g̃
w

(s) = F (f).

This concludes the proof.

11

A.4 Demonstrations of the recovered IRL policies

Performances of the algorithm using Dε=.1 are shown in Fig. 1. First of all, Fig. 1(a) shows that the
IRL loss function (5) is improving during training. By IRL loss we refer to v̂f− v̂g based on definitions
in steps 9 and 10 in Algorithm 1, namely the objective function (5) of our IRL algorithm (without the
regularization term φ(θR)). This trend suggests that RθR(s) gradually learns to explain the behaviors
in the demonstration set. Meanwhile, as discussed above, the success of the IRL algorithm relies
on the quality of the Nash Equilibrium policy models we maintain during IRL training. Although
θR is being updated continuously and the Nash Equilibrium polices are expected to be changing
during training, Fig. 1(b) shows that the gaps between the performances of fθf , gθg and their best
possible performances are pretty marginal, thus indicating the good quality of both policy models.
The plot depicts vfθf ,gθg (s0;RθR),ming v

fθf ,g(s0;RθR),maxf v
f,gθg (s0;RθR), and shows that the three

values are close to each other for most of the iterations during training. Regarding the property of
the obtained reward function, Fig. 1(c) reveals a strong correlation (ρ = 0.65, p < .001) between
Rchasing(s) and the RθR(s) we recovered after 500,000 iterations of training. This strong correlation
indicates that the model learns that the reward of each state should be highly dependent on D(s) and
behaves similarly as Rchasing(s).

To further corroborate the quality of the recovered reward and policy functions we include two
more metrics. First, we compare the divergence between the IRL and Nash Equilibrium policies. As
shown in Fig. 1(d), we gauge the KL-divergence between the IRL and Nash Equilibrium policies and
plot the estimation performed on a batch of 64 randomly sampled states. When compared against
a model that acts randomly or the “early” policy models obtained after 20,000 iterations, the IRL
policies demonstrate behaviors that are most similar to those of the Nash Equilibrium policies.

A more direct measurement is to plug IRL policies back into the chasing game and evaluate their
performances when competing against the Nash Equilibrium policies. In Fig. 1(e) we depict the
performances of the IRL and Nash Equilibrium polices estimated in 64 rounds of games. The policies
fθf , gθg obtained after 500,000 iterations of IRL training demonstrate performances that are relatively
close to those of Nash Equilibrium policies.

In Fig. 2 we demonstrate the behaviors of IRL policies based on random trajectories generated
by fθf , gθg . Despite occasional mistakes (for example, in the first row of Fig. 2 one of the predators
chose not to move), the two predators are pursuing the preys in a coordinated way, and the preys are
actively keeping a distance from the predators.

There remains a concern on whether the prior knowledge in our regularization function is too
strong. If so, we should have approximated Rchasing(s) decently well from the beginning of our
training. We clear this doubt by inspecting the Nash Equilibrium policies early in the algorithm. In
Fig. 3, we show trajectories generated by policy models at the 20,000-th iteration. Note that we
also use models obtained at the 20,000-th iteration as the “early” models in Fig. 1 because at the
20,000-th iteration the Nash Equilibrium polices are of good qualities already (shown in Fig. 1(b))
while IRL training has just begun (shown in Fig. 1(a)). Obviously, for trajectories in Fig. 3 both
agents act remarkably different from policies shown in Fig. 2. To be specific, in Fig. 3 the preys try
to move to and stay at two corners on the diagonal of the grid, while the predators try to stay on
the diagonal of the two preys. This is not surprising since in φ(θR) we are encouraging the average
distance D̄(s) and R(s) to be correlated instead of the max-min distance D(s) and R(s), and the
behaviors of predators/preys serve to minimize/maximize D̄(s). Therefore, we confidently draw the
conclusion that the policies and the reward function are recovered by our IRL algorithm because of
the correctly proposed objective function that minimizes the performance gap rather than the prior
knowledge provided by the regularization terms.

12

100 200 300 400 500
Number of Iterations (×1000)

−30

−20

−10

0

10

20

D
is
co
un
te
d
C
um

ul
at
iv
e
R
et
ur
n
f
r P

re
da
t
rs (b) Perf rmance under RθR during training

f vs g
g vs best resp nse
f vs best resp nse

100 200 300 400 500
Number f Iterati ns ()1000)

0

1

2

3

IR
L
L

ss

(a) L ss functi n f IRL

(6 (5 (4 (3 (2 (1

Rchasing(s)
(1.0

(0.8

(0.6

(0.4

(0.2

0.0

0.2

0.4

R θ
R
(s
)

ρ= . 65

(c) C rrelati n between real and rec vered R

(40 (30 (20 (10 0
Disc unted Cumulative Return

f * , g *

fθf, g *

fearlyθf , g *

frandom, g *

f * , gθg

f * , gearly
θg

f * , grandom

(e) Perf rmance under Rchasing after training

0.0 0.5 1.0 1.5 2.0

DKL(fθf||f *)

DKL(fearlyθf ||f *)

DKL(frandom||f *)

DKL(gθg||g *)

DKL(gearly
θg ||g *)

DKL(grandom||g *)

(d) KL-divergence between policies

Figure 1: Results of IRL training. (a) The IRL loss function, which is an estimation of objective
function based on sampled trajectories, is decreasing during training. This trend indicates that RθR
gradually learns to explain the expert demonstrations in our training. (b) Performances of Nash
Equilibrium policy models and their best response models during training. For the majority of the it-
erations, the gap of performances between fθf , gθg and the best response opponent models is marginal,
suggesting that fθf , gθg are close enough to Nash Equilibrium policies f∗(RθR), g∗(RθR) during IRL
training. (c) The recovered reward function RθR(s) demonstrates a strong correlation to Rchasing(s)
(p < .001). The two scales are different as reward functions are identical up to a scaling factor. (d)
KL-divergence between fθf (or gθg) and f∗(Rchasing)(or g∗(Rchasing)). “Early” denotes the models at
the 20,000-th iteration, while “random” model follows a uniform distribution on all the 5 available
actions. The final results of IRL training are as expected most similar to Nash Equilibrium policies.
Error bars indicate the standard errors estimated on a batch of 64 samples. (e) Performance of policy
models under Rchasing. The dashed reference line represents the performance of the Nash Equilibrium
model. Policies recovered by IRL training play similarly well when compared with the Nash Equi-
librium policy, while “early” and “random” models exhibit much more significant performance gaps.
Error bars indicate the standard deviation estimated on a batch of 64 samples.

13

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Figure 2: Trajectories generated by policy models obtained in the IRL algorithm. We use red dots to
represent predators and blue crosses for preys. Each row presents a different 8-step trajectory.

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Figure 3: Trajectories generated by policy models obtained at the 20,000-th iteration. Each row
presents a different 8-step trajectory. Clearly, these actions are not driven by Rchasing(s) = D(s) and
are different from the ones in Fig. 2.

A.5 Implementations and Performances of Benchmark IRL Algorithms

Our IRL algorithm demonstrated is designed and tailored for two specific goals: to take sub-optimality
of expert demonstrations into account, and to cope with zero-sum games of large scales. We next
illustrate the superior performance of our algorithm in the chasing game regardless of the quality of
the demonstration set. The Bayesian-IRL [3] (BIRL) algorithm and Decentralized-IRL [4] (DIRL) are
selected as benchmark IRL algorithms since they are the only ones that solve competitive multi-agent
IRL tasks to the best of our knowledge. Both algorithms need modifications since deep neural nets
should be used as model approximations and the IRL training should proceed efficiently for large-scale

14

games that cannot be solved by tabular approaches with enumeration of states or actions. We next
provide the details.

The BIRL algorithm for zero-sum stochastic games formulates a quadratic programming problem
with constraints that require each demonstrated action to be the optimal one, and the objective
function represents the posterior of the current reward function given a Bayesian prior of reasonable
reward functions. Two problems arise when implementing the BIRL algorithm to solve the chasing
game. First, enumerating and imposing all the constraints is not tractable (there are 2 · Ns · |A| =
19, 531, 250 constraints in the current version of the game). Therefore, for each iteration in our
training, we sample a tuple (s, aE,f , aE,g) from D, and randomly choose actions (af , ag) from Af ×
Ag. In an iteration we consider only the constraints on the sampled state-action pairs. By adding
Lagrangians into the objective function to encourage the constraints, we charge a penalty whenever
the demonstrated actions aE,f , aE,g are performing worse than af , ag.

Another issue is that the BIRL algorithm requires explicit models for expert policies. The afore-

mentioned constraints in the BIRL algorithm are equivalent to Qf
E ,gE

f (s, aE,f) ≥ Qf
E ,gE

f (s, af) and

Qf
E ,gE

g (s, aE,g) ≥ Qf
E ,gE

g (s, ag). Evaluation of the Q-functions are feasible only if fE , gE and the
corresponding state transition matrix are available and can be stored in a computer’s memory. In
[3] the expert policies are statistically recovered since sufficient demonstrations are available for a
significantly smaller game, which is impossible for large games. Instead of appealing to imitation
learning to yield expert model approximations, we conduct a two-phase training that does not rely
on expert policy models. We find the optimal state value function first, and then use the state-value
function and one-step transition probability (which can be approximated by sampling tuples from D)
to recover R. To be specific, the BIRL algorithm is based on the equality V = (I − γP)−1R where
V =

(
V (s)

)
s∈S is the vector exhibiting the value for each state, R =

(
R(s)

)
s∈S is the vector for the

reward at each state, and P is the state transition matrix under expert policies. To infer V from R,
the inversion of (I−γP)−1 necessitates expert policy models that can act in all states (including those
not demonstrated in D) and generate infinitely long trajectories. Instead, if the algorithm first finds
state value functions V (s) instead of R(s) and uses R = (I − γP)V to recover R, then only one-step
transitions that can be sampled directly from D are needed. Therefore, in our implementation the

first phase of training uses the BIRL algorithm to solve for vf
E ,gE

θV
(s), the vector representation of

which is the vector V above. The objective function is equal to the Lagrangian terms plus the same
regularization term φ(θR) used for our IRL algorithm (now viewed as prior of R in BIRL). In the
second phase, we sample a state s and corresponding expert actions from D, get the following state s′

under the known transition function, and train θR to minimize the squared loss between RθR(s) and

vf
E ,gE

θV
(s) − γvf

E ,gE

θV
(s′). Note that the objective function in the R-phase is also regularized by the

same φ(θR) in the V -phase, because in our experiments we have observed a drastic deterioration of

performances if the regularization term is not used for both phases. The model vf
E ,gE

θV
(s) and reward

RθR(s) are parametrized similarly as specified in Section 4.2. Lastly, since the BIRL algorithm returns
only a reward function, we use the proposed Nash Equilibrium algorithm to solve for f∗(RθR), g∗(RθR)
after two-phase training.

The DIRL algorithm also assumes the optimality of expert policies under the unknown reward
function. The algorithm alternates between a π step and an R step. In the k-th iteration of training,
the algorithm first enters the π step that solves for the Nash Equilibrium policies (fk, gk) under current
RθR . The policies (fk, gk) are added into a policy set Π. Then in the R step, the algorithm finds

RθR that maximizes 1
k

∑k
j=1

∑
s∈S p

(
vf

E ,gE (s)−vfj ,gE (s)
)

+p
(
vf

E ,gj (s)−vfE ,gE (s)
)
−φ(θR), where

p(x) = max(x, 0)+2 ·min(x, 0). This objective function encourages R to favor fE , gE when competing
against any policies in Π, which is aligned with the optimality assumption that (fE , gE) are indeed
Nash Equilibrium of the game.

To alleviate the overhead of storing and calling all the policies in Π, in the R step of our deep

implementation we maximize a slightly different objective function E(fj ,gj)∼ΠE(s, ,)∼D

[
p
(
vf

E ,gE (s)−

15

Table 1: Correlations between recovered reward functions and Rchasing

IRL Algorithm ε = .05 ε = .1 ε = .2
Algorithm 1 0.65 0.68 0.66
BIRL 0.28 -0.02 0.12
DIRL -0.31 -0.15 0.11

Table 2: Performance deterioration of recovered policies under Rchasing (*:Nash Eq.; A:Algorithm 1;
B:BIRL; D:DIRL)

Dε fA fB fD gA gB gD

ε = .05 11.8% 24.1% 197.0% 4.4% 33.5% 38.9%
ε = .1 10.3% 44.3% 100.0% 6.9% 33.5% 41.9%
ε = .2 13.3% 68.5% 200.1% 9.3% 33.0% 40.9%

vfj ,g
E

(s)
)

+ p
(
vf

E ,gj (s)− vfE ,gE (s)
)
− φ(θR)

]
. Thus, in each training iteration we only sample one

pair of (fj , gj) from Π and pit them against expert policies, so the expectation of this new objective
function remains unchanged when compared with the original one. Again, models of fE , gE are still
required to evaluate the state value functions. Here we adopt the treatment of the original DIRL work
[4] and our IRL algorithm; we let fE , gE to act at the first step of each trajectory by sampling from
D, then we use the latest (fk, gk) to act for all the following steps to generate the full trajectory.

To make sure we are performing a fair comparison, the number of training iteration for each al-
gorithm is set to match the runtime of all 3 algorithms. For both phases in the algorithm, training
lasts for 500,000 iterations. For the Lagragians in BIRL training, we use a fixed coefficient for all
constraints instead of a unique and dynamically updated coefficient for each one, which would the-
oretically require another neural network models for λ(s, a). Besides, the fixed coefficient is set to
be 1 since we can change the weights in φ(θR) instead, which is similar to the original treatment in
[3]. We set the weight coefficient c in φ(θR) to be .25 to match up with the one in our algorithm.
The DIRL algorithm is computationally demanding largely due to the time spent on solving for Nash
Equilibrium at each iteration of training. To control the runtime of the DIRL algorithm within a
comparable range of the other IRL methodologies in our experiment, we perform 10 iterations with
50,000 training iterations for both the π and R steps in each iteration. For both algorithms, policies
and reward function models are parametrized similarly as specified in Section 4.2. The learning rate
is set to be 10−4, weight c of regularization term is set as .25 and Adam [5] is used as optimizer. We
mention that, even under such a specification, DIRL training still more than tripled the runtime of
the other algorithms in our experiments.

We summarize the result of experiments in Table 1 and 2. Under the same regularization terms,
only our IRL algorithm finds a reward function that bears reasonably high correlation with Rchasing(s).
We also plug the solved IRL policies back into the original chasing game and compete against the
Nash Equilibrium policies, and measure the gap between their performances and vf

∗,g∗ to evaluate
how much the performance of the recovered policies deteriorate. As shown in Table 2, only our
IRL algorithm recovers policies of good quality, and the performance is not largely affected by the
demonstration set we use. The issues with the BIRL algorithm are the requirement of accurate expert
policy models and the strict optimality constraints of expert actions, whereas the number of reference
policies in Π is likely to be highly critical to the success of the DIRL algorithm. In conclusion, our
IRL algorithm overcomes the issues in the benchmark algorithms, and outperforms them significantly
when all the algorithms are implemented and utilized in the same setting.

16

A.6 Demonstrations of Solved Nash Equilibrium policies

100 200 300 400
Number of Iterations (×1000)

−35

−30

−25

−20

−15

D
is
co
un
te
d
C
um

ul
at
i
e
R
et
ur
n
fo
r P

re
da
to
rs

f s g
g s best response
f s best response

Figure 4: Performance of the proposed Nash Equilibrium algorithm in the chasing game

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Figure 5: Trajectories generated by the trained models in the chasing game. Each row presents a
different 8-step trajectory.

Fig. 4 shows the evolution of the performances of policy models. The plot depicts vfθf ,gθg (s0;Rchasing),

ming v
fθf ,g(s0;Rchasing), maxf v

f,gθg (s0;Rchasing). Recall that if fθf and gθg manage to reach the Nash
Equilibrium, the three series should converge perfectly. As the figure shows, the adversarial training
on fθf and gθg succeed in decreasing the gap to a pretty marginal level, suggesting that fθf and gθg
should be close enough to the Nash Equilibrium policies and there is little room to further improve
their performances.

To further corroborate the quality of the learned policies, in Fig. 5 we plot trajectories showing
behaviors of the obtained fθf and gθg . As demonstrated in the figure, both the predators and the preys

17

understand their goals in the game. The predators allocate the tasks so that they are not chasing the
same prey and ignoring the other one, while the policy of the preys is that they run away actively
and try not to stay at the same cell, thus making it harder for the predators to pursue both of them.

A.7 Implementation and Performance of Benchmark Nash Equilibrium
Algorithm

To further demonstrate the superiority of the proposed Nash Equilibrium algorithm particularly for
large games, we reformulate the quadratic programming problem proposed on page 125 in [6], which
inspires the gradient descent algorithm to solve for Nash Equilibrium proposed in [7]. We select only
this algorithm as the benchmark in this section, since the algorithm in [8], due to its formulation,
was observed to provide a zero gradient to policies when training in zero-sum games, and we do not
find an easy solution to apply the algorithm in [9] to large games using deep neural nets as model
approximations.

Here we illustrate the deep implementation we used for the benchmark algorithm in the experi-
ment. The algorithm maintains both policy models f, g and models for bounds of state value functions
vf (s), vg(s). The softmax layers in policy models guarantee f(a|s), g(a|s) to be well-defined distribu-
tions. Therefore, the remaining constraints are

R(s) + γEag∼g(a|s),s′∼p(s′|s,af ,ag)v
f (s′) ≤ vf (s) for any s, af ,

−R(s) + γEaf∼f(a|s),s′∼p(s′|s,af ,ag)v
g(s′) ≤ vg(s) for any s, ag,

and the objective is to minimize Es[vf (s) + vg(s)]. The constraints are implemented as Lagrangians
with a coefficient λ. Similarly to the implementation of the benchmark BIRL algorithm, we do not
enumerate all the constraints, but only sample s from S and af , ag from f(a|s), g(a|s) at each iteration
of training. Whenever a constraint on the sampled state-action pair is violated, a penalty is added
to the objective function that motivates f, g to avoid taking sub-optimal actions. To evaluate the
expectation in each constraint, we sample 5 trajectories for each constraint. Training lasts for 500,000
iterations. Both policies and value models are parametrized as in our Nash Equilibrium algorithm.
Theoretically speaking, for each state-action pair, the corresponding constraint should have its own λ
(which necessitates an extra neural network model) that would be constantly updated in each iteration.
Since we are not enumerating the constraints, we set λ to be a fixed value throughout training, and
conduct grid search on the optimal value of λ. According to our experiments, performance of the
algorithm is not very sensitive to the value λ, and we use λ = 10 for the results shown in this section
since it appears to be the optimal value in our experiments. The results are shown in Table 3 of
Section 4.3.

References

[1] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

[3] Xiaomin Lin, Peter A Beling, and Randy Cogill. Multi-agent inverse reinforcement learning for
two-person zero-sum games. IEEE Transactions on Computational Intelligence and AI in Games,
2017.

[4] Tummalapalli Reddy, Vamsikrishna Gopikrishna, Gergely Zaruba, and Manfred Huber. Inverse
reinforcement learning for decentralized non-cooperative multiagent systems. In Systems, Man,
and Cybernetics, pages 1930–1935, 2012.

18

[5] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[6] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer Science & Business
Media, 2012.

[7] Prasad H.L. and Shalabh Bhatnagar. A study of gradient descent schemes for general-sum stochas-
tic games. arXiv preprint arXiv:1507.00093, 2015.

[8] Prasad H.L., Prashanth L.A., and Shalabh Bhatnagar. Two-timescale algorithms for learning nash
equilibria in general-sum stochastic games. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pages 1371–1379, 2015.

[9] Natalia Akchurina. Multiagent reinforcement learning: algorithm converging to nash equilibrium
in general-sum discounted stochastic games. In Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2, pages 725–732, 2009.

19

	Appendix
	Notations, Characterization of Nash Equilibriums in zero-sum discounted stochastic games
	Details of the Nash Equilibrium Algorithm
	Proof of Proposition 1
	Demonstrations of the recovered IRL policies
	Implementations and Performances of Benchmark IRL Algorithms
	Demonstrations of Solved Nash Equilibrium policies
	Implementation and Performance of Benchmark Nash Equilibrium Algorithm

