
A. Proof of Theorem 2
Before we presenting the main proof idea, we first analyze the moment characteristic of our proposed Wave Soliton
Distribution. For simplicity, we use d to denote mn in the sequel.

Lemma 1. Let a random variable X follows the following Wave Soliton distribution Pw = [p1, p2, . . . , pd].
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Note that in the last step, we use the fact that 1 + 1/2 + · · ·+ 1/d = Θ(ln(d)).
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The step (a) uses the Faulhaber’s formula that
∑d
k=1 k

s = Θ(ds+1/(s+ 1)) .

The technical idea in the proof of this theorem is to use the Hall’s theorem. Assume that the bipartite graph G(V1, V2, Pw)
does not have a perfect matching. Then by Hall’s condition, there exists a violating set S ⊆ V1 or S ⊆ V2 such that
|N(S)| < |S|, where the neighboring set N(S) is defined as N(S) = {y|(x, y) ∈ E(G) for some x ∈ S}. Formally, by
choosing such S of smallest cardinality, one immediate consequence is the following technical statement.

Lemma 2. If the bipartite graph G(V1, V2, Pw) does not contain a perfect matching and |V1| = |V1| = d, then there exists
a set S ⊆ V1 or S ⊆ V2 with the following properties.

1. |S| = |N(S)|+ 1.

2. For each vertex t ∈ N(S), there exists at least two adjacent vertices in S.

3. |S| ≤ d/2.

Figure 1 illustrates two simple examples of structure S satisfying above three conditions.

Case 1: We consider that S ⊆ V1. Define an event E(V1) is that there exists a set S ⊆ V1 satisfying above three conditions.

Case 1.1: We consider S ⊆ V1 and |S| = 1.

In this case, we have |N(S)| = 0 and need to estimate the probability that there exists one isolated vertex in partition V1.
Let random variable Xi be the indicator function of the event that vertex vi is isolated. Then we have the probability that

P(Xi = 1) =
(

1− α

d

)d
,
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Figure 1. Example of structure S ∈ V1, N(S) ∈ V2 and S ∈ V2, N(S) ∈ V1 satisfying condition 1,2 and 3. One can easily check that
there exists no perfect matching in these two examples.

where α is the average degree of a node in the partition V2 and α = Θ (τ ln (d)) from Lemma 1. Let X be the total number
of isolated vertices in partition V1. Then we have
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The above, step (a) is based on the fact that τ > 1.94.

Before we presenting the results in the case 2 ≤ |S| ≤ d/2, we first define the following three events.

Definition 1. Given a set S ⊆ V1 and |S| = s, for each vertex v ∈ V2, define an event Ss0 is that v has zero adjacent vertex
in S, an event Ss1 is that v has one adjacent vertex in S and an event Ss≥2 is that v has at least two adjacent vertices in S.

Then we can upper bound the probability of event E by

P(E(V1)) = P(there exists S ∈ V1 and N(S) ∈ V2 such that conditions 1, 2 and 3 are satisfied)
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The above, step (a) is based on the union bound. Formally, given |S| = s and fixed vertex v ∈ V2, we can calculate P(Ss0)
via the law of total probability.
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Similarly, the probability P(Ss1) is given by the following formula.
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Then, the probability P(Ss≥2) is given by the following formula.

P(Ss≥2) = 1− P(Ss0)− P(Ss1). (9)

The rest is to utilize the formula (7), (8) and (9) to estimate the order of (6) under several scenarios.

Case 1.2: We consider S ⊆ V1 and |S| = Θ(1).
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The above, step (a) is based on exchanging the order of summation; step (b) utilizes the result of Lemma 1 and the fact that
s is the constant. Similarly, we have
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Combining the upper bound (6) and estimation of P(Ss0) and P(Ss≥2), we have
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The above, step (a) utilizes the inequality
(
d
s

)
≤ (ed/s)s.

Case 1.3: We consider S ⊆ V1, |S| = Ω(1) and |S| = o(d) .

Based on the result of (7), we have
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The above, step (a) is based on summation over different orders of k. In particular, when ks = o(d) and s = Ω(1), we have
(1 − k/d)s = Θ(e−ks/d) = 1 − Θ(ks/d). Step (b) utilizes the partial sum formula 1 + 1/2 + · · · + s/d = Θ(ln(d/s)).
The parameter c of step (c) is a constant. Similarly, we have
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(a)

≤ 1−

 ∑
ks=o(d)

pk

(
1− ks

d− s

)
+

∑
ks=Θ(d),k≤d/s−1

pke
− ks

d−s


(b)

≤ 1−
d/s−1∑
k=1

pk

(
1− ks

d− s

)
(c)
= Θ

(
τs ln(d/c′s)

d

)
. (14)

The above, step (a) is based on summation over different orders of k, and abandon the terms when k ≥ d/s. In particular,
when ks = Θ(d) and s = Ω(1), we have (1 − k/(d − s))s = Θ(e−ks/(d−s)). The step (b) utilizes the inequality
e−x ≥ 1− x, ∀x ≥ 0. The parameter c′ of step (c) is a constant. Combining the upper bound (6) and estimation of P(Ss0)
and P(Ss≥2), we have
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Case 1.4: We consider S ⊆ V1 and |S| = Θ(d) = cd .

Based on the result of (7) and Stirling’s approximation, we have

P(Ss0) =

d−s∑
k=1

pk

(
1− k

d

)d−k+ 1
2
(

1 +
k

d− s− k

)d−s−k+ 1
2

(1− c)k

(a)
=

∑
k=o(d)

pk(1− c)k +
∑

k=Θ(d),k≤d−s

o
(
(1− c)k

)
= p1(1− c) + p2(1− c)2 + τ

∑
k≥3,k=o(d)

(1− c)k

k(k − 1)
+ o(1)

(b)
= p1(1− c) + p2(1− c)2 + τ

[
1

2
(1− c2) + c ln(c)

]
, f0(c). (16)

The above, step (a) is based on summation over different orders of k. The step (b) is based on the following partial sum
formula.
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where the function Φ(1− c, 1, q + 1) is the Lerch Transcendent, defined as
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Let q = Ω(1), we arrive at the step (b). Similarly, utilizing the result of (8), we have
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Therefore, combining the results in the above four cases, we conclude that P(E(V1)) = o(1).

Case 2: We consider that S ⊆ V2. We relax the condition 2 in Lemma 2 to the following condition.

2′. For each vertex t ∈ S, there exists at least one adjacent vertex in N(S).

Define an event E(V2) is that there exists a set S ⊆ V2 satisfying condition 1, 2, 3, and an event E′ is that there exists
a set S satisfying above condition 1, 2′ and 3. One can easily show that the event E(V2) implies the event E′ and
P(E(V2)) ≤ P(E′). Then we aim to show that the probability of event E′ is o(1).
Definition 2. Given a set S ⊆ V2 and |S| = s, for each vertex v ∈ V2, define an event Ns

≥1 is that v has at least one
adjacent vertex in N(S) and v does not connect to any vertices in V1/N(S).

Then we can upper bound the probability of event E′ by

P(E′) = P(there exists S ∈ V2 and N(S) ∈ V1 such that condition 1, 2′ and 3 are satisfied)
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The above, step (a) is based on the fact that any vertices in set V2 has degree at least one according to the definition of the
Wave Soliton distribution. Given |S| = s and fixed vertex v ∈ S, we can calculate P(Ns

≥1) via the law of total probability.
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Case 2.1: We consider S ⊆ V2 and |S| = Θ(1).

Based on the result of (22), we have

P(Ns
≥1) ≤ τs

d2
+ p2

s2

d2
+

s−1∑
k=3

pk
sk

dk
≤ τs

d2
+ p2

s2

d2
+
τs3

d3

(
1

2
− 1

s− 1

)
<
s2

d2

[
1

36
+
τ

s
+
τs

d

(
1

2
− 1

s− 1

)]
(23)

Then we have ∑
s=Θ(1)

e2s−1d2s−1

s2s−1
· P(Ns

≥1)s = Θ

(
1

d

)
. (24)

Case 2.2: We consider S ⊆ V2, |S| = Ω(1) and |S| = o(d).

Similarly, using the result in Case 2.1 and upper bound (21), we arrive∑
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The above, step (a) is based on the fact that 1/36 + o(1) < e−2.

Case 2.3: We consider S ⊆ V2 and |S| = Θ(d) = cd. Based on the result of (22), we have
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The above, step (a) utilizes the partial sum formula (17). Using the upper bound (21), we arrive
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Combining the results in the above three cases, we have P(E′) = o(1). Therefore, the theorem follows.

B. Proof of Lemma 3
Consider a random bipartite graph generated by degree distribution Pw of the nodes in left partition V2, define a left edge
degree distribution λ(x) =

∑
k λkx

k−1 and a right edge degree distribution ρ(x) =
∑
k ρkx

k−1, where λk (ρk) is the
fraction of edges adjacent to a node of degree k in the left partition V1 (right partition V2). The existing analysis in (Luby
et al., 2001) provides a quantitative condition regarding the recovery threshold in terms of λ(x) and ρ(x).

Lemma 3. Let a random bipartite graph be chosen at random with left edge degree distribution λ(x) and right edge degree
distribution ρ(x), if

λ(1− ρ(1− x)) < x, x ∈ [δ, 1], (28)

then the probability that peeling decoding process cannot recover δd or more of original blocks is upper bounded by e−cd

for some constant c.

We first derive the edge degree distributions λ(x) =
∑
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k−1 and ρ(x) =
∑
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k−1 via the degree distribution Ωw(x).
Suppose that the recovery threshold is K. The total number of edges is KΩ′w(1) and the total number of edges that is
adjacent to a right node of degree k is Kkpk. Then, we have ρk = kpk/Ω

′
w(1) and

ρ(x) = Ω′w(x)/Ω′w(1). (29)
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Since |V2| = K, the probability that node vi is the neighbor of exactly l nodes in V2 is
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Combining these results with Lemma 3, let δ = b/mn, the lemma follows.

C. Proof of Theorem 3
Suppose that K = cd+ 1, one basic fact is that

λ(1− ρ(1− x)) =

[
1− Ω′w(1− x)

d

]K−1

≤ e−cΩ
′
w(1−x) (32)
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our Wave Soliton distribution, we have
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which is verified easily.

D. Optimal Design of Sparse Code
We focus on determining the optimal degree distribution based on our previous analysis. Formally, we can formulate the
following optimization problem.

min

mn∑
k=1

kpk (35)

s.t. P(M is full rank) > pc,[
1− Ω′w(x)

mn

]mn+c

≤ 1− x− c0
√
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[pk] ∈ ∆mn,

Here the coefficient matrix M has row dimension mn and column dimension mn+ c. Due to the hardness of estimating the
probability that M is full rank, we relax this condition to the following condition

P(G(V1, V2, P ) contains a perfect matching) > pm, (36)



Table 1. Optimizaed Degree Distribution for Various mn (Numbers in brackets are Results from Robust Soliton Distribution.)

mn p1 p2 p3 p4 p5 p6 recovery threshold average degree rooting step
6 0.0217 0.9390 0.0393 0.0 0.0 0.0 7.54 (7.61) 2.01 (2.04) 0.84 (0.47)
9 0.0291 0.7243 0.2466 0.0 0.0 0.0 11.81 (12.15) 2.21 (2.20) 0.90 (0.56)

12 0.0598 0.1639 0.7056 0.0707 0.0 0.0 14.19 (14.47) 2.78 (2.78) 1.47 (1.03)
16 0.0264 0.3724 0.1960 0.4052 0.0 0.0 19.11 (19.83) 2.98 (2.91) 1.68 (1.08)
25 0.0221 0.4725 0.1501 0.0 0.0 0.3553 28.71 (29.12) 3.54 (3.55) 2.35 (2.12)

where |V1| = |V2| = mn and pm is a given threshold. The basic intuition behind this relaxation comes from the analysis
of Section 4.1: the probability that there exists a perfect matching in the balanced random bipartite graph G(V1, V2, P )
provides a lower bound of the probability that the coefficient matrix M is of full rank. Based on this relaxation, the rest is to
estimate the probability that G(V1, V2, P ) contains a perfect matching. Instead of estimating the lower bound of such a
probability as in the proof of Theorem 2, here we provide an exact formula that is a function of the degree distribution P .

In the sequel, we denote mn by d. Suppose the vertex in partition V2 is denoted by {v1, v2, . . . , vd}. Define a degree
distribution P (s) = [p
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d ], where p(s)

k is the probability that any vertex v ∈ V2 has exact k adjacent
vertices in a given set S ⊆ V1 with |S| = s. For example, we have P (d) = P , where P is the original degree distribution. Let
E(d, V1, P ) be the event that G(V1, V2, P ) contains a perfect matching and |V1| = d. In order to calculate P(E(d, V1, P )),
we condition this probability on that there exists vn1 ∈ V1 matching with v1 ∈ V2. Then, we have
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The rest is to estimate the degree evolution P (s). Similarly, we have the following recursive formula to calculate the degree
evolution: for all 0 ≤ k ≤ s, 1 ≤ s ≤ d− 1.

p
(s)
k = p

(s+1)
k

(
s

k

)(
s+ 1

k

)−1

+ p
(s+1)
k+1

(
s

k

)(
s+ 1

k + 1

)−1

= p
(s+1)
k

(
1− k

s+ 1

)
+ p

(s+1)
k+1

k + 1

s+ 1
. (38)

Utilizing the fact that P (d) = P , we can get the exact formula of P (s), 1 ≤ s ≤ d− 1, and the formula of the probability
that G(V1, V2, P ) contains a perfect matching.

TABLE 1 shows several optimized degree distributions we have found using model (35) with specific choice of parameters
c, c0, b and pc. We also include the several performance results under above distribution and the Robust Soliton distribution
(RSD). In traditional RSD, the degree 2 always have the highest probability mass, i.e., p2 ≈ 0.5. It is interesting to note that
our optimized distribution has a different shape, which depends on mn and choices of parameters. We can observe that,
under the same average degree, the optimized distribution has a lower recovery threshold and larger number of rooting steps
compared to the RSD. Another observation in solving the optimization problem is that, when the parameter pm is increased,
the recovery threshold of proposed sparse code will be decreased, and the average degree and the number of rooting steps
will be increased.
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Figure 2. Simulation results for two 1.5E5 × 1.5E5 matrices with 6E5 nonzero elements. T1 and T2 are the transmission times from
master to worker, and the worker to master, respectively.

Table 2. Data Statistics for Different Input Matrix
Data r s t nnz(A) nnz(B) nnz(C)

square 1.5E5 1.5E5 1.5E5 6E5 6E5 2.4E6
tall 3E5 1.5E5 3E6 6E5 6E5 2.4E6
fat 1.5E5 3E5 1.5E5 6E5 6E5 1.2E6

amazon-08 / web-google 735320 735323 916428 5158379 4101329 28679400
cont1 / cont11 1918396 1468599 1961392 2592597 5382995 10254724

cit-patents / patents 3774768 3774768 3774768 16518948 14970767 64796579
hugetrace-00 / -01 4588484 4588484 12057440 13758266 13763443 38255405

E. Extensive Simulation Results
We further compare our proposed sparse code with the existing schemes from the point of view of the time required to
communicate inputs to each worker, compute the matrix multiplication in parallel, fetch the required outputs, and decode.
As shown in Figure. 2, in all of these component times, the sparse code outperforms the product code and polynomial code,
with the effects being more pronounced for the transmission time and the decoding time. Moreover, due to the efficiency
of proposed hybrid decoding algorithm, our scheme achieves much less decoding time compared to the sparse MDS code
and product code. Compared to the LT code, our scheme has lower transmission time because of the much lower recovery
threshold. For example, when m = n = 4 and s = 2, the proposed sparse code requires 18 workers, however, the LT code
requires 24 workers in average.
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