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Abstract

In this paper, we propose a Minimax Concave
Penalized Multi-Armed Bandit (MCP-Bandit)
algorithm for a decision-maker facing high-
dimensional data with latent sparse structure in
an online learning and decision-making process.
We demonstrate that the MCP-Bandit algorithm
asymptotically achieves the optimal cumulative
regret in the sample size T, O(log T'), and fur-
ther attains a tighter bound in both the covari-
ates dimension d and the number of significant
covariates s, O(s?(s + logd)). In addition, we
develop a linear approximation method, the 2-
step Weighted Lasso procedure, to identify the
MCP estimator for the MCP-Bandit algorithm
under non-i.i.d. samples. Using this procedure,
the MCP estimator matches the oracle estimator
with high probability. Finally, we present two ex-
periments to benchmark our proposed the MCP-
Bandit algorithm to other bandit algorithms. Both
experiments demonstrate that the MCP-Bandit al-
gorithm performs favorably over other benchmark
algorithms, especially when there is a high level
of data sparsity or when the sample size is not too
small.

1. Introduction

Individual-level data have become increasingly accessible
in the Internet era, and decision-makers have accelerated
data accumulation with extraordinary speed in a variety of
industries, such as health-care, retail, and advertising. The
growing availability of user-specific data, such as medi-
cal records, demographics, geographic, browsing/shopping
history, etc., provides decision-makers with unprecedented
opportunities to tailor decisions to individual users. For
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example, doctors (i.e., decision-makers) can personalize
treatments for patients (i.e., users) based on their medical
history, clinical tests, and biomarkers (i.e., user-specific
data). These data are often collected sequentially over time,
during which decision-makers adaptively learn to predict
users’ responses to each decision as a function of users’
covariates (i.e., the exploration phase) and optimally adjust
decisions to maximize their rewards (i.e., the exploitation
phase) — an online learning and decision-making process.
We will adopt the multi-armed bandit model (Robbins 1952)
to study this process.

Individual-level data are typically presented in a high-
dimensional fashion, which poses significant computational
and statistical challenges. In particular, traditional statistic
methods, such as Ordinary Least Squares (OLS), require a
substantial number of samples (e.g., the sample size must be
larger than the covariates dimension) in order to be deemed
computationally feasible. Yet, under the high-dimensional
data structure, learning the accurate predictive models re-
quires even more data samples, which are obtained through
costly trials or experiments. Learning algorithms, such as
Lasso (Tibshirani 1996) and Minimax Concave Penalized
(MCP) (Zhang et al. 2010), have been developed to recover
the latent sparse data structure for high-dimensional data.
Therefore, compared to traditional statistic methods, Lasso
and MCP use significantly fewer data samples and deliver
better performance in high-dimensional settings.

In this paper, we propose a new algorithm, the MCP-Bandit
algorithm, for online learning and decision-making pro-
cesses in high-dimensional settings. Our algorithm follows
the ideas of the bandit model to balance the exploration-
and-exploitation trade-off and adopts the MCP estimator
to expedite the convergence of our parameter estimations
to their true values and to improve their statistical perfor-
mances. Since we focus on the multi-arm bandit model
that mixes the exploitation and exploration phases, sam-
ples generated under the exploitation phase are typically not
i.i.d., which significantly challenges the existing MCP litera-
ture. Therefore, we adopt a matrix perturbation technique to
derive new oracle inequalities for MCP under non-i.i.d sam-
ples. To our best knowledge, our work is the first one which
applies the MCP techniques to handle non-i.i.d samples. In
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addition, although it is statistically favorable to adopt the
MCP estimator, solving the MCP estimator (a NP-complete
problem) could be computationally challenging. We pro-
pose a linear approximation method, 2-step weighted Lasso
procedure (2sWL), under the bandit setting as an efficient
solution approach to tackle this challenge. It also guaran-
tees that the MCP estimator solved by the 2sWL procedure
matches the oracle estimator with high probability.

We theoretically demonstrate that the MCP-Bandit algo-
rithm can notably improve the cumulative regret bound com-
paring to existing high-dimensional bandit algorithms and
attain the optimal regret bound on the sample size dimension.
In particular, we benchmark our MCP-Bandit algorithm to
an oracle counterpart where all parameters are common
knowledge and adopt the expected cumulative regret (i.e.,
the difference in rewards achieved by the oracle case and our
MCP-Bandit algorithm) as the performance measure. We
show that the maximal cumulative regret of the MCP-Bandit
algorithm over 7" users (i.e., a sample size of T') is at most
O(logT'), which is the optimal/lowest theoretical bound
for all possible algorithms (Goldenshluger et al. 2013) and
improves the O((log T')?) bound of the Lasso-Bandit algo-
rithm developed in Bastani & Bayati (2015). It is worth
noting that the sparse structure of the high-dimensional data
typically implies that the dimension of significant covari-
ates (i.e., the covariates with non-zero coefficients) is much
smaller than that of all covariates (i.e. s < O(logd)). We
show that the cumulative regret of the MCP-Bandit algo-
rithm in the covariates dimension, d, and the number of
significant covariates, s, is bounded by O(s%(s + logd)),
which is a tighter bound than the Lasso-Bandit algorithm
(O(s?log? d)) in Bastani & Bayati (2015).

At last, through one synthetic-data-based experiment and
one real-data-based experiment (i.e., Warfarin Dosing ex-
periment), we evaluate the MCP-Bandit algorithm’s per-
formance compared to other state-of-the-art bandit algo-
rithms designed both in low-dimensional settings and in
high-dimensional settings. We find that the MCP-Bandit al-
gorithm performs favorably in both experiments, especially
when the data sparsity level is high. Furthermore, when the
sample size is not extremely small, the MCP-Bandit algo-
rithm appears to be the most beneficial. These observations
suggest that the MCP-Bandit algorithm delivers great per-
formance for high-dimensional data and provides a smooth
transaction from data-poor regime to data-rich regime for
decision-makers.

2. Literature

This research is closely related to the exploration-
exploitation trade off in the multi-armed bandit literature.
Generally, there are two approaches to model users’ reward
functions. The decision-maker could make no parametric as-
sumption on the reward functions (Yang et al. 2002; Rigollet

& Zeevi 2010), but these algorithms’ performances degener-
ate exponentially as the covariates’ dimension grows. There-
fore, we follow the second approach, a parametric approach,
and focus on the case where the arm rewards follow a linear
function of users’ covariates (Auer 2002; Rusmevichien-
tong & Tsitsiklis 2010; Chu et al. 2011; Agrawal & Goyal
2013). Under this approach, Dani et al. (2008), Abbasi-
Yadkori et al. (2011), and Abbasi-Yadkori et al. (2012)
show that the expected cumulative regret is bounded by
O(\/T) in both low-dimensional and high-dimensional set-
tings. This bound is further improved to O(log T') by Gold-
enshluger et al. (2013) under a OLS-Bandit algorithm in a
low-dimensional setting and to O((log T')?) by Bastani &
Bayati (2015) under the Lasso-Bandit algorithm in a high-
dimensional setting. This is a significant improvement from
O(V/T), especially as the sample size becomes larger. Our
research closely follows Goldenshluger et al. (2013) and
Bastani & Bayati (2015) and shows that the expected cu-
mulative regret for our proposed the MCP-Bandit algorithm
is bounded by O(log T') in both low-dimensional and high-
dimensional settings. This regret bound is essentially the
lowest theoretical bound for all possible algorithms (Gold-
enshluger et al. 2013). Besides the improved dependence on
sample size dimension 7', the MCP-Bandit algorithm will
provide a better bound in the covariates dimension d. In
the literature, the dimensionality’s dependence is common
to be polynomial in d. (Auer 2002; Rusmevichientong &
Tsitsiklis 2010; Chu et al. 2011; Agrawal & Goyal 2013;
Goldenshluger et al. 2013). Such polynomial dependence
in d can be quite costly and prohibit the practical adoption
of these algorithms in high-dimensional settings. Recently
the Lasso-Bandit algorithm proposed by (Bastani & Bay-
ati, 2015) reduces the dimensionality’s dependence to be
log-polynomial in d, i.e., O(log? d). However, the price to
pay is that the Lasso-Bandit algorithm could only attain a
suboptimal dependence in 7. The proposed MCP bandit
algorithm achieves a tighter log-polynomial dependence in
d, (i.e.,O(logd)) and the optimal dependence in T, (i.e.,
O(log T')) simultaneously.

Our research is also connected to the literature of statistical
learning algorithms that have been developed to recover
the latent sparse structure and, therefore, provide a good
performance guarantee even under limited samples in high-
dimensional settings. In particular, Lasso, proposed by
Tibshirani (1996), is able to identify a sparse subset of user
covariates and produce good estimations using limited sam-
ples. However, the Lasso estimator can be biased (Fan &
Li 2001). To address this issue, MCP has been proposed
by Zhang et al. (2010) and is shown to be unbiased and
can reach near optimal statistical performance, both the-
oretically and numerically. Although the MCP estimator
has statistical performance that is more desirable, solving
the MCP estimator is an NP-Complete problem due to the
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non-convexity penalty function (Liu et al.). The literature
has since proposed various algorithms, such as MIPGO (Liu
et al. 2016) and LLA (Zou 2006; Fan et al. 2014; 2015),
to overcome this computational hurdle. We also contribute
to this line of research by establishing the MCP estimator’
convergence rate and regret bounds in the multi-armed ban-
dit setting with non-i.i.d. samples and by developing an
efficient 2sWL procedure for the MCP estimator in high-
dimensional settings.

3. Problem Formulation

Following the settings of Auer (2002) and others, we present
a standard bandit problem. Consider a sequential arrival
process t € {1,2,...,T}. At each time step t, a single
user, prescribed by a vector of high-dimensional covariates,
x; € R4, arrives. All covariates vectors {x;};>( are
observable to a decision-maker and are i.i.d. distributed
according to an unknown distribution P,. The decision-
maker has access to a decision/arm set K = {1,2,..., K},
and the reward for decision ¢ € K on a user with a covariates
vector x is defined as:

Ri(z) =28 +e, (1)

where 3; € R'*? is the unknown coefficient vector for
decision ¢ € K and € follows the sub-gaussian distribution.
Following a standard assumption in the bandit literature
(Rusmevichientong & Tsitsiklis 2010) to avoid trivial de-
cisions, we assume that both covariates vector x and coef-
ficient vector 3; are upper bounded so that the maximum
regret at every time step will also be upper bounded.

In addition, the parameter vector 3; for ¢ € K is high-
dimensional with latent sparse structures (i.e., the true value
for the parameter vector 3" is sparse). We denote S; =
{7 = Bi"*¢ # 0} as the index set for significant covariates
(i.e., the covariates with non-zero coefficient parameters).
This index set is also unknown to the decision-maker, and
we define the maximum number of significant covariates
for all arms as s (i.e., s = max;ex |S;|), which is typically
much smaller than the dimension of the covariates vector.

Note that the decision parameter vector 3; is unknown,
but through a sequential online learning opportunities, the
decision-maker could partially resolve the uncertainty and
maximize its expected reward. We denote the decision-
maker’s policy as m = {m; };>0, where m, € K is the de-
cision prescribed by policy 7 at time ¢. To benchmark the
performance of policy m, we introduce an oracle policy
7* = {m} }+>0 under which the decision-maker knows the
true values of the covariates vector 3{"“¢ for all 7 € K and
chooses the best decision to maximize its expected reward
w7 = argmax; E[(R;(x:))]. Obviously, the decision-
maker’s reward is upper-bounded by the oracle policy. Ac-
cordingly, we define the decision-maker’s expected regret
at time ¢ for the observed user covariates x; under policy 7

as r.=E. [max; R;(x:) — Rx, ()], which is the expected
reward difference between the optimal oracle policy 7* and
the decision-maker’s policy 7 at time ¢. Our goal is to ex-
plore the policy 7 that minimizes the cumulative regret up
to time T, Rp=Y"1_, 4.

To analyze the regret, we present two technical assumptions.

Assumption 1 There exists a Cy > 0 such that for i # j €
K, ]P):c{lmT(/Bz - /Bj)| € (07,%]} < Cyk for k > 0.

The first assumption is often referred to as the Margin Con-
dition and is first introduced in the classification literature
by Tsybakov et al. (2004). Goldenshluger et al. (2013) and
Bastani & Bayati (2015) adopt this assumption to the linear
bandit model. The Margin Condition ensures only a fraction
of covariates can be drawn near the boundary hyperplane
zT(B; — B;) = 0 in which rewards for both decisions are
nearly equal. Clearly, if a large proportion of covariates are
drawn from the vicinity of the boundary hyperplane, then for
any bandit algorithm, a small estimation error in the decision
parameter vectors (3; and 3;) will lead decision-makers to
choose the wrong decision and perform poorly.

Assumption 2 There exists a partition K, and IC, for K.
For i € K,, we will have 27 8; + h < max;4; 2" 3;
for some h > 0. For i € K,, we define U, =
{x|2”B; > max;.; 2" B; + h} . There exist p* such that
min;e, P{x € U;} > p* for p* > 0.

The second assumption is the Arm Optimality Condition
(Goldenshluger et al. 2013; Bastani & Bayati 2015) and
ensures that the decision parameter vectors for optimal deci-
sions can be eventually learned, as the sample size increases.
In particular, this Arm Optimality Condition separates deci-
sions to an optimal subset (denoted by /C,) and a suboptimal
subset (ICs): Decision 7 in K, must be strictly optimal for
some users’ covariates vectors (denoted by set U;); other-
wise, decision j in IOy must be strictly suboptimal for all
users’ covariates vectors. Therefore, even if there is a small
estimation error for decision ¢ in C,, decision-makers are
more likely to choose decision ¢ for a user with a covariates
vector draw from the set U;. Accordingly, as sample size T’
increases, decision-makers could improve their estimations
for decision parameter vectors for optimal arms.

These two assumptions are directly adopted from the multi-
armed bandit literature and have been shown to be satisfied
for all discrete distributions with finite support and a very
large class of continuous distributions (see Bastani & Bayati
2015 for detailed examples and discussions).

4. MCP-Bandit Algorithm

In the big data era, one of the major challenges for online
learning is the high dimensionality coupled with a limited
sample size. The Lasso estimator is proposed to tackle
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this hurdle. Yet, the Lasso estimator could perform sub-
optimally due to the bias introduced by its penalty function,
especially when the magnitude of true parameters is not
small. One way to address this issue is to construct a new
penalty function that renders an unbiased estimator and
improves the sparse structure discovery. To this end, we will
adopt the novel MCP approach to achieve this goal.

4.1. MCP Estimation

Consider that the true parameter vector 3¢ is sparse with
a significant covariates index set S = {j : 35 # 0}, then
the oracle estimator, under which the decision-maker has
perfect knowledge of the index set .S, can be presented by
setting 3; = 0 for j € S° and solving

1
Bo(X,y) ié?trggleilfsl{%IIXﬁfyllﬁ}- )

It is worth noting that under the oracle estimator, the
decision-maker can directly ignore the irrelevant covari-
ates (by forcing their corresponding coefficients to be zero)
and essentially reduce the high-dimensional problem to a
low-dimensional estimation problem. Therefore, the oracle
estimator is the best estimator we can attain from the data,
and we will have the following result:

Lemma 1 Let s be the cardinality of S and X g be the
significant covariates matrix. If n > s, the estimator from
(2) will satisfies the following inequality with probability

1 —exp(—0(n)):

. . eig (X1 X5) \/?
)(7 __ @atrue < 202 . max\n -,
HIBO( y) B8 H2 > \/ o eigmm(%Xng)Q n

where eig_ .. (-) and eig,,;, (-) denote the maximum and
minimum eigenvalues.

[All proofs are in the supplement file] In practice, however,
the significant covariates index set .S is typically unknown.
Therefore, we introduce the MCP approach to learn and
recover this latent sparse structure. Specifically, we define

the MCP penalty function as P ,(z) = O\zl max (0, A —
L]t])dt, where a and X are positive parameters defined by
the decision-maker. Using this MCP penalty function, we

can present the MCP estimator as follows:

. 1 d
IBZV[(Xay7)‘) = argmﬂin{ %HXﬂ_y”%_‘_ZP)\@(ﬁ])}

j=1

3)
Denote the index set for non-zero coefficients solutions in
Equation (3) as J ={j : Bj # 0}. If the absolute value
of every non-zero element in the MCP estimator is greater
than a), then Py ,(-) become constant parameters for all
j € J. Therefore, we will have Py ,(3;) = $a)? for j €
J; and Py o(B;) = 0, otherwise. In other words, solving

the MCP estimator is equivalent to the following problem:
argming {|| X8 — y||3} , where 3; = 0 for j € J°.

If 7 = S, then we conclude that the MCP estimator con-
verges to the oracle estimator. Solving the MCP problem
could be challenging. Liu et al. (2016; 2017) have shown
that it is an NP-complete problem to find the MCP estimator
by globally solving Equation (3). In the next subsection,
we propose a local linear approximation method (i.e., the
2sWL procedure) to tackle this computational challenge and
demonstrate that the estimator solved by this procedure will
match the oracle estimator with high probability.

4.2. 2-Step Weighted Lasso Procedure

Let w = {w;} be positive weights, and we define a
weighted Lasso estimator as follows:

R 1 d
B (X, y, w) = argmin {5-| X8 y5 + ; w;|B;1}.
Then, the 2sWL procedure consists of the following two
steps. First, we solve a standard Lasso problem where all
positive weights are set to a given parameter \g. Second, we
use the Lasso estimator obtained in the first step to update
the weights vector w by taking the first-order derivatives of
the MCP penalty function, and then applying this updated
weight vector, we solve the weighted Lasso problem to
obtain the MCP estimator. The procedures of 2sWL at time
t can be described as follows:

2-Step Weighted Lasso (2sWL) Procedure:

Require: input parameters a and g
Step 1: solve a standard Lasso problem

B1 = Bw (X, y,0);
P;,a(|617j|) sfor 31 ; #0
Ao ,for 31 ;=0
and solve a weighted Lasso Problem

Basw (X, y, w) = Bw (X, y, w).

Step 2: update w; = {

Note that it is equivalent to solve the Lasso problem twice in
the 2sWL procedure; therefore, the worst-case computation
complexity for 2sWL is in the same order as for the standard
Lasso problem. In practice, we can initialize the second step
procedure with a warm start from the first step of the Lasso
procedure, which further reduces the computation time.

Next, we will show that the MCP estimator identified by
the 2sWL procedure can recover the oracle estimator with
high probability. To this end, we will need the standard
Compatibility Condition for Lasso estimator (Bithlmann &
Van De Geer 2011), where we denote ¢ as the compatibility
constant, to handle high dimensional data with sparse struc-
ture. The Compatibility Condition for Lasso estimators is
analogous to the standard positive-definite assumption for
the OLS estimator but less restrictive (e.g., the Compatibility
Condition allows collinearity in the covariates matrix).
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Proposition 1 Let min{|g{™"¢| : pi“c # 0, j =
1,2,..,d} > (455 +a)A, then the following MCP inequality
holds with probability exp(—O(n) + O(log d)):

202%eig, . (2 XEXs) [s

[Boswi (X, y, \)—B72 > \/ " —.

eigmin(%XéFXS)2 n

We can further show that as the sample size increases, the
MCP estimator converges to the true parameter at the opti-
mal convergence rate (Wang et al. 2014).

Proposition 2 Set A\ = O(y/logd/n). If the sample size
exceeds a certain threshold (i.e., n > O(s? -log d)), the con-
vergence rate for the MCP estimator under the 2swL proce-
dure satisfies ||Basw . (X, 9, A) — B7¢||; = O(s+/1/n),
which matches the optimal convergence rate and is faster
than that of the Lasso estimator (e.g.,O(s+/logd/n)).

Together with the fact that the MCP estimator is an unbi-
ased estimator, we believe that adopting the MCP estimator
in multi-armed bandit model in high-dimensional settings
could improve the decision-maker’s reward and curb its
expected cumulative regret.

4.3. MCP-Bandit Algorithm

After establishing the MCP estimator’s statistical property,
we are ready to present our proposed the MCP-Bandit al-
gorithm. The proposed algorithm combines forced samples
from all decisions at a pre-determined time sequence during
which the decision-maker myopically selects a prescribed
decision. In particular, we follow the forced sampling se-
quence developed by Goldenshluger et al. (2013) for the
two-arms setting and by Bastani & Bayati (2015) for the
multi-arms setting:

Forced sampling sequences: For a given positive integer ¢ €
77", designed by the decision-maker, we define a sequence
of forced samples for decision ¢ as follows: T;={(2" — 1) -
Kq+jne{0,1,2,..} andj e {q(i —1)+1,q(i — 1)+
2,...,iq}}. At each prescribed time ¢ € T;, the decision-
maker will myopically select decision 7. Up to time ¢, we
define the set of forced sampling sequences for decision ¢ as
7.+, where the cardinality of this forced sample set is at least
| Kqlogt|. We further denote the MCP estimator based on
the forced sampling sequence 7; as B M (Tip—1, A1)

All-sample sequences: In addition to myopically select de-
cision ¢ according to the prescribed forced sampling se-
quences, the decision-maker could choose decision 7 by
comparing rewards among all decisions and pick decision %
to maximize its reward. We denote S; ; as the set of times
decision 1 is selected, S;; = {t,|7rtr —iforl <t < t},
and use B M (Sit—1,A2¢) to represent the MCP estimator
based on this all sample set. Clearly, the forced sampling
set 7;+ is a subset of S; ;.

MCP-Bandit Algorithm

Require: input parameters ¢, i, A1, A2 o
Initialize BM(7§70, A1) and BM(Si,m A2y) fori e K
fort =1,2....do
Observe x;
Ifte 7, fori=12,...K
Set 7, to ¢
Else
Update B2/ (i +—1, \1) for i € K with 2sWL
K= {i|w$ﬁM(7;,t717)\1) >
maxjer{@} Bar(Tje-1, M)} — h/2}
Update Bns(S; 11, Aa—1) for i € K with 2sWL
Ty = arginax, - g aftTBM(Si,t—l, /\Q,t—l)}
End If

Set Sy, 4 10 Sy, 4—1 Ut and Ay t0 Az,o\/@

Play arm 7; and observes y;
end for

The MCP-Bandit algorithm can be described and executed
as follows. If the current time ¢ is prescribed in the forced
sample sequence 7;, then the decision-maker will select
decision ¢. Otherwise, the decision-maker will first estimate
the MCP estimator based on the forced sampling sequence
T; before time ¢, ,é M (Tit—1, A1), via the aforementioned
2sWL procedure, and then construct a decision subset K ,in
which all decisions are within & /2 of the maximum possible
reward. Note that any decision that is not in this subset K
will be a suboptimal decision for the current user. Finally,
the decision-maker uses all samples to re-estimate the MCP
estimator B M (Sit—1,A2,¢), based on which the decision-
maker will compare the reward performance for all decisions
in the subset K and select the decision that generates the
highest expected reward.

The following Theorem is the main result of this paper and
establishes the expected cumulative regret upper bound for
the MCP-Bandit algorithm.

Theorem 1 When ¢ > qo, K > 2, d > 1, T >
to , and we take A1 = (¢*p*h)/(648Tmax) » A2 =

$*Tmax\/02(logt + log d)/((p*)3t)/2s, and Amin > O.
The expected cumulative regret of the MCP-Bandit algo-
rithm is upper-bounded at time 7" by

RT S 2(Kq)2bxmax + 2C(l quxmax log T
+ 2KbxpmaxlogT

CoS20% A max .

min

= O(s*(s +logd)logT), 4

where =« and b are upper bounds for covariate X and
parameters 3, C'1, and C'; are positive constants independent
onT and d, gy = O(s?logd), and ty > O((Kq)?).

+ (AKbrpmax(Co + 1)+

Under a low-dimensional multi-armed bandit model setting,
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Goldenshluger et al. (2013) show that the lower-bound on
the expected cumulative regret is O(log T'), which is also
applicable (i.e., is the lower-bound) to our high-dimensional
setting. Theorem 1 demonstrates that the maximal expected
cumulative regret of the MCP-Bandit algorithm over T users
is upper-bounded by O(log T'). Therefore, the MCP-Bandit
algorithm achieves the optimal expected cumulative regret
in sample size T'. This result comes from the fact that we can
ensure O(logT)) forced samples at time 7', and therefore
the MCP estimator will match the oracle estimator with
high probability, which leads to the log T dependence. In
addition, when compared to the Lasso-Bandit algorithm
proposed by Bastani & Bayati (2015) in high-dimensional
settings, the MCP-Bandit algorithm reduces the regret upper-
bound from O(log® T') to O(log T).

Theorem 1 also shows that the expected cumulative regret
of the MCP-Bandit algorithm in the covariates dimension d
is upper-bounded by O(log d), which is also a tighter bound
than that of the Lasso-Bandit algorithm O(log? d) and other
classic bandit algorithms (e.g., OLS bandit in Goldenshluger
et al. 2013 or OFUL in Abbasi-Yadkori et al. 2011), which
typically yield polynomial dependence in d.

5. Key Steps of Regret Analysis for the
MCP-Bandit Algorithm

In this session, we will brief key steps in establishing the ex-
pected cumulative regret upper-bound for the MCP-Bandit
algorithm in Theorem 1. We first highlight the influence of
the non-i.i.d. data, inherited from the multi-armed Bandit
model, on statistical convergence properties of the MCP
estimator and further prove a general oracle MCP inequality
for these non-i.i.d. data. Then, we will apply this result to
establish the convergence properties for both forced-sample
and all-sample estimators and to provide the corresponding
cumulative regret. Finally, the total expected cumulative
regret can be established by adding up the regret in these
estimators. The main structure and sequence of our proving
steps described above are first introduced by Bastani & Bay-
ati (2015), who present their analysis for the expected regret
for the LASSO-Bandit algorithm in this sequence. We will
follow their presentation structure, but with different prov-
ing techniques and convergence properties, to illustrate the
key steps in analyzing the MCP-Bandit algorithm.

5.1. Oracle Inequality for Non-i.i.d. Data

We first show a general result for the MCP estimator under
non-i.i.d. data. Consider a linear model: y = X3 + ¢,
where X™*? is the design matrix, y™*! is the response
vector and €"*! is the i.i.d o—subgaussians. Denote A
as the index set for a sub-sample in X and y. The
MCP estimator for this linear model is B;(A,\) =

arg min{ﬁ”X““ﬁ — A2+ P,\(ﬁ)}, where X is the

covariate matrix with sample indexed by 4. Note that if
samples in A are not i.i.d, then standard MCP convergence
results (Fan et al., 2014; 2015) can not be directly applied.
Yet, as there are samples generated via the forced sample
sequences (e.g., 7; for i = 1,..., K), there must exists a
subset A" C A such that all samples in this subset are i.i.d
from distribution Px, that is, { X, |t € A’} ~Px % ..Px.
The next step is to show that when the cardinality of A
(i.e., |A']) is large enough, B (A, \) will not be far away
from an all i.i.d. sample estimator and converge to the true
parameter. We formally summarize this result in Proposition
3:

Proposition 3 If |A'|/|A| > ¢o/2 > 0, |85 | min >

min

(4s/6% + a)h, |A| > 1Wstnglosd oo piaTa ] —

cop?

Amin > 0 and eigmax(ﬁ(Xg‘)TXg‘) < Amax, then the

Amax0? S

oracle inequality ||Bas (A, \) — 87|y > e [

holds for ¢ > 0 with probability exp(—O(].A|) + O(log d)),
where X ¢! is the significant covariates matrix with sample
indexed by A.

5.2. Oracle Inequality for Forced-sample Estimator

In the forced sample set 7; ;, each sample is drawn i.i.d
from the whole population. Denote 7;:,5 = T+ UU;, where
U, is the set that decision i is the optimal choice. First,
we need to show that up to time ¢, ’Elt\ and |7; .| are
not too small with high probability. By the design of the
forced sampling sequence, we will have |7; .| > gologt,
q > [4q0], and t > (Kq)?. If we define an indicator
2t to indicate whether @;; € 7, ,, then 2, will be i.i.d
Bernoulli random variable and E|[z;,] > p*. Thus |T |
follows Binomial(|7; |, E[z; ¢]), from the Chernoff bound
7.,
[7: .l
To apply the results in Proposition 3, we need to show

for Binomial random variable: P

p; 1
>ZFr2>1-3

21623 logd 212523  logd /
that |7, > =—mes 08 — 2 “Tmas 080 Ag|T] | >
123 ‘
qo logt holds, if ¢ > % and logt > 1, then

the sample size requirementlwill be satisfied. If we set
2 2,2

qo > W , for logt > 1 the following inequality

will hold with probability exp(—O(log dlogt)):

1B (Tt A) = B7|l1 >

®)

4xmax

5.3. Oracle inequality for All-sample estimator

Next, to show the oracle inequality for all-sample MCP
estimator, we will start with the following Proposition (i.e.
Proposition 3 in Bastani & Bayati (2015)) to establish the
oracle inequality for the Lasso estimator:

Proposition 4 (Proposition 3 of Bastani & Bayati (2015))
The all-sample estimator satisfies the oracle inequality,

HBL (S’i,t) - IBtrue Hl > 16xmax\ / 1C2i;73k31§1gtd , with probabil-
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. p)2(cant ..
ity + +2exp (— %t), where ¢; and ¢, are positive
constants.
2
Let A = ¢ Zmax [logtilosd ‘hen for 3 gjven minimum
250 (p*)3ecit

signal strength ||B3!“¢|| min > (% + a)A, Proposition 4

directly suggests that || 3y — B'7¢|| oo < ||Bar — B! ¢||1 <
32s §

¢

Therefore, the first-order derivatives for the MCP penalty
function with respect to the parameters of significant co-
variates will be zero. On the other hand, for non-significant
covariates, the first-order derivatives for the MCP penalty
function will be large numbers:

OPx(Bs) =0 L | Blmin > aX
8P)\(/65'C) > ap)\(%A) ,if |/6$C|max < %)\

Accordingly, we use these first-order derivatives as the
weights to the weighted Lasso problem, and its oracle in-
equality can be stated as in the following proposition.

Proposition 5 When ¢t > (K¢)? and ¢ = O(s?logd),

~

the all sample estimator B (Sis, A), where A =

¢2$max logt+logd
2s0 (p*)3ecrt ?

is an oracle solution and satisfies the

oracle inequality: P {[[Bas — 87|, > \ [} < ¢,
where ( = exp(—O(t) + O(log d)) + O(1/t).

5.4. Bounding the Cumulative Expected Regret

We now bound the cumulative regret for the MCP-Bandit
algorithm by dividing our time periods [T7] into three groups
and providing a upper bound for each group.

The first group contains all samples with ¢ < (K¢q)? and
all forced samples. When ¢ < (K q)?2, we do not have suf-
ficient samples to accurately estimate covariates parameter
vectors, the decision performance under the MCP-Bandit
algorithm will be sub-optimal comparing to that of the
oracle case. Combined with the fact that forced sample
size up to time 7" is on the order of O(logT), we can
bound the cumulative regret by their worst case performance:
2(K q)?b2max +2C1 log T K qbxax. Next, we segment the
t > (Kq)? without forced samples case into two groups,
depending on whether we can accurately estimate covariates
parameter vectors by using only forced samples.

The second group includes scenarios where ¢ >
(Kq)? and forced sample based estimators are not
accurate enough. In particular, we define A; =

{HBM(ﬁ,t,)\) — By < - } When A; doesn’t

hold, the forced sample based estimator vector B (Tit, )
is not near the true parameter vector 31"“¢, Under those
scenarios, our decisions will be sub-optimal with high prob-
ability. Note that the size of forced samples increases in ¢,
so the probability of event A; not occurring decreases in

time ¢. Through Equation (5), we can bound the cumulative
regret for the second group by 2K bx .« log T'.

The third group includes cases where ¢ > (K¢q)? and
forced sample based estimators are accurate (i.e., event A;
holds). Note that under these scenarios, we can improve
our estimation accuracy by using the all sample estima-
tor (O(+/1/t) in Proposition 5), instead of relying only
on the forced sample estimator (O(4/1/logt) in Proposi-
tion 3). Benefiting from the improved estimation accuracy,
we can bound the cumulative regret for the third group by
(4K by + G050 dmax ) 10g T.

6. Experiments

We benchmark the MCP-Bandit algorithm to two ban-
dit algorithms that are not specifically designed for high-
dimensional settings (i.e., OLS-Bandit by Goldenshluger
et al. 2013 and OFUL by Abbasi-Yadkori et al. 2011) and
one bandit algorithm that is developed for high-dimensional
problems (i.e., Lasso-Bandit by Bastani & Bayati 2015).

6.1. Synthetic Data

In the synthetic data experiment, we present a two-arm
bandit setting with decision parameter 3;, ¢ = 1,2. To
simulate different sparsity level, we generate four possi-
ble covariates dimensions, d = 10, 102, 102, and 10%, and
keep the dimension for significant covariates unchanged
s = 5. Other parameter combinations exhibit similar pat-
tern and observations, and therefore omitted. In addition,
we share the same parameter A in both the Lasso-Bandit
algorithm and the MCP-Bandit algorithm and select the
unique parameter for the MCP-Bandit algorithm a at 2. We
arbitrarily set the coefficients for significant covariates for
the first arm to be 8; = (1,2, 3,4,5) and for the second
armto be B2 = 1.1 3 . The covariates are generated from
N(0,%), where ;; = 0.5/"=71 and the random error € fol-
lows N (0, 1). For each covariates dimension, we generate
an average of 10, 000 trials. Figure 1 shows the influence
of the covariates dimension d and the sample size 7" on the
cumulative regret for OFUL, OLS-Bandit, Lasso-Bandit,
and MCP-Bandit algorithms.

We observe that the MCP-Bandit algorithm outperforms
all other three benchmarks and has the lowest cumulative
regret. The cumulative regret for all four algorithms in-
creases in the covariates dimension d, but at different rate
(see the left-hand-side of Figure 1). Comparing to OLS-
Bandit (Goldenshluger et al., 2013) and OFUL algorithm
in (Abbasi-Yadkori et al., 2011), Lasso-Bandit (Bastani &
Bayati, 2015) and MCP-Bandit algorithms, both of which
are designed for high-dimensional problems, have lower cu-
mulative regret that increases in d at a slower rate. Further,
the benefits of adopting the MCP-Bandit algorithm seem to
increase in d, which confirms our theoretical findings: The
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Figure 1. The influence of the covariates dimension d and the sample size 7" on the expected cumulative regret.

MCP-Bandit algorithm has a better dependence in d (e.g.,
log d), than Lasso-Bandit (e.g., log2 d), OFUL, and OLS-
Bandit (the last two algorithms have polynomial bounds in
d).

The right-hand-side of Figure 1 reports the influence of sam-
ple size T on the cumulative regret. As MCP-Bandit pro-
vides the optimal time dependence under high-dimensional
settings, MCP-bandit is guaranteed to strictly improve from
Lasso-Bandit, especially when T is not too small. When
there are insufficient samples, all algorithm fails to accu-
rately learn covariates parameters vectors. As a result, all
four algorithm perform equally poor under limited samples.
As the sample size increases, the MCP-bandit algorithm
immediately outperforms all other benchmarks. In the right-
hand-side of Figure 1, the regret reduction of MCP-Bandit
over Lasso-Bandit is significant (> 1%) when T is larger
than 35; the regret reduction improves in T and is stabilized
around 16% after 175 samples. This observation also echoes
our theoretical findings that the MCP-Bandit algorithm at-
tains the optimal regret bound in sample size dimension
(O(log T')).

6.2. Warfarin Dosing Patient Data

The second experiment considers a health-care decision-
making process in which physicians determine the opti-
mal warfarin dosage for every incoming patient. The war-
farin dosing patient data (Consortium et al. 2009), which is
known to be dense (e.g., logT is not necessarily larger
than s), contains approximately 100 detailed covariates
for 5,700 patients. Under this dataset, Bastani & Bayati
(2015) demonstrate that the Lasso-Bandit algorithm outper-
forms many existing bandit algorithms, including OFUL_LS
(Abbasi-Yadkori et al. 2011), OFUL-EG (Abbasi-Yadkori
et al. 2012), and OLS-Bandit (Goldenshluger et al. 2013).

We apply the MCP-Bandit algorithm to the same warfarin
dosing patient data to evaluate its performance in practi-
cal decision-making contexts where technique assumptions
specified early may not hold. Figure 2 compares the aver-
age percentage of correct dosing decisions under the MCP-

Bandit algorithm to those under the oracle case, OLS-Bandit,
Lasso-Bandit, OFUL, and actual physicians’ decisions. We
observe that when the number of patients is not too small
(i.e., great than 370 patients), the MCP-Bandit algorithm
always outperforms all other benchmarks (e.g., the regret
reduction ranges from 0% to 22.1%).
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Figure 2. The percentage of optimal warfarin dosing decisions.

7. Conclusion

In this paper, we propose the MCP-Bandit algorithm for
online learning and decision-making processes in high-
dimensional data settings. To overcome the computational
and statistical challenges associated with solving the MCP
estimator under non-i.i.d. samples, we propose the 2sWL
procedure and show that the MCP estimator solved by the
2sWL procedure matches the oracle estimator with high
probability. We demonstrate that the cumulative regret of
the MCP-Bandit algorithm over sample size 7" is bounded
by O(log T'), which is lowest theoretical bound for all pos-
sible algorithms. On the covariates dimension d and the
number of significant covariates dimension s, the cumu-
lative regret of the MCP-Bandit algorithm is bounded by
O(s%(s + logd)), which is also a tighter bound than the
other existing bandit algorithms. We show that the MCP-
Bandit algorithm performs favorably in all our experiments,
especially when the data sparsity level is high or when the
sample size is not too small.
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