A. Proofs

A.1. Proposition 2

Since $B \in \mathcal{B}$, we have

$$||B(:,r)||_2 \le 1, \forall r = 1, \dots, R,$$
(17)

so that

$$\|B\|_F \le \sqrt{R}.\tag{18}$$

Therefore, when

(i) $W_i \in \mathcal{W}_{\ell 1}$: Use (18), we can write

$$||BW_i(:,k)||_2 \le ||B||_F ||W_i(:,k)||_2 \le \sqrt{R} ||W_i(:,k)||_2.$$

Thus, if $\sqrt{R} ||W_i(:,k)||_2 \leq 1$, then

$$||BW_i(:,k)||_2 \le \sqrt{R} ||W_i(:,k)||_2 \le 1,$$

which means $||BW_i(:, k)||_2 \le 1$.

(ii) $W_i \in \mathcal{W}_{\ell 2}$: First, we have $BW_i(:,k) = \sum_{r=1}^{R} W_i(r,k)B(:,r)$. Then, by Cauchy-Schwarz inequality, we have

$$||BW_{i}(:,k)||_{2} = \left\|\sum_{r=1}^{R} W_{i}(r,k)B(:,r)\right\|_{2}$$

$$\leq \sum_{r=1}^{R} ||W_{i}(r,k)B(:,r)||_{2}$$

$$\leq \sum_{r=1}^{R} |W_{i}(r,k)|||B(:,r)||_{2}$$

$$= \sum_{r=1}^{R} |W_{i}(r,k)| = ||W_{i}(:,k)||_{1}, (19)$$

where (19) is due to (17). Therefore, if $||W_i(:,k)||_1 \le 1$, $||BW_i(:,k)||_2 \le 1$ holds.

A.2. Proposition 3

Let $B(:,r) \equiv \mathcal{F}(B(:,r))$, (12) is equivalent to (11) since the following equations hold:

$$f_i(B, W_i, Z_i)$$

$$= \frac{1}{2} \left\| x_i - \sum_{k=1}^{K} \left(\sum_{r=1}^{R} W_i(r,k) B(:,r) \right) * Z_i(:,k) \right\|_2^2,$$

$$= \frac{1}{2} \left\| x_i - \sum_{r=1}^{R} B(:,r) * \left(\sum_{k=1}^{K} W_i(r,k) Z_i(:,k) \right) \right\|_2^2,$$

(20)

$$= \frac{1}{2P} \left\| \mathcal{F}(x_i) - \sum_{r=1}^{R} \mathcal{F}(B(:,r)) \odot \mathcal{F}(Z_i W_i^{\top}(:,r)) \right\|_2^2,$$

(21)

 $=\tilde{f}_i(\tilde{B}, W_i, Z_i),$

where (20) is due to

$$\sum_{k=1}^{K} \left(\sum_{r=1}^{R} W_t(r,k) B(:,r) \right) * Z_t(:,k)$$

= $\sum_{r=1}^{R} B(:,r) * \left(\sum_{k=1}^{K} W_i(r,k) Z_i(:,k) \right).$

Then, (21) comes from the convolution theorem (Mallat, 1999), i.e.,

$$\mathcal{F}(B(:,r) * Z_i W_i^{\top}(:,r)) = \mathcal{F}(B(:,r)) \odot \mathcal{F}(Z_i W_i^{\top}(:,r)),$$

where B(:, r) and $Z_i W_i^{\top}(:, r)$ are first zero-padded to *P*-dimensional, and the Parseval's theorem (Mallat, 1999): $\frac{1}{P} \|\mathcal{F}(x)\|_2^2 = \|x\|_2^2$ where $x \in \mathbb{R}^P$.

As for constraints, when B is transformed to the frequency domain, it is padded from M dimensional to P dimensional. Thus, we use $\mathcal{C}(\mathcal{F}^{-1}(\tilde{B}))$ to crop the extra dimensions to get back the original support.