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A. Proofs
A.1. Proposition 2

Since B 2 B, we have

kB(:, r)k2  1, 8r = 1, . . . , R, (17)

so that
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Therefore, when

(i) Wi 2 W`1: Use (18), we can write

kBWi(:, k)k2  kBkF kWi(:, k)k2 
p
RkWi(:, k)k2.

Thus, if
p
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which means kBWi(:, k)k2  1.

(ii) Wi 2 W`2: First, we have BWi(:, k) =PR
r=1 Wi(r, k)B(:, r). Then, by Cauchy-Schwarz

inequality, we have
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|Wi(r, k)| = kWi(:, k)k1, (19)

where (19) is due to (17). Therefore, if kWi(:, k)k1 
1, kBWi(:, k)k2  1 holds.

A.2. Proposition 3

Let B̃(:, r) ⌘ F(B(:, r)), (12) is equivalent to (11) since
the following equations hold:
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where (20) is due to
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Then, (21) comes from the convolution theorem (Mallat,
1999), i.e.,

F(B(:, r) ⇤ ZiW
>
i (:, r)) = F(B(:, r))� F(ZiW

>
i (:, r)),

where B(:, r) and ZiW>
i (:, r) are first zero-padded to P -

dimensional, and the Parseval’s theorem (Mallat, 1999):
1
P kF(x)k22 = kxk22 where x 2 RP .

As for constraints, when B is transformed to the frequency
domain, it is padded from M dimensional to P dimensional.
Thus, we use C(F�1(B̃)) to crop the extra dimensions to
get back the original support.


