
Appendix for “Stein Variational Message Passing for Continuous Graphical
Models”

A. Proof of Theorem 1
Proof. Consider f = [f1, . . . , fd]

> ∈ H, where H =
H1 × · · · × Hd. Using the reproducing property of Hi,
we have for any fi ∈ Hi

Ex∼q[Pxi
fi(x)] = 〈fi, Ex∼q[Pxi

ki(x, ·)]〉Hi
.

Recall that φ∗i (·) = Ex∼q[Pxiki(x, ·)], and φ∗ =
[φ∗1, . . . , φ

∗
d]
>. The optimization of the Stein Discrepancy

is framed into

D(q || p) = max
f∈H,||f ||H≤1

Ex∼q[Px
>f(x)]

= max
f∈H,||f ||H≤1

d∑
i=1

Ex∼q[Pxi
fi(x)]

= max
f∈H,||f ||H≤1

d∑
i=1

〈fi, φ∗i 〉Hi

= max
f∈H,||f ||H≤1

〈f ,φ∗〉H.

This shows that the optimal f should equal φ∗/||φ∗||H,
and D(q || p) = 〈φ∗/||φ∗||H,φ∗〉H = ||φ∗||H.

B. Proof of Theorem 2
Proof. Plugging the optimal solution in Theorem 1 into the
definition of Stein discrepancy (2), we get

D(q || p) = 1

||φ∗||H
Ex∼q[Px

>φ∗(x)]

=
1

||φ∗||H

d∑
i=1

Ex∼q[Pxiφ
∗
i (x)]

=
1

||φ∗||H

d∑
i=1

Ex,x′∼q[Pxi
Px′

i
ki(x, x

′)].

On other hand, because D(q || p) = ||φ∗||H, we have

D(q || p)2 =

d∑
i=1

Ex,x′∼q[Pxi
Px′

i
ki(x, x

′)]. (B.1)

To prove (10), note that

Ex∼q[Pxif(x)]

= Ex∼q[Pxif ]− Eq[Qxif ]

= Ex∼q[(∇xi log p(x)−∇xi log q(x))f(x)]

= Ex∼q[(∇xi log p(xi|x¬i)−∇xi log q(xi|x¬i))f(x)]
= Ex∼q[δi(x)f(x)].

Applying this equation twice to (B.1) gives

D(q || p)2 =

d∑
i=1

Ex,x′∼q[δi(x)ki(x, x
′)δi(x

′)]. (B.2)

By (B.2) and the definition of strictly integrally positive
definite kernels, we can see that D(q || p) = 0 implies
δi(x) = 0, ∀i ∈ [d], if ki(x, x′) is strictly integrally posi-
tive definite for each i. Note that δi(x) = 0 means p and q
matches the conditional probabilities:

p(xi|x¬i) = q(xi|x¬i), ∀i ∈ [d]. (B.3)

For positive densities, this implies that p(x) = q(x) (see
e.g., Brook (1964); Besag (1974)).

C. Proof of Theorem 3
Proof. For a graphical model p(x) with Markov blanketNi

for node i, we have

∇xi
log p(xi|x¬i) = ∇xi

log p(xi|xNi
) ∀i ∈ [d].

Moreover, by Stein’s identity on q, we have

Ex∼q[∇xi
log q(xi | xNi

)f(x)+∇xi
f(x)] = 0, ∀i ∈ [d].

With a similar argument as the proof of Theorem 2, we get

Ex∼q[Pxi
f(x)]

= Ex∼q[(∇xi log p(xi|xNi
)−∇xi log q(xi|xNi

))f(x)]

= Ex∼q[δi(xCi)f(x)],

where δi(xCi) = ∇xi log q(xi|xNi)−∇xi log p(xi|xNi).

Applying this equation twice to (B.1) gives

D(q || p)2 =

d∑
i=1

Ex,x′∼q[δi(xCi)ki(x, x
′)δi(x

′
Ci)].
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Therefore, if ki(x, x′) is strictly integrally positive defi-
nite on xCi , Stein discrepancy D(q || p) = 0 if and only
if q(xi|xNi) = p(xi|xNi).
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