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3. Exemplar of A Pair of Source and Target Domains
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Figure 1. One example pair of source and target domains.

4. Coefficients of RBF Kernels
We plot the values of the coefficients for Nk RBF kernels, i.e., βk for k = {1, · · · , Nk} in Figure 2. Note that we use 33

RBF kernels as stated in the paper.
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Figure 2. Values of the coefficients for all Nk RBF kernels.

5. Discussion on le in Equation (2)
le, the performance improvement ratio, heavily depends on the number of labeled examples in the target domain Te, i.e.,

nt
le. A smaller number of target labeled examples tends to produce a larger performance improvement ratio, and vice versa.
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Figure 3. Empirical validation of the assumed function that bridges the number of labeled examples in a target domain and the performance

improvement ratio.

Since the nt
le varies from experience to experience, we adopt a transformed l̂e instead of le to train the reflection function

in Equation (2). The l̂e is expected to be the expectation of the performance improvement ratio in the range of [p, q] for

the e-th experience, where p and q are the minimum and maximum number of target labeled examples. To compute the

expectation, we first assume that the performance improvement ratio with regard to the number of target labeled examples

follows the following monotonically decreasing function,

f(x) =
ae(x+ b)

x
, (10)

where ae and b are two parameters deciding the function. ae is conditioned on a specific experience but b is shared across all

experiences. With the assumed function, we can obtain the expected performance improvement ratio as:
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Combining with the fact that f(nt
le) =

ae(b+nt
le

nt
le

= le, we can finally obtain the corrected l̂e as,

l̂e = le
nt
le

nt
le + b

(1 +
b

q − p
log

q

p
),

where the parameter b can be learned simultaneously during optimizing the objective (2).

We have empirically validated the soundness of the assumed function in Figure 3. We first randomly selected three transfer

learning experiences. For each, we vary the number of labeled examples in the target domain and obtain the curve of the

performance improvement ratio w.r.t. the number of labeled examples (see the red lines in Figure 3). Meanwhile, we fix

b = 0.2582 which is learned from all transfer learning experiences, and fit the function y = ae(x+b)
x to the true trend by

solving ae. Obviously, the function is qualified to model the trend of the performance improvement ratio w.r.t. the number

of labeled examples.

6. Algorithmic Stability and Generalization Bounds
6.1. Latent Feature Factor Based Algorithms

In this subsection, we would discuss the algorithmic stability and generalization bounds for latent feature factor based

transfer learning algorithms without considering past transfer leaning experiences. We denote the transferred knowledge

from the e-th source domain to the e-th target domain as the latent feature factor matrix We. As a result of the knowledge

transfer, the target domain is represented on the latent feature factors, i.e., Xt
eWe. Without loss of generality, we assume
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that the e-th target domain learns a predictor h′
e by minimizing the following regularized least square objective function:
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Note that such orthonormal constraint on the latent feature factor matrix We has been widely adopted and proven effective

in dimension reduction methods such as PCA as well as in transfer learning algorithms (Baktashmotlagh et al., 2013; 2014).

The optimization problem (13), also known as Tikhonov regularization (Golub et al., 1999), is uniformly stable.
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where the first inequality comes from the fact that the squared loss function is 2B-admissible given |yte| ≤ B, and the

second follows the famous Cauchy-Schwarz inequality. Meanwhile, the right-hand side of the inequality (15) Bf1(h̃e ‖
he) +Bf1(he ‖ h̃e) equals,
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Provided in (15) that the right-hand side is upper-bounded by the left-hand side, we combine (16) and (17) and give,√∑
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Finally, we reach the conclusion that, ∣∣∣∣‖yte − 〈he, (x
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Upon Theorem 1, the generalization bound for the e-th target domain with knowledge transferred from the e-th source

domain can be derived in the following theorem according to (Bousquet & Elisseeff, 2002).

Theorem 2. Suppose that the squared loss function is upper-bounded by M . For any he that is the solution of the
optimization problem 13, and any δ > 0, with probability at least 1− δ,
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where Rt(he) = E(x,y)‖y − 〈he,x
T 〉‖2 is the expected risk and Rt
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(he) =

1
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empirical risk we have mentioned above.

6.2. Learning to Transfer

In the next, we conduct a theoretic investigation into how previous transfer learning experiences influence a transfer

learning task of interest. Consider S = {〈S1, T1〉, · · · , 〈SNe
, TNe

〉} to be Ne transfer learning experiences or the so-called

meta-samples (Maurer, 2005). Meanwhile, we focus on the (Ne + 1)-th transfer learning task 〈SNe+1, TNe+1〉 in which the

(Ne + 1)-th source domain is expected to improve learning performance of the (Ne + 1)-th target domain via knowledge

transfer. Let L(S) be our algorithm that learns meta-cognitive knowledge from Ne transfer learning experiences in S and

applies the knowledge to the (Ne + 1)-th transfer learning task. Before proceeding to give the generalization bound, we first

prove that L(S) is uniformly stable.

To make the proof self-contained, we first present Lemma 11 in (Maurer, 2005) as following.

Lemma 1. (Maurer, 2005) Let G1 and G2 be positive operators and λ > 0. Then

1. Gi + λI is invertible;

2. ‖(Gi + λI)−1‖∞ ≤ 1
λ ;

3. we have ‖(G1 + λI)−1 − (G2 + λI)−1‖∞ ≤ 1
λ2 ‖G1 −G2‖∞;
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4. let x1 and x2 satisfy (Gi +mλI)xi = y, then
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Theorem 3. Suppose that for any xt
e we have ‖xt

e‖2 ≤ rx, and for any yte we have |yte| ≤ B. Meanwhile, for any e-th
transfer learning experience, we assume that the latent feature factor matrix ‖We‖ ≤ rW . We also reasonably assume that
the latent feature factor matrix for the (Ne + 1)-th transfer learning task is a linear combination of all Ne historical latent
factor feature matrices plus a noisy latent feature matrix Wε satisfying ‖Wε‖ ≤ rε, i.e., WNe+1 =
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with each coefficient 0 ≤ ce ≤ 1. Our algorithm L(S) is uniformly stable. For any 〈S, T 〉 as the coming transfer learning
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where S = {〈S1, T1〉, · · · , 〈Se0−1, Te0−1〉, 〈Se0 , Te0〉, 〈Se0+1, Te0+1〉, · · · , 〈SNe , TNe〉} denotes the full set of meta-
samples, and Se0 = {〈S1, T1〉, · · · , 〈Se0−1, Te0−1〉, 〈Se′0

, Te′0〉, 〈Se0+1, Te0+1〉, · · · , 〈SNe
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Proof. Out proof generalizes the proof in (Maurer, 2005) where the authors proved the uniform stability of a meta-algorithm

for regularized least squares regression. Before proceeding to prove the stability of our algorithm L(S), we first present the

solution to the optimization problem (12) as well as the empirical loss in a different perspective. Following (Maurer, 2005),
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Now let the meta-sample S = {〈S1, T1〉, · · · , 〈SNe
, TNe

〉} be given. The sequence of latent factor feature matrices

(W1, · · · ,WNe
) for the Ne transfer learning experiences capture different knowledge transferred between different pairs

of domains. Here we simplify our algorithm L(S) to keep its key idea - harnessing the collective power of all past

transfer learning experiences and determining the knowledge to be transferred via maximizing the improvement ratio.

We do this by assuming that the latent feature factor matrix for the (Ne + 1)-th transfer learning task of interest is the

linear combination of all Ne historical latent factor feature matrices plus a noisy latent feature matrix Wε satisfying

‖Wε‖ ≤ rε, i.e., WNe+1 =
∑Ne

e=1 ceWe +Wε. The coefficients {c1, · · · , cNe
}, satisfying 0 ≤ ce ≤ 1, can be learned to

maximize the improvement ratio. In this case, the Ne-th latent feature factor matrix can be either dependent or independent

(c1 = · · · = cNe = 0) on previous transfer learning experiences, which sticks to the L2T. Following the similar idea
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where GS ∈ R
nt
Ne+1×nt

Ne+1 is the new Gram matrix with GSjj′ = 〈(xt
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(Ne+1)j)

T , ce0We0〉〈ce0We0 , (x
t
(Ne+1)j′)

T 〉 − 〈(xt
(Ne+1)j)

T , ce′0We′0
〉〈ce′0We′0

, (xt
(Ne+1)j′)

T 〉
]
. (28)

Take two arbitrary unit vectors θ1 and θ2, and if we let v1 =
∑nt

Ne+1

j=1 θ1jx
t
(Ne+1)j and v2 =

∑nt
Ne+1

j′=1 θ2j′x
t
(Ne+1)j′ , we

have∣∣〈(GS −GSe0 )θ1,θ2〉
∣∣

=
1

r2WN2
e

[ Ne∑
e�=e0

〈vT
1 , ceWe〉〈ce0We0 − ce′0We′0

,vT
2 〉+

Ne∑
e′ �=e0

〈vT
1 , ce0We0 − ce′0We′0

〉〈ce′We′ ,v
T
2 〉

+ 〈vT
1 ,Wε〉〈ce0We0 − ce′0We′0

,vT
2 〉+ 〈vT

1 , ce0We0 − ce′0We′0
〉〈Wε,v

T
2 〉

+ 〈vT
1 , ce0We0〉〈ce0We0 ,v

T
2 〉 − 〈vT

1 , ce′0We′0
〉〈ce′0We′0

,vT
2 〉

]

≤ 1

r2WN2
e

[ Ne∑
e�=e0

‖vT
1 ‖‖ceWe‖(‖ce0We0‖+ ‖ce′0We′0‖)‖vT

2 ‖+
Ne∑

e′ �=e0

‖vT
1 ‖(‖ce0We0‖+ ‖ce′0We′0‖)‖ce′We′‖‖vT

2 ‖

+ ‖vT
1 ‖‖Wε‖(‖ce0We0‖+ ‖ce′0We′0‖)‖vT

2 ‖+ ‖vT
1 ‖(‖ce0We0‖+ ‖ce′0We′0‖)‖Wε‖‖vT

2 ‖

+ ‖vT
1 ‖‖ce0We0‖2‖vT

2 ‖
]

≤4(4Ne − 3 + rε/rW )

N2
e

‖vT
1 ‖‖vT

2 ‖, (29)
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where the last inequality comes from the assumptions: ‖Wε‖ ≤ rε, and for any e, ce ≤ 1 and ‖We‖ ≤ rW . ‖v1‖ and ‖v2‖
can also be bounded as following,

‖v1‖ =

∥∥∥∥
nt
Ne+1∑
j=1

θ1jx
t
(Ne+1)j

∥∥∥∥ ≤
nt
Ne+1∑
j=1

|θ1j |‖xt
(Ne+1)j‖ ≤

nt
Ne+1∑
j=1

‖xt
(Ne+1)j‖ = (nt

Ne+1rx)
1/2, (30)

where the second inequality holds because θ1 is a unit vector, and the last equality follows the assumption ‖xt
(Ne+1)j‖2 ≤ rx.

Similarly, we infer ‖v2‖ ≤ (nt
Ne+1rx)

1/2. Consequently, we have

‖GS −GSe0 ‖∞ ≤
4(4Ne − 3 + rε/rW )nt

Ne+1rx

N2
e

. (31)

Combining equation (27), the 4-th conclusion of Lemma 1, and inequality (31), we reach the result,∣∣lemp(L(S), (SNe+1, TNe+1))− lemp(L(S
e0), (SNe+1, TNe+1))

∣∣
≤2(nt

Ne+1)
−2λ−1‖GS −GSe0 ‖∞‖y‖2nt

Ne

≤4(4Ne − 3 + rε/rW )B2rx
λN2

e

∼ O
(
B2rx
λNe

)
(32)

To give the generalization bound upon Theorem 3, we make an assumption on the distribution from which all Ne transfer

learning experiences as meta-samples are sampled. For every environment E we have, all Ne pairs of source and target

domains S = {〈Se, Te〉, · · · , 〈SNe , TNe〉} are drawn according to an algebraic β-mixing stationary distribution (DE)Ne ,

which is not i.i.d.. Intuitively, the algebraical β-mixing stationary distribution (see Definition 2 in (Mohri & Rostamizadeh,

2010)) with the β-mixing coefficient β(m) ≤ β0/m
r models the dependence between future samples and past samples

by a distance of at least m. The independent block technique initiated by (Bernstein, 1927) has been widely adopted to

deal with non-i.i.d. learning problems. By directly applying Corollary 21 in (Mohri & Rostamizadeh, 2010), we give the

generalization bound of our algorithm L(S) in Theorem 4.

Theorem 4. Let δ′ = δ − (Ne)
1

2(r+1)
− 1

4 . Then for any sample S of size Ne drawn according to an algebraic β-mixing
stationary distribution, and δ ≥ 0 such that δ′ ≥ 0, the following generalization bound holds with probability at least 1− δ:

∣∣R(L(S))−RNe(L(S))
∣∣ < O

(
(Ne)

1
2(r+1)

− 1
4

√
log(

1

δ′
)

)
(33)

where R(L(S)) is the expected risk and RNe
(L(S)) denotes the empirical risk. A larger mixing parameter r, indicating

more independence, would lead to a tighter bound.
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