
Supplementary Material -
Extracting Automata from Recurrent Neural Networks

Using Queries and Counterexamples

Gail Weiss 1 Yoav Goldberg 2 Eran Yahav 1

This supplementary material contains a description of the L∗

algorithm (Section 1), and additional experimental results
and details (Section 2).

1. Angluin’s L* Algorithm

Algorithm 1 L* Algorithm with explicit membership and
equivalence queries.

S ← {ε}, E ← {ε}
for (s ∈ S), (a ∈ Σ), and (e ∈ E) do
T [s, e]←Member(s · e)
T [s · a, e]←Member(s · a · e)

end for
while True do

while (snew ← Closed(S,E, T) 6= ⊥) do
Add(S, snew)
for (a ∈ Σ, e ∈ E) do
T [snew · a, e]←Member(snew · a · e)

end for
end while
A ←MakeHypothesis(S,E, T)
cex← Equivalence(A)
if cex = ⊥ then

return A
else
enew ← FindSuffix(cex)
Add(E, enew)
for (s ∈ S, a ∈ Σ) do
T [s, enew]←Member(s · enew)
T [s · a, enew]←Member(s · a · enew)

end for
end if

end while

Angluin’s L∗ algorithm (1987) is an exact learning algorithm

1Technion, Haifa, Israel 2Bar Ilan University, Ramat Gan, Israel.
Correspondence to: Gail Weiss <sgailw@cs.technion.ac.il>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

for regular languages. The algorithm learns an unknown
regular language U over an alphabet Σ, generating a DFA
that accepts U as output. We only provide a brief and
informal description of the algorithm; for further details
see (Angluin, 1987; Berg et al., 2005).

Algorithm 1 shows the L∗ algorithm. This version is adapted
from Alur et al. (2005), where the membership and equiva-
lence queries have been made more explicit than they appear
in Angluin (1987).

The algorithm maintains an observation table (S,E, T) that
records whether strings belong to U . In Algorithm 1, this
table is represented by the two-dimensional array T , with
dimensions |S| × |E|, where, informally, we can view S as
a set of words that lead from the initial state to states of the
hypothesized automaton, and E as a set of words serving
as experiments to separate states. The table T itself maps a
word w ∈ (S ∪ S · Σ) · E to True if w ∈ U and False
otherwise.

The table is updated by invoking membership queries to the
teacher. When the algorithm reaches a consistent and closed
observation table (meaning that all states have outgoing
transitions for all letters, without contradictions), the algo-
rithm constructs a hypothesized automaton A, and invokes
an equivalence query to check whether A is equivalent to
the automaton known to the teacher. If the hypothesized
automaton accepts exactly U , then the algorithm terminates.
If it is not equivalent, then the teacher produces a counterex-
ample showing a difference between U and the language
accepted by A.

A simplified run through of the algorithm is as follows:
the learner starts with an automaton with one state—the
initial state—which is accepting or rejecting according to
the classification of the empty word. Then, for every state
in the automaton, for every letter in the alphabet, the learner
verifies by way of membership queries that for every shortest
sequence reaching that state, the continuation from that
prefix with that letter is correctly classified. As long as
an inconsistency exists, the automaton is refined. Every
time the automaton reaches a consistent state (a complete
transition function, with no inconsistencies by single-letter

Supplementary Material - Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

extensions), that automaton is presented to the teacher as an
equivalence query. If it is accepted, the algorithm completes;
otherwise, it uses the teacher-provided counterexample to
further refine the automaton.

2. Additional Results
2.1. Random Regular Languages

We show results for extraction from GRU and LSTM net-
works with varying hidden sizes, trained on small regular
languages of varying alphabet size and DFA size. Each
extraction was limited to 30 seconds, and had initial refine-
ment depth 10. For each of the combinations of state size
and target language complexity, 3 networks of each type
were trained, each on a different (randomly generated) lan-
guage. The full results of these experiments are shown in
Table 1. Note that each row in each of the tables represents
3 experiments, i.e. in total 9 × 2 × 3 = 54 random DFAs
were generated, trained on, and re-extracted.

We note with satisfaction that in 36 of the 54 experiments,
the extraction process reached equivalence on a regular
language identical to the target language the network had
been trained on. We also note that on one occasion in the
LSTM experiments the extraction reached equivalence too
easily, accepting an automaton of size 2 that ultimately was
not a great match for the network. Such a problem could be
countered by increasing the initial split depth, for instance
when sampling shows that a too-simple automaton has been
extracted.

We also ran extraction with Omlin and Giles’ a-priori quan-
tization on each of these networks, with quantization level
2 and a time limit of 50 seconds. The extractions did not
complete in this time. For completeness, we present the
size, coverage, and accuracies of these partially extracted
DFAs in Table 2. The smaller size of the extracted DFAs
for networks with larger hidden size is a result of the transi-
tion function computation taking longer: this slows the BFS
exploration and thus the extraction visits less states in the
allotted time.

2.2. Balanced Parentheses

We trained a GRU and an LSTM network on the irregular
language of balanced parentheses, and then attempted to
extract automata from these networks. For both, L∗ at first
proposed a series of automata each representing the lan-
guage of balanced parentheses to increasing nesting depth.
Some of these are shown in Fig. 1. For the GRU network,
after a certain point in the extraction, we even found a coun-
terexample which showed the network had not generalized
correctly to the language of balanced parentheses, and the
next automaton returned resembled—but was not quite—an
automaton for balanced parentheses nested to some depth.

Figure 1. Select automata of increasing size for recognizing bal-
anced parentheses over the 28 letter alphabet a-z,(,), up to nest-
ing depths 1 (flawed), 1 (correct), 2, and 5, respectively.

Supplementary Material - Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

Table 1. Results for DFA extracted using our method from 2-layer GRU and LSTM networks with various state sizes, trained on random
regular languages of varying sizes and alphabets. Each row in each table represents 3 experiments with the same parameters (network
hidden-state size, alphabet size, and minimal target DFA size). Single values represent the average of the 3 experiments, multiple values
list the result for each experiment. An extraction time of 30 seconds signals a timed out extraction (for which the last automaton proposed
by L∗ is taken as the extracted automaton).

Extraction from LSTM Networks — Our Method
Hidden Alphabet Language / Extraction Extracted Average Extracted DFA Accuracy
Size Size Target DFA Size Time (s) DFA Size l=10 l=50 l=100 l=1000 Training
50 3 5 2.9 5,5,6 100.0 99.96 99.86 99.90 100.0
100 3 5 2.9 5,5,2 92.96 92.96 93.73 93.46 91.06
500 3 5 11.8 5,5,5 100.0 100.0 100.0 99.96 100.0
50 5 5 30, 30, 30 68, 59, 115 99.96 99.93 99.76 99.93 99.99
100 5 5 30, 7.7, 30 57, 5, 38 99.96 99.96 99.96 99.90 100.0
500 5 5 30, 20.7, 19.0 5, 5, 5 100.0 100.0 99.93 99.90 100.0
50 3 10 30, 30, 11.1 10, 10, 10 99.96 99.96 99.90 99.90 100.0
100 3 10 7.6, 30, 7.7 10, 10, 11 99.96 99.93 99.96 99.96 100.0
500 3 10 30, 30, 30 10, 9, 10 92.30 92.80 93.70 93.43 92.30

Extraction from GRU Networks — Our Method
Hidden Alphabet Language / Extraction Extracted Average Extracted DFA Accuracy
Size Size Target DFA Size Time (s) DFA Size l=10 l=50 l=100 l=1000 Training
50 3 5 1.7 5,5,6 100.0 100.0 99.86 99.96 100.0
100 3 5 4.1 5,5,5 100.0 100.0 100.0 99.96 100.0
500 3 5 7.0 5,5,5 100.0 100.0 100.0 100.0 100.0
50 5 5 30, 30, 8.2 150,93,5 100.0 99.90 99.93 99.86 100.0
100 5 5 9.0, 8.0, 30 5,5,16 100.0 100.0 99.96 99.96 99.99
500 5 5 15.5, 30, 25.6 5,5,5 100.0 100.0 99.96 100.0 100.0
50 3 10 30, 30, 30 11,11,155 99.96 99.83 99.93 99.93 99.99
100 3 10 11.0 11,10,11 100.0 99.93 99.96 99.93 100.0
500 3 10 30, 30, 30 10,10,10 100.0 99.93 100.0 99.90 100.0

Table 2. Results for automata extracted using Omlin & Giles’ a-priori quantization as described in their 1996 paper, with quantization
level 2, from the same networks used in Table 1 (3 networks for each set of parameters and network type).

Extraction from LSTM Networks — O&G Quantization
Hidden Alphabet Language/ Extracted Coverage / Accuracy (%)
Size Size Target DFA Size DFA Sizes l=1 l=5 l=10 l=15 l=50 Training
50 3 5 3109 3107 3107 100 100 100 100 30.66 83.65 3.87 81.53 0.0 NA 27.44 88.0
100 3 5 2225 2252 2275 100 100 100 100 7.57 80.50 0.07 50.0 0.0 NA 19.31 84.57
500 3 5 585 601 584 100 100 100 100 0.0 NA 0.0 NA 0.0 NA 8.80 71.71
50 5 5 1956 1973 1962 100 100 100 73.93 0.03 100 0.0 NA 0.0 NA 12.39 78.34
100 5 5 1392 1400 1400 100 100 100 64.3 0.0 NA 0.0 NA 0.0 NA 11.19 74.80
500 5 5 359 366 366 100 100 33.43 70.60 0.0 NA 0.0 NA 0.0 NA 6.24 73.92
50 3 10 3135 3238 3228 100 100 100 100 29.43 83.72 4.57 94.19 0.0 NA 27.70 88.80
100 3 10 2294 2282 2272 100 100 100 100 0.90 91.30 0.0 NA 0.0 NA 16.83 81.07
500 3 10 586 589 589 100 100 100 100 0.0 NA 0.0 NA 0.0 NA 8.48 74.77

Extraction from GRU Networks — O&G Quantization
Hidden Alphabet Language/ Extracted Coverage / Accuracy (%)
Size Size Target DFA Size DFA Sizes l=1 l=5 l=10 l=15 l=50 Training
50 3 5 4497 4558 4485 100 100 100 100 50.73 90.52 25.26 91.95 2.66 96.25 42.28 91.08
100 3 5 3188 3184 3197 100 100 100 100 3.50 66.66 0.07 50.0 0.0 NA 19.14 83.63
500 3 5 1200 1221 1225 100 100 100 100 0.0 NA 0.0 NA 0.0 NA 8.98 74.45
50 5 5 2810 2796 2802 100 100 100 87.97 0.10 100 0.0 NA 0.0 NA 14.56 80.61
100 5 5 1935 1941 1936 100 100 100 73.17 0.0 NA 0.0 NA 0.0 NA 12.05 76.39
500 5 5 721 706 749 100 100 91.03 55.94 0.0 NA 0.0 NA 0.0 NA 9.52 71.53
50 3 10 4598 4582 4586 100 100 100 100 15.73 79.76 1.23 70.71 0.0 NA 24.32 86.93
100 3 10 3203 3192 3194 100 100 100 100 0.3 81.25 0.0 NA 0.0 NA 19.18 83.84
500 3 10 1226 1209 1209 100 100 100 100 0.0 NA 0.0 NA 0.0 NA 13.39 76.64

Supplementary Material - Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

Figure 2. Automaton no longer representing a language of balanced parentheses up to a certain depth. (Showing how a trained network
may be overfitted past a certain sample complexity.)

Supplementary Material - Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

Table 3. Extraction of automata from an LSTM network trained to 100% accuracy on the training set for the language of balanced
parentheses over the 28-letter alphabet a-z,(,). The table shows the counterexamples and the counterexample generation times for each
of the successive equivalence queries posed by L∗ during extraction, for both our method and a brute force approach. Each successive
equivalence query from L∗ was an automaton classifying the language of all words with balanced parentheses up to nesting depth n, with
increasing n.

Refinement Based Brute Force
Counterexample Time (seconds) Counterexample Time (seconds)
)) 1.4)) 1.5
(()) 1.6 tg(gu()uh) 57.5
((())) 3.1 ((wviw(iac)r)mrsnqqb)iew 231.5
(((()))) 3.1
((((())))) 3.4
(((((()))))) 4.7
((((((())))))) 6.3
(((((((()))))))) 9.2
((((((((())))))))) 14.0

We show this automaton in Fig. 2.

In our main submission, we show the counterexamples re-
turned during a 400-second extraction from the GRU net-
work, as generated either by random sampling or by our
method. For completeness, we present now in Table 3 the
counterexamples for the LSTM extraction.

2.3. Other Interesting Examples

2.3.1. COUNTING

We trained an LSTM network with 2 layers and hidden size
100 (giving overall state size ds = 2× 2× 100 = 400) on
the regular language

[a-z]*1[a-z1]*2[a-z2]*3[a-z3]*4[a-z4]*5[a-z5]*$

over the 31-letter alphabet {a,b, ...,z,1,2, ...,5}, i.e. the
regular language of all sequences 1+2+3+4+5+ with low-
ercase letters a-z scattered inside them. We trained this
network on a train set of size 20000 and tested it on a test
set of size 2000 (both evenly split on positive and negative
examples), and saw that it reached 100% accuracy on both.

We extracted from this network using our method. Within 2
counterexamples (the provided counterexample 12345, and
another generated by our method), and after a total of 9.5
seconds, L∗ proposed the automaton representative of the
network’s target language, shown in Fig. 3. However, our
method did not accept this DFA as the correct DFA for the
network. Instead, after a further 85.4 seconds of exploration
and refinement, the counterexample aca11 was found and
returned to L∗, meaning: our method found that the network
accepted the word aca11 — despite this word not being in
the target language of the network and the network having
100% accuracy on both its train and test set.

Ultimately, after 400 seconds our method extracted from the
network (but did not reach equivalence on) a DFA with 118
states, returning the counterexamples listed in Table 4 and
achieving 100% accuracy against the network on its train set,
and 99.9+% accuracy on all sampled sequence lengths. We
note that by the nature of our method, the complexity of this
DFA is necessarily an indicator of the inherent complexity
of the concept to which the trained network has generalized.

2.3.2. TOKENIZED JSON LISTS

We trained a GRU network with 2 layers and hidden size
100 on the regular language representing a simple tokenized
JSON list with no nesting,

(\[\])|(\[[S0NTF](,[S0NTF])*\])$

over the 8-letter alphabet {[,],S,0,N,T,F,,}, to accuracy
100% on a training set of size 20000 and a test set of size
2000, both evenly split between positive and negative exam-
ples. As before, we extracted from this network using our
method.

Within 2 counterexamples (1 provided and 1 generated) and
a total of 3.8 seconds, our method extracted the automaton
shown in Fig. 4a, which is almost but not quite representa-
tive of the target language. 7.12 seconds later it returned
a counterexample to this DFA which pushed L∗ to refine
further and return the DFA shown in Fig. 4b, which is also
almost but not quite representative of zero-nesting tokenized
JSON lists.

Ultimately, after 400 seconds, our method extracted (but
did not reach equivalence on) an automaton of size 441, re-
turning the counterexamples listed in Table 5 and achieving
100% accuracy against the network on both its train set and
all sampled sequence lengths. As before, we note that each

Supplementary Material - Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

Table 4. Counterexamples returned to the equivalence queries made by L∗ during extraction of a DFA from a network trained to 100%
accuracy on both train and test sets on the regular language [a-z]*1[a-z1]*2[a-z2]*3[a-z3]*4[a-z4]*5[a-z5]*$ over the 31-letter alphabet
{a,b, ...,d,1,2, ...,5}. Counterexamples highlighting the discrepancies between the network behavior and the target behavior are shown
in bold.

Counterexample Generation for the Counting Language
Counterexample Generation Time (seconds) Network Classification Target Classification
12345 provided True True
512345 8.18 False False
aca11 85.41 True False
blw11 0.50 True False
dnm11 0.96 False False
bzm11 0.90 False False
drxr11 0.911 True False
brdb11 0.90 False False
elrs11 1.16 True False
hu11 1.93 False False
ku11 2.59 False False
ebj11 2.77 False False
pgl11 3.77 True False
reeg11 4.16 False False
eipn11 5.66 False False

Table 5. Counterexamples returned to the equivalence queries made by L∗ during extraction of a DFA from a network trained to 100% accu-
racy on both train and test sets on the regular language (\[\])|(\[[S0NTF](,[S0NTF])*\])$ over the 8-letter alphabet {[,],S,0,N,T,F,,}.
Counterexamples highlighting the discrepancies between the network behaviour and the target behaviour are shown in bold.

Counterexample Generation for the Non-Nested Tokenized JSON-lists Language
Counterexample Generation Time (seconds) Network Classification Target Classification
[] provided True True
[SS] 3.49 False False
[[,] 7.12 True False
[S,, 8.61 True False
[0,F 8.38 True False
[N,0, 8.07 False False
[S,N,0, 9.43 True False
[T,S, 9.56 False False
[S,S,T,[] 15.15 False False
[F,T,[3.23 False False
[N,F,S,0 10.04 True False
[S,N,[,,,, 27.79 True False
[T,0,T, 28.06 True False
[S,T,0,], 26.63 True False

Supplementary Material - Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

Figure 3. DFA representing the regular language
[a-z]*1[a-z1]*2[a-z2]*3[a-z3]*4[a-z4]*5[a-z5]*$ over the
alphabet {a,b, ...,z,1,2, ...,5}

.

state split by the method is justified by concrete inputs to
the network, and so the extraction of a large DFA is a sign
of the inherent complexity of the learned network behavior.

2.4. Train Set Details

The sizes, sample lengths, and positive to negative ratios of
the samples in the train sets are listed here (Table 6) for each
of the networks used in our main experiments, as well as
for the JSON and Counting languages. Note that for some
languages (such as the first Tomita grammar, 1∗), there are
very few positive/negative samples. For these languages,
the test sets are less balanced between positive and negative
samples.

We reiterate that all networks used in this work were trained
to 100% train set accuracy and reached at least 99.9% on a
set of 1000 samples from each of the lengths 4, 7, 10, ..., 28.

An explicit description of the Tomita grammars can be found
in (Tomita, 1982).

References
Alur, R., Černý, P., Madhusudan, P., and Nam, W. Synthesis

of interface specifications for java classes. In Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’05, pp. 98–
109, New York, NY, USA, 2005. ACM. ISBN 1-58113-
830-X. doi: 10.1145/1040305.1040314. URL http:
//doi.acm.org/10.1145/1040305.1040314.

Angluin, D. Learning regular sets from queries and coun-
terexamples. Inf. Comput., 75(2):87–106, 1987. doi:
10.1016/0890-5401(87)90052-6. URL https://doi.
org/10.1016/0890-5401(87)90052-6.

Berg, T., Jonsson, B., Leucker, M., and Saksena, M.
Insights to angluin’s learning. Electr. Notes Theor.
Comput. Sci., 118:3–18, 2005. doi: 10.1016/j.entcs.
2004.12.015. URL https://doi.org/10.1016/
j.entcs.2004.12.015.

Omlin, C. W. and Giles, C. L. Extraction of rules
from discrete-time recurrent neural networks. Neu-
ral Networks, 9(1):41–52, 1996. doi: 10.1016/
0893-6080(95)00086-0. URL https://doi.org/
10.1016/0893-6080(95)00086-0.

Tomita, M. Dynamic construction of finite automata from
examples using hill-climbing. In Proceedings of the
Fourth Annual Conference of the Cognitive Science Soci-
ety, pp. 105–108, Ann Arbor, Michigan, 1982.

Supplementary Material - Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

(a) (b)

Figure 4. Two DFAs resembling, but not perfectly, the correct DFA for the regular language of tokenized JSON lists,
(\[\])|(\[[S0NTF](,[S0NTF])*\])$. DFA 4a is almost correct, but accepts also list-like sequences in which the last item is miss-
ing, i.e., there is a comma followed by a closing bracket. DFA 4b is returned by L∗ after the teacher (network) rejects 4a, but is also not a
correct representation of the target language — treating the sequence [, as a legitimate list item equivalent to the characters S,0,N,T,F

.

Table 6. Train set statistics for networks used in this work. The random regular language networks used in the main work were based on
minimal DFAs of size 10 over alphabets of size 3, with 3 languages per hidden state size. We list statistics for their train sets in grouped
by the hidden size. The train set sizes and lengths were the same for each of these random languages, but the number of positive/negative
samples found each time varied slightly.

Train Set Stats
Language Architecture Hidden Size Train Set Size Of Which Positive Samples Lengths in Train Set
Tomita 1 GRU 100 613 14 0-13,16,19,22
Tomita 2 GRU 100 613 8 0-13,16,19,22
Tomita 3 GRU 100 2911 1418 0-13,16,19,22
Tomita 4 GRU 100 2911 1525 0-13,16,19,22
Tomita 5 GRU 100 1833 771 0-13,16,19,22
Tomita 6 GRU 100 3511 1671 0-13,15-20
Tomita 7 GRU 100 2583 1176 0-13,16,19,22
Random 1-3 GRU 50 16092 8038, 7768, 8050 1-15,16,18,...,26
Random 4-6 GRU 100 16092 7783, 7842, 8167 1-15,16,18,...,26
Random 7-9 GRU 500 16092 8080, 8143, 7943 1-15,16,18,...,26
Balanced Parentheses GRU 50 44697 25243 0-73
Balanced Parentheses LSTM 50 44816 28781 0-81
emails LSTM 100 40000 20000 0-34
JSON Lists GRU 100 20000 10000 0-74
Counting LSTM 100 20000 10000 0-43

