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Abstract

We present a novel algorithm that uses exact learn-
ing and abstraction to extract a deterministic fi-
nite automaton describing the state dynamics of a
given trained RNN. We do this using Angluin’s L∗

algorithm as a learner and the trained RNN as an
oracle. Our technique efficiently extracts accurate
automata from trained RNNs, even when the state
vectors are large and require fine differentiation.

1. Introduction
Recurrent Neural Networks (RNNs) are a class of neural
networks used to process sequences of arbitrary lengths. An
RNN receives an input sequence timestep by timestep, re-
turning a new state vector after each step. For classification
tasks, this is followed by passing the state vectors to a multi-
class classification component, which is trained alongside
the RNN and returns a classification for the sequence. We
call a combination of an RNN and a binary classification
component an RNN-acceptor.

RNNs are central to deep learning, and natural language
processing in particular. However, while they have been
shown to reasonably approximate a variety of languages,
what they eventually learn is unclear. Indeed, several lines
of work attempt to extract clear rules for their decisions
(Jacobsson, 2005; Omlin & Giles, 1996; Cechin et al., 2003).

Motivation Given an RNN-acceptor R trained over a finite
alphabet Σ, our goal is to extract a deterministic finite-state
automaton (DFA) A that classifies sequences in a manner
observably equivalent toR. (Ideally, we would like to obtain
a DFA that accepts exactly the same language as the network,
but this is a much more difficult task.)

We approach this task using exact learning.
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Exact Learning In the field of exact learning, concepts (sets
of instances) can be learned precisely from a minimally ade-
quate teacher—an oracle capable of answering two query
types (Goldman & Kearns, 1995):

• membership queries: label a given instance

• equivalence queries: state whether a given hypothesis
(set of instances) is equal to the concept held by the
teacher. If not, return an instance on which the hypoth-
esis and the concept disagree (a counterexample).

The L∗ algorithm (Angluin, 1987) is an exact learning algo-
rithm for learning a DFA from a minimally adequate teacher
for some regular language L. In this context, the concept is
L, and the instances are words over its alphabet.

We designate a trained RNN1 as teacher for the L∗ algorithm,
in order to extract a DFA representing its behavior. The
RNN is used trivially to answer membership queries: input
sequences are fed to the network for classification. The main
challenge in this setting is answering equivalence queries.

Problem Definition: Equivalence Query Given an RNN-
acceptor R trained over a finite alphabet Σ, and a DFA A
over Σ, determine whether R and A are equivalent, and
return a counterexample w ∈ Σ∗ if not.

As this problem is likely to be intractable, we use an ap-
proximation. One approach would be random sampling;
however, should R and A be similar, this may take time.

Our Approach We use finite abstraction of the RNN R to
answer equivalence queries. The finite abstraction and the
L∗ DFA A act as two hypotheses for the RNN ground truth,
and must at least be equivalent to each other in order to be
equivalent toR. Whenever the two disagree on a sample, we
find its true classification in R, obtaining through this either
a counterexample to A or a refinement to the abstraction.

Our approach is guaranteed never to return an incorrect
counterexample nor invoke an unnecessary refinement; i.e.,
it yields no false negatives. As far as we know, this is the
first attempt to apply exact learning to a given RNN.

1In what follows, when understood from context, we use the
term RNN to mean RNN-acceptor.
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Main Contributions

• We present a novel and general framework for extract-
ing automata from trained RNNs. We use the RNNs as
teachers in an exact learning setting.

• We implement the technique and show its ability to
extract descriptive automata in settings where previous
approaches fail. We demonstrate its effectiveness on
modern RNN architectures.

• We apply our technique to RNNs trained to 100% train
and test accuracy on simple languages, and discover
in doing so that some RNNs have not generalized to
the intended concept. Our method easily reveals and
produces adversarial inputs—words misclassified by
the trained RNN and not present in the train or test set.

2. Related Work
DFA extraction from RNNs was extensively explored by
Giles and colleagues; see Wang et al. (2017) and Jacobsson
(2005) for a partial survey.

Broadly, the approaches work by defining a finite partition-
ing of the real-valued RNN state space and then exploring
the network transitions in the partitioned space, using tech-
niques such as BFS exploration (Omlin & Giles, 1996) and
other transition-sampling approaches. The approaches differ
mainly in their choice and definition of partitioning.

These works generally use second order RNNs (Giles et al.,
1990), which are shown to better map DFAs than first-
order Elman RNNs (Elman, 1990; Goudreau et al., 1994;
Wang et al., 2018). In this work, however, we will fo-
cus on GRUs (Cho et al., 2014; Chung et al., 2014) and
LSTMs (Hochreiter & Schmidhuber, 1997), as they are
more widely used in practice.

One approach to state space partitioning is to divide each
dimension into q equal intervals, with q being the quanti-
zation level (Omlin & Giles, 1996). This approach suffers
from inherent state space explosion and does not scale to
the networks used in practice today. (The original paper
demonstrates the technique on networks with 8 hidden val-
ues, whereas today’s can have hundreds to thousands).

Another approach is to fit an unsupervised classifier such as
k-means to a large sample set of reachable network states
(Cechin et al., 2003; Zeng et al., 1993). The number of
clusters k generated with these classifiers is a parameter that
might greatly affect extraction results, especially if it is too
small. The sample states can be found by a simple BFS
exploration of the network state space to a certain depth, or
by recording all state vectors reached by the network when
applied to its train set (if available).

An inherent weakness of both these approaches is that the
partitioning is set before the extraction begins, with no mech-
anism for recognizing and overcoming overly coarse behav-
ior. Both methods thus face the challenge of choosing the
best parameter value for extraction. They are generally ap-
plied several times with different parameter values, after
which the ‘best’ DFA is chosen according to a heuristic.

Current techniques treat all the dimensions of an RNN as a
single state. In future work, it may be interesting to make
the distinction between ‘fast’ and ‘slow’ internal states as in-
troduced in the differential state framework unifying GRUs
and LSTMs (Ororbia II et al., 2017).

3. Background

Recurrent Neural Networks and RNN acceptors An RNN
is a parameterized function gR(h, x) that takes as input a
state-vector ht ∈ Rds and an input vector xt+1 ∈ Rdi and
returns a state-vector ht+1 ∈ Rds . An RNN can be applied
to a sequence x1, ..., xn by recursive application of the func-
tion gR to the vectors xi. To use a set of discrete symbols as
an input alphabet, each symbol is deterministically mapped
to an input vector using either a one-hot encoding or an
embedding matrix. As we are only interested in the internal
network transitions, we use one-hot encoding in this work.
For convenience, we refer to input symbols and their cor-
responding input vectors interchangeably. We denote the
state space of a network R by SR = Rds . For multi-layered
RNNs, where several layers each have their own state vector,
we consider the concatenation of these vectors as the state
vector of the entire network. In a binary RNN-acceptor,
there is an additional function fR : SR → {Acc,Rej} that
classifies the RNN’s state vectors. An RNN-acceptor R is
defined by the pair of functions gR, fR.

Network Abstraction Given a neural network R with state
space S and alphabet Σ, and a partitioning function p:S →
N, Omlin and Giles (1996) presented a method for extracting
a DFA for which every state is a partition from p, and the
state transitions and classifications are defined by a single
sample from each partition. The method is effectively a BFS
exploration of the partitions defined by p, beginning with
p(h0), where h0 is the network’s initial state, and continuing
according to the network’s transition function gR.

We denote by AR,p the DFA extracted by this method from
a network R and partitioning p, and denote all its related
sets and functions by subscript R, p.

The L∗ Algorithm The L∗ algorithm is an exact learning
algorithm for extracting a DFA from any teacher that can
answer membership queries (label a given word) and equiv-
alence queries (accept or reject a given DFA, with a coun-
terexample if rejecting). We know that L∗ always proposes
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a minimal DFA in equivalence queries and utilize this in our
work. Beyond this, we treat the algorithm as a black box. A
short review is provided in the supplementary material.

4. Learning Automata from RNNs using L*
We build an RNN-based teacher for L∗ as follows:

For membership queries, we use the RNN classifier di-
rectly, checking whether it accepts or rejects the given word.

For equivalence queries: Given a proposed DFA A, we
compare it to abstractions AR,p of the network R, begin-
ning with some initial partitioning p of SR. If we find a
disagreement between A and an abstraction AR,p, we use
R to determine whether to return it as a counterexample or
to refine p and restart the comparison.

In theory this continues until A and AR,p converge, i.e., are
equivalent. In practice, for some RNNs this may take a long
time and yield a large DFA (>30,000 states). To counter
this, we place time or size limits on the interaction, after
which the last L∗ DFA, A, is returned. We see that these
DFAs still generalize well to their respective networks.2

Note Convergence of AR,p and A does not guarantee that
R and A are equivalent. Providing such a guarantee would
be an interesting direction for future work.

5. Notations

Automaton and Classification Function For a determinis-
tic automaton A = 〈Σ, Q, q0, F, δ〉, Σ is its alphabet, Q
the set of automaton states, F ⊆ Q the set of accepting
states, q0 ∈ Q the initial state, and δ : Q × Σ → Q
its transition function. We denote by δ̂ : Q × Σ∗ → Q
the recursive application of δ to a sequence, i.e., for every
q ∈ Q, δ̂(q, ε) = q, and for every w ∈ Σ∗ and σ ∈ Σ,
δ̂(q, w · σ) = δ(δ̂(q, w), σ). For convenience, we add the
notation f : Q → {Acc,Rej} as the function giving the
classification of each state, i.e., f(q) = Acc ⇐⇒ q ∈ F .

Binary RNN-acceptor For a binary RNN-acceptor, we
denote by h0,R the initial state of the network, and by
ĝR : SR × Σ∗ → SR the recursive application of gR to
a sequence, i.e., for every h ∈ SR, ĝR(h, ε) = h, and for
every w ∈ Σ∗ and σ ∈ Σ, ĝR(h,w · σ) = gR(ĝR(h,w), σ).
We drop the subscript R when it is clear from context.

We note that a given RNN-acceptor can be interpreted as a
deterministic, though possibly infinite, state machine.

2We could also return the last abstraction, AR,p, and focus on
refining p over returning counterexamples. But the abstractions are
often less accurate. We suspect this is due to the lack of ‘foresight’
AR,p has in comparison to L∗’s many separating suffix strings.

Shorthand As an abuse of notation, for any DFA or RNN
classifier C with state transition function tC , state classifi-
cation function fC , and initial state qC,0, we use t̂C(w) to
denote t̂C(qC,0, w), fC(q, w) to denote fC(t̂C(q, w)), and
fC(w) to denote fC(t̂C(qC,0, w)). Within this notation,
the classifications of a word w ∈ Σ∗ by an automaton A
and a binary RNN-acceptor R with respective classification
functions fA and fR are given by fA(w) and fR(w).

6. Answering Equivalence Queries
6.1. Overview

Given a network R, a partitioning function p : S → N over
its state space S, and a proposed minimal automaton A,
we wish to check whether R is equivalent to A, preferably
exploring as little of R’s behavior as necessary to respond.

We search for a disagreeing example w between A and the
abstraction AR,p, by parallel traversal of the two. If one is
found, we check its true classification in R. If this disagrees
with A, w is returned as a counterexample; otherwise, p is
refined (Section 7) and the traversal begins again.3

Every counterexample w returned by our method is inher-
ently true, i.e., satisfies fA(w) 6= fR(w). From this and the
minimality of L∗ equivalence queries, we obtain:

Property 1 Every separate state in the final extracted au-
tomaton A is justified by concrete input to the network.

In other words, all complexity in a DFA extracted from a
given RNN R is a result of the inherent complexity of R.
This is in contrast to other methods, in which incorrect par-
titioning of the network state space may lead to unnecessary
complexity in the extracted DFA, even after minimization.
Moreover, our method refines the partitioning only when it
is proven too coarse to correctly represent the network:

Property 2 Every refinement to the partitioning function
p : S → N is justified by concrete input to the network.

This is important, as the search for counterexamples runs
atop an extraction of the abstraction AR,p, and so unneces-
sary refinements—which may lead to state space explosion—
can make the search so slow as to be impractical.

For clarity, we henceforth refer to the continuous network
states h ∈ S as R-states, the abstracted states in AR,p as
A-states, and the states of the L∗ DFAs as L-states.

6.2. Parallel Exploration

The key intuition to our approach is that A is minimal, and
so each A-state should—if the two DFAs are equivalent—be

3If the refinement does not affect any states traversed so far, this
is equivalent to fixing the current state’s abstraction and continuing.
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equivalent to exactly one L-state, w.r.t. classification and
projection of transition functions. The extraction of AR,p is
effectively a BFS traversal of AR,p, allowing us to associate
between states in the two DFAs during its extraction.

We refer to bad associations, in which an accepting A-state
is associated with a rejecting L-state or vice versa, as ab-
stract classification conflicts, and to multiple but disagreeing
associations, in which one A-state is associated with two dif-
ferent L-states, as clustering conflicts. (The inverse case, in
which one L-state is associated with several A-states, is not
necessarily a problem, as AR,p is not necessarily minimal.)

We may also assert that the classification of each R-state
h encountered while extracting AR,p is identical to that of
the L-state qA ∈ QA that the parallel traversal of A reaches
during the exploration. As the classification of an A-state is
determined by the R-state with which it was first reached,
this also covers all abstract classification conflicts. We refer
to failures of this assertion as classification conflicts, and
check only for them and for clustering conflicts.

6.3. Conflict Resolution and Counterexample
Generation

We assume an initial partitioning p : S → N of the R-state
space and a refinement operation ref : p, h,H 7→ p′ which
receives a partitioning p, an R-state h, and a set of R-states
H ⊆ S \ {h}, and returns a new partitioning p′ satisfying:

1. ∀h1 ∈ H , p′(h) 6= p′(h1), and

2. ∀h1, h2 ∈ S, p(h1) 6= p(h2)⇒ p′(h1) 6= p′(h2).

(In practice, condition 1 may be relaxed to separating at
least one of the vectors in H from h, and our method can
and has overcome imperfect splits.)

Classification conflicts occur when somew ∈ Σ∗ for which
fR(w) 6= fA(w) has been traversed during AR,p’s extrac-
tion. We resolve them by returning w as a counterexample.

Clustering conflicts occur when the parallel exploration as-
sociates an A-state q ∈ QR,p with an L-state q2, after q has
already been associated with an L-state q1 6= q2. As A is
minimal, q1 and q2 cannot be equivalent. It follows that if
w1, w2 ∈ Σ∗ are the BFS traversal paths through which q
was associated with q1, q2 ∈ QA, then there exists some
differentiating sequence s ∈ Σ∗ for which fA(q1, s) 6=
fA(q2, s), i.e., for which fA(w1·s) 6= fA(w2·s). Con-
versely, the arrival of w1 and w2 at the same A-state
q ∈ AR,p gives fR,p(w1·s) = fR,p(q, s) = fR,p(w2·s).

It follows that A and AR,p disagree on the classification of
either w1·s or w2·s, and so necessarily at least one is not
equivalent to R. We pass w1·s and w2·s through R for their
true classifications. IfA is at fault, the sequence on whichA

and R disagree is returned as a counterexample. Otherwise,
necessarily, fR(w1·s) 6= fR(w2·s), and so AR,p should
satisfy ˆδR,p(w1) 6= ˆδR,p(w2). The R-states h1 = ĝ(w1)
and h2 = ĝ(w2) are passed, along with p, to ref , to yield a
new, finer, partitioning p′ for which ˆδR,p′(w1) 6= ˆδR,p′(w2).

This reasoning applies to w2 with all paths w′ that have
reached q without conflict before w2. As such, the classifi-
cations of all words w′·s are tested against R, prioritizing
returning a counterexample over refining p. If a refinement
is triggered, then h = ĝ(w2) is split from the set of R-states
h′ = ĝ(w′).

Algorithm 1 shows pseudocode for this equivalence check-
ing. In it, all mappings except one are unique and defined
before they are accessed. The exception is Paths, as we
might reach the same R-state h ∈ SR more than once, by
different paths. This can be remedied by maintaining in
Paths not single paths but lists of paths.

Our experiments showed that long counterexamples often
caused A to blow up, without generalizing well. Thus, we
always return the shortest available counterexample.

7. Abstraction and Refinement
Given a partitioning p, an R-state h, and a set of R-states
H ⊆ S \ {h}, we refine p in accordance with the require-
ments described in Section 6.3. We want to generalize the
information given by h and H well, so as not to invoke
excessive refinements. We also need an initial partitioning
p0 from which to start.

Our method is unaffected by the length of the R-states, and
very conservative: each refinement increases the number of
A-states by exactly one. Our experiments show that it is fast
enough to quickly find counterexamples to proposed DFAs.

7.1. Initial Partitioning

As we wish to keep the abstraction as small as possible, we
begin with no state separation at all: p0 : h 7→ 0.

7.2. Support-Vector based Refinement

In this section we assume p(h′) = p(h) for every h′ ∈ H ,
which is true for our case. The method generalizes trivially
to cases where this is not true.4

We would like to allocate a region around the R-state h
that is large enough to contain other R-states that behave
similarly, but separate from neighboring R-states that do
not. We achieve this by fitting an SVM (Boser et al., 1992)
classifier with an RBF kernel5 to separate h from H . The

4By removing from H any vectors h′ for which p(h′) 6= p(h).
5While we see this as a natural choice, other kernels or classi-

fiers may yield similar results. We do not explore such variations
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Algorithm 1 Pseudo-code for equivalence checking of an
RNN R and minimal DFA A, with initial partitioning p0.

method update records(q, h, qA, w):
Visitors(q)← Visitors(q) ∪ {h},
Paths(h)← w
Association(q)← (qA)
Push(New,{h})
end method

method handle cluster conf(q, qA, q′A):
find s ∈ Σ∗ s.t. fA(qA, s) 6= fA(q′A, s)
for h ∈Visitors(q) do
w ← Paths(h) · s
if fR(w) 6= fA(w) then

return Reject, w
end for
p← ref (p, h′,Visitors(q′)\{h′})
return Restart Exploration
end method

method parallel explore(R,A, p):
empty all of: Q,F, δ, New, Visitors, Paths, Association
q0 ← p(h0)
update records(q0, h0, qA,0 , ε)
while New 6= ∅ do
h← Pop(New)
q ← p(h)
qA ← Association(q)
if fR(h) 6= fA(qA) then

return Reject, (Paths(h))
if q ∈ Q then continue
Q← Q ∪ {q}
if fR(h) = Acc then F ← F ∪ {q}
for σ ∈ Σ do
h′ ← gR(h, σ)
q′ ← p(h′)
δ(q, σ)← q′

if q′ ∈ Q and Association(q′) 6= δA(qA, σ) then
return handle cluster conf(q, qA, δA(qA, σ))

update records(q′, h′, δA(qA, σ),Paths(h) · σ)
end for

end while
return Accept
end method

method check equivalence(R,A, p0):
p← p0
verdict← Restart Exploration
while verdict = Restart Exploration do

verdict, w ← parallel explore(R,A, p)
end while
return verdict,w
end method

max-margin property of the SVM ensures a large space
around h, while the Gaussian RBF kernel allows for a non-
linear partitioning of the space.

We use this classifier to split the A-state p(h), yielding a new
partitioning p′ with exactly one more A-state than p. We
track the refinements by arranging the obtained SVMs in a
decision tree, where each node’s decision is the correspond-
ing SVM, and the leaves represent the current A-states.

Barring failure of the SVM, this approach satisfies the re-
quirements of refinement operations, and avoids state explo-
sion by adding only one A-state per refinement. Otherwise,
the method fails to satisfy requirement 1. Nevertheless, at
least one of the R-states h′ ∈ H is separated from h, and
later explorations can invoke further refinements if neces-
sary. In practice this does not hinder the goal of the abstrac-
tion: finding counterexamples to equivalence queries.

The abstraction’s storage is linear in the number of A-states
it can map to; and computing an R-state’s associated A-state
may be linear in this number as well. However, as this
number of A-states also grows very slowly (linearly in the
number of refinements), this does not become a problem.

7.3. Practical Considerations

As the initial partitioning and the refinement operation are
very coarse, the method may accept very small but wrong
DFAs. To counter this, two measures are taken:

1. One accepting and one rejecting sequence are provided
to the teacher as potential counterexamples to be con-
sidered at every equivalence query.

2. The first refinement uses an aggressive approach that
generates a great (but manageable) number of A-states.

The first measure, necessary to prevent termination on a
single state automaton, requires only two samples. These
can be found by random sampling, or taken from the training
set.6 In keeping with the observation made in Section 6.3,
we take the shortest available samples. The second measure
prevents the extraction from too readily terminating on small
DFAs. Our method for it is presented in Section 7.3.1.

7.3.1. AGGRESSIVE DIFFERENCE-BASED REFINEMENT

We split h from at least one of the vectors h′ ∈ H by split-
ting S along the d dimensions with the largest gap between
h and the mean hm of H , down the middle of that gap. This
refinement can be comfortably maintained in a decision tree,
generating at the split point a tree of depth d for which,
on each layer i = 1, 2, ..., d, each node is split along the
dimension with the i-th largest gap. This refinement follows
intuitively from the quantization suggested by Omlin and

in this work.
6If no such samples exist, a single state DFA may be correct.
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Giles, but focuses only on the dimensions with the greatest
deviation of values between the states being split and splits
the ‘active’ range of values.

The value d may be set by the user, and increased if the ex-
traction is suspected to have converged too soon. We found
that values of around 7-10 generally provide a strong enough
initial partitioning of S, without making the abstraction too
large for feasible exploration.

8. Experimental Results
We demonstrate the effectiveness of our method on net-
works trained on the Tomita grammars (1982),7 used as
benchmarks in previous automata-extraction work (Wang
et al., 2017), and on substantially more complicated lan-
guages. We show the effectiveness of our equivalence query
approach over simple random sampling and present cases in
which our method extracts informative DFAs whereas other
approaches fail. In addition, for some seemingly perfect
networks, we find that our method quickly returns counterex-
amples representing deviations from the target language.

On all networks, we applied our method with initial re-
finement depth 10. Unlike other extraction methods, where
parameters must be tuned to find the best DFA, no parameter
tuning was required to achieve our results.

We clarify that when we refer to extraction time for any
method, we consider the entire process: from the moment
the extraction begins, to the moment a DFA is returned.8

Prototype Implementation and Settings We imple-
mented all methods in Python, using PyTorch (Paszke et al.,
2017) and scikit-learn (Pedregosa et al., 2011). For the SVM
classifiers, we used the SVC variant, with regularization fac-
tor C = 104 to encourage perfect splits and otherwise de-
fault parameters—in particular, the RBF kernel with gamma
value 1/(num features).

Training Setup As our focus was extraction, we trained
all networks to 100% accuracy on their train sets, and of
these we considered only those that reached 99.9+% accu-
racy on a dev set consisting of up to 1000 uniformly sampled
words of each of the lengths n ∈ 1, 4, 7, ..., 28. The positive
to negative sample ratios in the dev sets were not controlled.

The train sets contained samples of various lengths, with a

7The Tomita grammars are the following 7 languages over
the alphabet {0, 1}: [1] 1∗, [2] (10)∗, [3] the complement
of ((0|1)∗0)∗1(11)∗(0(0|1)∗1)∗0(00)∗(1(0|1)∗)∗,
[4] all words w not containing 000, [5] all w for which #0(w)
and #1(w) are even (where #a(w) is the number of a’s in w), [6]
all w for which (#0(w)−#1(w)) ≡3 0, and [7] 0∗1∗0∗1∗.

8Measured using clock(), of Python’s time module, and
covering among others: abstraction exploration, abstraction refine-
ments (including training SVM classifiers), and L∗ refinements.

Table 1. Accuracy of DFAs extracted from GRU networks rep-
resenting small regular languages. Single values represent the
average of 3 experiments, multiple values list the result for each
experiment. Extraction time of 30 seconds is a timeout.

Hidden DFA Average Accuracy on Length
Size Time (s) Size 10 50 100 1000 Train
50 30, 30, 30 11,11,155 99.9 99.8 99.9 99.9 99.9
100 11.0 11,10,11 100 99.9 99.9 99.9 100
500 30, 30, 30 10,10,10 100 99.9 100 99.9 100.0

1:1 ratio between the positive and negative samples from
each length where possible. To achieve this, a large number
of words were uniformly sampled for each length. When
not enough samples of one class were found, we limited
the ratio to 50:1, or took at most 50 samples if all were
classified identically. The train set sizes, and the lengths of
the samples in them, are listed for every language in this
paper in the supplementary material.

For languages where the positive class was unlikely to be
found by random sampling—e.g. balanced parentheses or
emails—we generated positive samples using tailored func-
tions.9 In these cases we also generated negative samples
by mutating the positive examples.10 Wherever a test set is
mentioned, it was taken as a 1:1 sample set from the same
distribution generating the positive and negative samples.

Effectiveness on Random Regular Languages We first
evaluated our method on the 7 Tomita grammars. We trained
one 2-layer GRU network with hidden size 100 for each
grammar (7 RNNs in total). All but one RNN reached 100%
dev accuracy; the one trained on the 6th Tomita grammar
reached 99.94%. For each RNN, our method correctly ex-
tracted and accepted the target grammar in under 2 seconds.

The largest Tomita grammars have 5-state DFAs over a
2-letter alphabet. We also explored substantially more com-
plex grammars: we trained 2-layer GRU networks with
varying hidden-state sizes on 10-state minimal DFAs gen-
erated randomly over a 3-letter alphabet. We applied our
method to these networks with a 30 second time limit—
though most reached equivalence sooner. Extracted DFAs
were compared against their networks on their train sets and
on 1000 random samples for each of several word-lengths.

Table 1 shows the results. Each row represents 3 experi-
ments: 9 random DFAs were generated, trained on, and ex-
tracted. The extracted DFAs are small, and highly accurate
even on long sequences (length 1000). Additional results
showing similar trends, including experiments on LSTM
networks, are available in the supplementary material.

9For instance, a function that creates emails by uniformly sam-
pling 2 sequences of length 2−8, choosing uniformly from the
options .com, .net, and all .co.XY for X,Y lowercase charac-
ters, and then concatenating the three with an additional @.

10By adding, removing, changing, or moving up to 9 time char-
acters.



Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

Comparison with a-priori Quantization In their 1996
paper, Omlin and Giles suggest partitioning the network
state space by dividing each state dimension into q equal
intervals, with q being the quantization level. We tested this
method on each of our networks, with q = 2 and a time limit
of 1000 seconds to avoid excessive memory consumption.

In contrast to our method, which extracted on these same
networks small and accurate DFAs within 30 seconds, we
found that for this method this was not enough time to ex-
tract a complete DFA. The extracted DFAs were also very
large—often with over 60,000 states—and their coverage
of sequences of length 1000 tended to zero. For the covered
sequences however, the extracted DFA’s accuracy was of-
ten very high (99+%), suggesting that quantization—while
impractical—is sufficiently expressive to describe a net-
work’s state space. However, it is also possible that the
sheer size of the quantization (250 for our smallest RNNs)
simply allowed each explored R-state its own A-state, giving
high accuracy by observation bias.

This highlights the key strength of our method: in contrast
to other methods, our method is able to find small and
accurate DFAs representing a given RNN, when such DFAs
are available. It does this in a fraction of the time required by
other methods to complete their extractions. This is because,
unlike other methods, it maintains from a very early point in
extraction a complete DFA that constitutes a continuously
improving approximation of R.

Comparison with Random Sampling For Counterexam-
ple Generation We show that there is merit to our ap-
proach to equivalence queries over simple random sampling.

Networks R for which the ratio between accepting and
rejecting sequences is very uneven may be closely approx-
imated by simple DFAs—making it hard to differentiate
between them and their L∗ proposed automata by ran-
dom sampling. We trained two networks on one such lan-
guage: balanced parentheses (BP) over the 28-letter alpha-
bet {a,b, ...,z,(,)} (the language of all sequences w over
a-z() in which every opening parenthesis is eventually
followed by a single corresponding closing parenthesis, and
vice versa). The networks were trained to 100% accuracy on
train sets of size∼44600, containing samples with balanced
parentheses up to depth 11. The two train sets had 36%
and 43% negative samples, which were created by slightly
mutating the positive samples. The networks were a 2-layer
GRU and a 2-layer LSTM, both with hidden size 50 per cell.

We extracted from these networks using L∗, approaching
equivalence queries either with our method or by random
sampling. We implemented the random sampling teacher
to sample up to 1000 words of each length in increasing
order. For fairness, we also provided it with the same two
initial samples our teacher was given, allowing it to check

Table 2. Accuracy and maximum nesting depth of extracted au-
tomata for networks trained on BP, using either abstractions (“Ab-
str”) or random sampling (“RS”) for equivalence queries. Accuracy
is measured with respect to the trained RNN.

Train Set Accuracy Max Nest. Depth
Network Abstr RS Abstr RS
GRU 99.98 87.12 8 2
LSTM 99.98 94.19 8 3

Table 3. Counterexamples generated during extraction of automata
from a GRU network trained on BP.

Refinement Based Brute Force
example Time (s) example Time (s)
)) 1.1 )) 0.4
(()) 1.2 (()i)ma 32.6
((())) 2.1
(((()))) 3.1
((((())))) 3.8
(((((()))))) 4.4
((((((())))))) 6.6
(((((((()))))))) 9.2
((((((((v()))))))) 10.7
((((((((a()z))))))))) 8.3

and possibly return them at every equivalence query.

We ran each extraction with a time limit of 400 seconds and
found a nice pattern: every DFA proposed by L∗ represented
BP to some bounded nesting depth, and every counterexam-
ple taught it to increase that depth by 1.

The accuracy of the extracted DFAs on the network train
sets is shown in Table 2, along with the maximum depth
the L∗ DFAs reached while still mimicking BP. For the
GRU extractions, the counterexamples and their generation
times are listed in Table 3. Note the speed and succinct-
ness of those generated by our method as opposed to those
generated by random sampling.

Adversarial Inputs Excitingly, the penultimate coun-
terexample returned by our method is an adversarial input:
a sequence with unbalanced parentheses that the network
(incorrectly) accepts. This input is found in spite of the
network’s seemingly perfect behavior on its 44000+ sample
train set. We stress that the random sampler did not manage
to find such samples.

Inspecting the extracted automata indeed reveals an almost-
but-not-quite correct DFA for the BP language (the automata
as well as the counterexamples are available in the supple-
mentary material). The RNN overfit to random peculiarities
in the training data and did not learn the intended language.

k-Means Clustering We also implemented a simple k-
means clustering and extraction approach and applied it
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to the BP networks with a variety of k values, allowing
it to divide the state space into up to 100 clusters based
on the states observed with the networks’ train sets. This
failed to learn any BP to any depth for either network: for
both networks, it only managed to extract DFAs almost
resembling BP to nesting depth 3 (accepting also some
unbalanced sequences).

Limitations Due to L∗’s polynomial complexity and in-
tolerance to noise, for networks with complicated behavior,
extraction becomes extremely slow and returns large DFAs.
Whenever applied to an RNN that has failed to generalize
properly to its target language, our method soon finds sev-
eral adversarial inputs, builds a large DFA, and times out
while refining it.11

This does however demonstrate the ease with which the
method identifies incorrectly trained networks. These cases
are annoyingly frequent: for many RNN-acceptors with
100% train and test accuracy on large test sets, our method
was able to find many simple misclassified examples.

For instance, for a seemingly perfect LSTM network trained
on the regular expression

[a-z][a-z0-9]*@[a-z0-9]+.(com|net|co.[a-z][a-z])$

(simple email addresses over the 38 letter alphabet
{a-z,0-9,@,.}) to 100% accuracy on a 40,000 sample
train set and a 2,000 sample test set, our method quickly re-
turned the counterexamples seen in Table 4, showing clearly
words that the network misclassified (e.g., 25.net). We
ran extraction on this network for 400 seconds, and while
we could not extract a representative DFA in this time,12

our method did show that the network learned a far more
elaborate (and incorrect) function than needed. In contrast,
given a 400 second overall time limit, the random sampler
did not find any counterexample beyond the provided one.

We note that our implementation of kmeans clustering and
extraction had no success with this network, returning a
completely rejecting automaton (representing the empty
language), despite trying k values of up to 100 and using all
of the network states reached using a train set with 50/50
ratio between positive and negative samples.

Beyond demonstrating the capabilities of our method, these
results also highlight the brittleness in generalization of
trained RNNs, and suggest that evidence based on test-set
performance should be interpreted with extreme caution.

11This happened also to our BP LSTM network, which timed
out during L∗ refinement after the last counterexample.

12A 134-state DFA A was proposed by L∗ after 178 seconds,
and the next refinement to A (4.43 seconds later) timed out. The
accuracy of the 134-state DFA on the train set was nearly random.
We suspect that the network learned such a complicated behavior
that it simply could not be represented by any small DFA.

Table 4. Counterexamples generated during extraction from an
LSTM email network with 100% train and test accuracy. Examples
of the network deviating from its target language are shown in bold.

Counter- Network Target
example Time (s) Classification Classification
0@m.com provided

√ √

@@y.net 2.93 × ×
25.net 1.60

√
×

5x.nem 2.34
√

×
0ch.nom 8.01 × ×
9s.not 3.29 × ×
2hs.net 3.56

√
×

@cp.net 4.43 × ×

This reverberates the results of Gorman and Sproat (2016),
who trained a neural architecture based on a multi-layer
LSTM to mimic a finite state transducer (FST) for number
normalization. They showed that the RNN-based network,
trained on 22M samples and validated on a 2.2M sample
development set to 0% error on both, still had occasional
errors (though with error rate < 0.0001) when applied to a
240,000 sample blind test set.

9. Conclusions
We present a novel technique for extracting deterministic
finite automata from recurrent neural networks with roots
in exact learning. As our method makes no assumptions
as to the internal configuration of the network, it is easily
applicable to any RNN architecture, including the popular
LSTM and GRU models.

In contrast to previous methods, our method is not affected
by hidden state-size, and successfully extracts representative
DFAs for any networks that can indeed be represented as
such. Unlike other extraction approaches, our technique
works with little to no parameter tuning, and requires very
little prior information to get started (the input alphabet, and
2 labeled examples).

Our method is guaranteed to never extract a DFA more
complicated than the language of the RNN being consid-
ered. Moreover, the counterexamples returned during our
extraction can point us to incorrect patterns the network has
learned without our awareness.

Beyond scalability and ease of use, our method can return
reasonably accurate DFAs even if extraction is cut short.
Moreover, we have shown that for networks that do cor-
respond to succinct automata, our method gets very good
results—generally extracting small, succinct DFAs with
accuracies of over 99% with respect to their networks, in
seconds or tens of seconds. This is in contrast to existing
methods, which require orders of magnitude more time to
complete, and often return large and cumbersome DFAs
(with tens of thousands of states).
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