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Abstract
Based on the predictive coding theory in neuro-
science, we designed a bi-directional and recur-
rent neural net, namely deep predictive coding
networks (PCN), that has feedforward, feedback,
and recurrent connections. Feedback connections
from a higher layer carry the prediction of its
lower-layer representation; feedforward connec-
tions carry the prediction errors to its higher-layer.
Given image input, PCN runs recursive cycles of
bottom-up and top-down computation to update
its internal representations and reduce the differ-
ence between bottom-up input and top-down pre-
diction at every layer. After multiple cycles of
recursive updating, the representation is used for
image classification. With benchmark datasets
(CIFAR-10/100, SVHN, and MNIST), PCN was
found to always outperform its feedforward-only
counterpart: a model without any mechanism for
recurrent dynamics, and its performance tended
to improve given more cycles of computation over
time. In short, PCN reuses a single architecture
to recursively run bottom-up and top-down pro-
cesses to refine its representation towards more
accurate and definitive object recognition.

1. Introduction
Convolutional neural networks (CNN) have achieved great
success in image recognition. Classical CNN models, e.g.
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zis-
serman, 2014), GoogLeNet (Szegedy et al., 2015), ResNet
(He et al., 2016a), have improved the performance in com-
puter vision, while these models generally become deeper
and wider by using more layers (He et al., 2016a) or/and fil-
ters (Zagoruyko & Komodakis, 2016). Despite various ways
of architectural reconfiguration, these models all scale up
from the same principle of computation: extracting image
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features by a feedforward pass through stacks of convolu-
tional layers.

Although it is inspired by hierarchical processing in biolog-
ical visual systems (Hubel & Wiesel, 1968), CNN differs
from the brain in many aspects. Unlike CNN, the brain
achieves robust visual perception by using feedforward,
feedback and recurrent connections (Felleman & Van, 1991).
Information is processed not only through a bottom-up path-
way running from lower to higher visual areas, but also
through a top-down pathway running in the opposite direc-
tion. Such bi-directional processes enable humans to per-
form a wide range of visual tasks, including object recogni-
tion. For human vision, feedforward processing is essential
to rapid recognition (Serre et al., 2007), e.g. when visual in-
put is too brief to recruit feedback and recurrent processing
(Thorpe et al., 1996). However, feedback processing im-
proves object recognition and enables cognitive processes to
influence perception (Wyatte et al., 2014). In neuroscience,
the interplay between feedforward and feedback processes is
described by hierarchical predictive coding (Rao & Ballard,
1999; Friston & Kiebel, 2009; Bastos et al., 2012; Clark,
2013). It states that the feedback connections from a higher
visual area to a lower visual area carry predictions of lower-
level neural activities; feedforward connections carry the
errors between the predictions and the actual lower-level
activities. As a result, the brain dynamically updates its
representations to progressively refine its perceptual and
behavioral decisions.

Based on this brain theory, we designed a bi-directional
and recurrent neural net (i.e. PCN). Given image input to
PCN, it runs recursive cycles of bottom-up and top-down
computation to update its internal representations towards
minimization of the residual error between bottom-up input
and top-down prediction at every layer in the network. Us-
ing predictive coding as its computational mechanism, PCN
differs from feedforward-only CNNs that currently domi-
nate computer vision. It is a model with dynamics that uses
recursive and bi-directional computation to extract better
representations of the input such that the input is predictable
by the internal representation. When it is unfolded in time,
PCN runs a longer cascade of nonlinear transformations by
running more cycles of bottom-up and top-down compu-
tation through the same architecture without adding more
layers, units, or connections.
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To explore its value, we designed PCN with convolutional
layers stacked in both feedforward and feedback directions.
We trained and tested PCN for image classification with
benchmark datasets: CIFAR-10 (Krizhevsky & Hinton,
2009) CIFAR-100 (Krizhevsky & Hinton, 2009), SVHN
(Netzer et al., 2011) and MNIST (LeCun et al., 1998). Our
focus was to explore the intrinsic advantages of PCN over
its feedforward-only counterpart: a plain CNN model with-
out feedback connection or any mechanism for recurrent
dynamics. It turned out that PCN always outperformed the
plain model, and its accuracy tended to improve given more
cycles of computation over time. Relative to the classical
models, PCN yielded competitive performance in all bench-
mark tests despite much less layers in PCN. As we did not
attempt to optimize the performance by trying many learn-
ing parameters or model architectures, there is much room
for future studies (e.g. Han et al. (2018)) to further improve
or extend the model on the basis of a similar notion.

2. Related Work
Recent studies demonstrate that deep convolutional neural
networks use representations similar to those in the brain
(Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014;
Güçlü & van Gerven, 2015; Cichy et al., 2016; Eickenberg
et al., 2017; Wen et al., 2017). However, many gaps are yet
to be filled to bridge biological and artificial visual systems.
A biologically plausible model should take into account
feedback and recurrent connections, which are abundant in
primate brains (Felleman & Van, 1991). A limited number
of studies have taken on this direction from the perspective
of computational neuroscience or computer vision.

O’Reilly et al. demonstrated that feedback connections
could enable top-down representations to fill incomplete
bottom-up representations to improve recognition of par-
tially occluded objects (O’Reilly et al., 2013). Exploiting
a similar idea, Spoerer et al. built a recurrent CNN using
feedforward, feedback, and lateral connections to enable
recurrent processing that dynamically updated the internal
representations as the sum of bottom-up, top-down, and
lateral contributions (Spoerer et al., 2017). Trained and
tested with synthesized digital images, their model yielded
more robust recognition of digits in cluttered and occluded
images. However, that model did not embody an explicit
computational mechanism to ensure recurrent processing
dynamics to converge over time. Although compelling from
the neuroscience perspective, the models in the above stud-
ies were relatively simple and shallow, and they were not
tested in naturalistic visual scenarios of primary interest to
computer vision.

In computer vision, feedback has also played an impor-
tant role in some vision tasks. For example, feedback was
used to select the internal attention to achieve better object

recognition performance (Stollenga et al., 2014) or used to
model the visual saliency in images (Mahdi et al., 2017)
Many studies also used a feedback network to reconstruct
the visual input in unsupervised learning like autoencoders
(Hinton & Salakhutdinov, 2006), deconvolutional networks
(Zeiler et al., 2010) and generative models (Hinton, 2012;
Canziani & Culurciello, 2017). What remains unresolved is
a biologically plausible mechanism that allows feedforward,
feedback, and recurrent processes to interact with one an-
other in order for the model to manifest internal dynamics
that support various learning objectives.

In this regard, we may seek inspiration from the brain. Pre-
dictive coding is an influential theory of neural processing
in vision and beyond (Huang & Rao, 2011) as supported
by empirical evidence (Gómez et al., 2014; van Pelt et al.,
2016). In a seminal paper (Rao & Ballard, 1997), Rao and
Ballard postulated that the brain learns a hierarchical in-
ternal model of the visual world. Each level in this model
attempts to predict the responses at its lower level via feed-
back connections; the error between this prediction and the
actual response is sent to the higher level via feedforward
connections. Friston et al. further generalized this notion
into a unified brain theory for perception and action (Friston
& Kiebel, 2009). Chalasani et al. used predictive coding
to train a deep neural net to learn a hierarchy of sparse
representations of data without supervision (Chalasani &
Principe, 2013). Lotter et al. explored video prediction as an
unsupervised learning objective based on predictive coding
(Lotter et al., 2016); however the model trained in this way
may not be able to learn sufficiently abstract representation
to support such tasks as object recognition. Spratling et al.
explored the use of predictive coding for object recogni-
tion; however, their model was limited a shallow network
architecture for much simplified scenarios (Spratling, 2017).

Inspired by but different from models in prior studies
(Spratling, 2008; 2017; Rao & Ballard, 1999), a hierarchi-
cal, bidirectional, and recurrent neural network is proposed
herein for object recognition. This model operates with the
theory of predictive coding to generate dynamic internal
representations by recursive bottom-up and top-down com-
putation. To train this network, the representations at the
highest level, after multiple cycles of recursive updating, are
used to classify the input image. With labeled images, the
model parameters are trained through backpropagation in
time and across layers.

3. Method
3.1. Predictive Coding

Central to the theory of predictive coding is that the brain
continuously generates top-down predictions of bottom-up
inputs. The representation at a higher level predicts the
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representation at its lower level. The difference between
the predicted and actual representation elicits an error of
prediction, and propagates to the higher level to update its
representation towards improved prediction. This repeats
throughout the hierarchy until the errors of prediction di-
minish, or the bottom-up process no longer conveys any
new (or unpredicted) information to update the hidden rep-
resentation. Thus, predictive coding is a computational
mechanism for the model to recursively update its internal
representations of the visual input towards convergence.

In the following mathematical description of this dynamic
process in PCN, italic lowercase letters are used as symbols
for scalars, bold lowercase letters for column vectors, and
bold uppercase letters for MATRICES. The representation
at layer l and time t is denoted as rl(t). The weights of
feedforward connections from layer l − 1 to layer l are
denoted as Wl−1,l. The weights of feedback connections
from layer l to layer l − 1 are denoted as Wl,l−1.

In PCN, the higher-level representation, rl(t), predicts its
lower-level representation as pl−1(t) via linear weighting
Wl,l−1, as shown in Eq. (1). The prediction error, el−1(t),
is the difference between pl−1(t) and rl−1(t) as in Eq. (2).

pl−1(t) = (Wl,l−1)
T rl(t) (1)

el−1(t) = rl−1(t)− pl−1(t) (2)

3.1.1. FEEDFORWARD PROCESS

For the feedforward process, the prediction error at layer
l − 1, el−1(t), propagates to the upper layer l to update its
representation, rl(t), so the updated representation reduces
the error. To minimize el−1(t), lets define a loss as the
sum of the squared errors normalized by the variance of the
representation, σ2

l−1, as in Eq. (3).

el−1(t) =
1

σ2
l−1
‖ el−1(t) ‖22 (3)

The gradient of el−1(t) with respect to rl(t) is as Eq. (4).

∂el−1(t)

∂rl(t)
= − 2

σ2
l−1

Wl,l−1el−1(t) (4)

To minimize el−1(t), rl(t) is updated by gradient descent
with an updating rate, αl, as shown in Eq. (5).

rl(t+ 1) = rl(t)− αl
(
∂el−1(t)

∂rl(t)

)
= rl(t) +

2αl
σ2
l−1

Wl,l−1el−1(t)
(5)

If the weights of feedback connections are the transpose
of those of feedforward connections Wl,l−1 = (Wl−1,l)

T ,

the update rule in Eq. (5) can be rewritten as a feedforward
operation, as in Eq. (6).

rl(t+ 1) = rl(t) + al(Wl−1,l)
T el−1(t) (6)

where the last term indicates forwarding the prediction error
from layer l − 1 to layer l to update the representation with
an updating rate al = 2αl

σ2
l−1

.

3.1.2. FEEDBACK PROCESS

For the feedback process, the top-down prediction is used
to update the representation at layer l, rl(t), to reduce the
prediction error el(t). Similar to feedforward process, the
error is minimized by gradient descent, where the gradient
of el(t) with respect to rl(t) is as Eq. (7), and rl(t) is
updated with an updating rate βl as shown in Eq. (8).

∂el(t)

∂rl(t)
=

2

σ2
l

(rl(t)− pl(t)) (7)

rl(t+ 1) = rl(t)− βl
∂el(t)

∂rl(t)

= (1− 2βl
σ2
l

)rl(t) +
2βl
σ2
l

pl(t)
(8)

Let bl = 2βl

σ2
l

and Eq. (8) is rewritten as follows.

rl(t+ 1) = (1− bl)rl(t) + blpl(t) (9)

E. (9) reflects a feedback process that the representation at
the higher layer, rl+1(t), generates a top-down prediction,
pl(t), and influences the lower-layer representation, rl(t).

3.1.3. NONLINEARITY

To add nonlinearity to the above feedforward and feedback
processes, a nonlinear activation function is applied to the
output of each convolutional layer (except the input layer,
i.e. l = 0). A rectified linear unit (ReLU) (Nair & Hinton,
2010) converts Eqs. (6) and (9) to nonlinear processes as
below.
Nonlinear feedforward process:

rl(t+ 1) = ReLU(rl(t) + al(Wl−1,l)
T el−1(t)) (10)

Nonlinear feedback process:

rl(t+ 1) = ReLU((1− bl)rl(t) + blpl(t)) (11)

3.2. Network Architecture

We used the nonlinear feedforward and feedback processes
defined in Eq. (10) and (11) as a computational mechanism
of predictive coding. We implemented this computational
mechanism in several PCNs, all of which included stacked



Deep Predictive Coding Network for Object Recognition

Table 1: Architectures for plain CNN. Each column is an
architecture. Bold number indicates the number of filters.

CIFAR-10 / 100 SVHN / MNIST
A B C D E

9 layers 9 layers 7 layers 7 layers 7 layers
input image

conv3-64 conv3-32 conv3-32 conv3-32 conv3-16
conv3-64 conv3-32 conv3-32 conv3-32 conv3-16
conv3-128 conv3-64 conv3-64 conv3-64 conv3-32
conv3-128 conv3-64 conv3-64 conv3-64 conv3-32
conv3-256 conv3-128 conv3-128 conv3-128 conv3-64
conv3-256 conv3-128 conv3-128 conv3-128 conv3-64
conv3-256 conv3-128
conv3-256 conv3-128

global average pooling, FC-10/100, softmax

convolutional layers with feedforward, feedback, and recur-
rent connections as shown in Fig. 1a. These PCNs were
trained and tested for object recognition with four bench-
mark datasets. For comparison, several feedforward-only
CNNs were built with the same architecture as the feedfor-
ward pathway in corresponding PCNs, and were trained and
tested with the same datasets. We refer to these feedforward-
only CNNs as the plain models.

Plain CNN Models: The architectural setting of our plain
CNN models were similar to the VGG nets (Simonyan &
Zisserman, 2014) (see Table 1). Briefly, the basic architec-
ture included 6 or 8 convolutional layers and 1 classification
layer. All convolutional layers used 3×3 filters but different
numbers of filters, and used rectified linear unit (ReLU) as
the nonlinear activation function. For some layers where
the number of filters is doubled, the feature maps were re-
duced by applying 2×2 max-pooling with a stride of 2 after
convolution. Batch normalization (Ioffe & Szegedy, 2015)
was not used. The classification layer included global aver-
age pooling and a fully-connected (FC) layer followed by
softmax. On the basis of this setting, we built 5 VGG-like
architectures that varied in the number of layers and filters,
and trained and tested the models with 4 datasets.

Predictive Coding Network (PCN): Starting from each
of the plain CNN architectures, we added feedback and
recurrent connections to form a corresponding PCN. Fig.
1a shows a 9-layer PCN, running recursive bottom-up and
top-down processing based on predictive coding. In PCN,
feedback connections from one layer to its lower layer were
constrained to be the transposed convolution (Dumoulin
& Visin, 2016) which is the transpose of the feedforward
counterparts. As such, both feedforward and feedback con-
nections encoded spatial filters. The former was applied to
the errors of the top-down prediction of lower-level represen-
tation; the latter was applied to high-level representation in
order to predict the lower-level representation. The weights
of feedback connections had the identical dimension as the
transposed weights of feedforward connections. For layers
where max-pooling was applied after feedforward convolu-
tion, bilinear upsampling was applied before feedback con-
volution to ensure that the dimension of top-down prediction

Algorithm 1 Deep Predictive Coding Network
1: Input: static image x
2: r0(t)← x
3: % initialize representations
4: for l = 0 to L− 1 do
5: rl+1(0)← ReLU(FFConv(rl(0)))
6: end for
7: % recurrent computation with T cycles
8: for t = 1 to T do
9: % nonlinear feedback process

10: for l = L to 1 do
11: pl−1(t− 1)← FBConv(rl(t− 1))
12: if l > 1 then
13: rl−1(t− 1)← ReLU((1− b)rl−1(t− 1) + bpl−1(t− 1))

14: end if
15: end for
16: % nonlinear feedforward process
17: for l = 0 to L− 1 do
18: el(t)← rl(t)− pl(t− 1)
19: rl+1(t)← ReLU(rl+1(t− 1) + aFFConv(el(t)))
20: end for
21: end for
22: % classification.
23: Output rL(T ) for classification

Note: FFConv represents the feedforward convolution, FB-
Conv represents the feedback convolution. a and b are spe-
cific to each filter in each layer. %comments are comments.

could match the dimension of lower-level representation.

An optional constraint to PCN was to use the same set of
weights for both feedforward and feedback connections as
in some prior studies (Rao & Ballard, 1999; Spratling, 2008;
2017). In other words, the weights of feedback connections
were the transposed weights of feedforward connections.
With this weight sharing, top-down predictions via feedback
connections tended to approach lower-level representations.
The PCN would have the same number of parameters as the
corresponding plain model. Without this optional constraint
of weight sharing, feedforward and feedback weights were
assumed to be independent.

3.3. Recursive Computation

Unlike feedforward-only networks, PCN runs a dynamic
process to update its internal representation throughout the
hierarchy (Fig. 1.b). Given an input image, PCN first runs
through the feedforward path from the input layer to the
last convolutional layer at t = 0, equivalent to a plain CNN
model. For t = 1, PCN first runs a feedback process and
then a feedforward process to update the representations in
the hierarchy. In the feedback process, the representation
at each layer is updated by a top-down prediction from the
higher layer according to Eq. (11). The feedback process
runs from the highest convolutional layer to the input layer.
In the feedforward process, the representation at each layer
is updated by a bottom-up error according to Eq. (10). This
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Figure 1: a) An example PCN with 9 layers and its CNN counterpart (or the plain model). b) Two-layer substructure
of PCN. Feedback (blue), feedforward (green), and recurrent (black) connections convey the top-down prediction, the
bottom-up prediction error, and the past information, respectively. c) The dynamic process in the PCN iteratively
updates and refines the representation of visual input over time. PCN outputs the probability over candidate categories
for object recognition. The bar height indicates the probability and the red indicates the ground truth.

procedure is repeated over time as shown in Fig. 1.b. After
some cycles, the representation is used as the input to the
classification layer to classify the image (see Algorithm 1).

3.4. Model Training

We evaluated two types of PCNs with regard to an optional
constraint: the feedforward and feedback connections share
the same convolutional weights. With this weight sharing,
the feedforward operation and the feedback operation use
the same weights. Without the constraint, the feedforward
and feedback weights are initialized independently.

In this work, we evaluated these two types of PCNs with a
varying number of recursive cycles (t = 0, 1, 2, · · · , 6) and
with different model architectures (labeled as A through E
in Table 1). We use Plain-A to represent the plain network
with architecture A, and use PCN-A-t to represent the PCN
with architecture A and t cycles of recursive computation.
The numbers of recursive cycles for training and testing a
model are the same. PCN-A-t (tied) and PCN-A-t represent
the PCNs with and without weight sharing, respectively.

We used PyTorch to implement, train, and test the models
described above. When PCN is trained for image classifi-
cation, the classification error backpropagates across layers
and in time to update the model parameters. The feedfor-
ward and feedback update rates (al and bl) are set to be

specific to each filter in each layer, are constrained to be
non-negative by using ReLU, and are trained with initial val-
ues al = 1.0 and bl = 0.5, respectively. The convolutional
weights and linear weights were initialized to be uniformly
random (the default setting in PyTorch). The models were
trained using mini-batches of a size 128 and without using
dropout regularization (Srivastava et al., 2014).

4. Experiments
We trained and tested PCN for image classification with
data in CIFAR-10/100, SVHN and MNIST, in comparison
with plain CNN using the same feedforward architecture.
With random initialization, PCN (or CNN) was trained for
5 times; the best and meanstd top-1 accuracy was reported
as below.

4.1. CIFAR-10 and CIFAR-100

The CIFAR-10/100 dataset includes 50,000 training images
and 10,000 testing images in 10 or 100 object categories.
Each image is a 32× 32 RGB image. PCN (or CNN) were
trained on the training set and evaluated on the test set. All
images were normalized per channel (i.e. subtract the mean
and divide by the standard deviation). For training, we used
translation and horizontal flipping for data augmentation.
We used mini-batch gradient decent to train PCN (or CNN)
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with a weight decay of 0.0005 and a momentum of 0.9.
The learning rate was initialized as 0.01 and was divided
by 10 when the error reached the plateau after training for
80, 140, 200 epochs. We stopped after 250 epochs. The
hyper-parameters for learning were set based on validation
with 10,000 images in the training set.

4.1.1. PCN VS. CNN

During training, PCN converged much faster than its CNN
counterpart (Fig. 2, top), especially when feedforward and
feedback connections did not share weights. Meanwhile,
increasing the recursive cycles tends to make PCN converge
faster. With testing data, PCN also yielded better accuracy
than the plain CNN (Fig. 2, bottom). For example, PCN
improved the classification accuracy from 62.11% to 72.48%
on CIFAR-100, relative to the plain CNN. See Table 2 for
more results for comparison with other classical or state-
of-the-art models. Without being pushed for high accuracy,
PCN showed a similar accuracy as ResNet, but relatively
lower than the pre-activation ResNet (Pre-act-ResNet) or the
wide residual network (WRN), which used a much deeper
or wider architecture than the models explored in this study.
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Figure 2: Training (top) and testing (bottom) accuracies for
PCN vs. CNN with matched feedforward architectures for
training with CIFAR datasets. Each curve represents the
average over 5 repeats of one model with different cycles of
recursive computation, ranging from 1 to 6.

4.1.2. RECURSIVE COMPUTATION IN PCN

The accuracy of PCN depended on the number of cycles
that recursively updated its internal representations. Fig. 3
shows that the accuracy of PCN tended to increase given
more cycles of computation, especially if feedforward and
feedback processes did not share the same weights.
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Table 2: Compare PCNs with start-of-the-art models on
CIFAR-10/100 datasets. #L and #P are the number of layers
and parameters, respectively.

Models CIFAR10/100
Methods #L #P Accuracy (%)

Maxout (Goodfellow et al., 2013) - - 90.62 61.43
dasNet (Stollenga et al., 2014) - - 90.78 66.22

NIN (Lin et al., 2013) - - 91.19 64.32
RCNN (Liang & Hu, 2015) 6 1.86M 92.91 68.25
FitNet (Romero et al., 2014) 19 2.5M 91.61 64.96

Highway (Srivastava et al., 2015) 19 2.3M 92.46 67.76
110 1.7M 93.57 -

ResNet 164 1.7M - 74.84
(He et al., 2016a) 1001 10.2M - 72.18

1202 19.4M 92.07 -
Pre-activation 110 1.7M 93.63 -

ResNet 164 1.7M 94.54 75.67
(He et al., 2016b) 1001 10.2M 95.08 77.29

WRN-40-4 40 8.9M 95.47 78.82
WRN-28-10 28 36.5M 96.00 80.75(Zagoruyko & Komodakis, 2016)

Plain-A 9 2.33M 90.61 62.11
PCN-A-6 (tied) 9 2.33M 92.26 69.44

PCN-A-6 9 4.65M 93.83 72.58
Plain-B 9 0.58M 89.53 62.21

PCN-B-2 (tied) 9 0.58M 90.76 65.57
PCN-B-6 9 1.16M 92.80 69.34
Plain-C 7 0.29M 88.23 61.36

PCN-C-2 (tied) 7 0.29M 89.56 64.09
PCN-C-6 7 0.57M 92.40 68.31

To understand why this was the case, we looked into some
testing images that were mis-classified by CNN but not by
PCN. At each time step (0 through 6), PCN computed a
different representation of an image that yielded a different
probability distribution across different categories (Fig. 4).
Classification was less definitive and/or inaccurate at early
time steps. At later time steps, the network corrected itself
to yield more definitive and accurate classification. It was
true especially for ambiguous images, where a cat looked
like a dog, or a deer looked like a horse, even for humans.
See more examples in Fig. 4.

4.1.3. GENERATIVE PREDICTION IN PCN

When it was trained for image classification, PCN was not
explicitly optimized to reconstruct the input image, unlike
a previous work that used video prediction as the learning
objective (Lotter et al., 2016). Nevertheless, the top-down
process in PCN was able to reconstruct the input with high
accuracy. Although this was sort of expected for PCN with
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Figure 4: Image classification at different time steps for PCN-A-6 (bottom) in comparison with the plain CNN model
(middle) for each of the 10 testing images misclassified by CNN (Plain-A). Each plot shows the probabilities over 10 classes
in CIFAR-10. The red represents the ground truth.

weight sharing, reconstruction was also reasonable even
for PCN without weight sharing (Fig. 5). This result was
surprising, and implied that PCN, without any architectural
constraint to enable image reconstruction, is able to reshape
itself to predict or reconstruct the input, even when it is
trained for a discriminative task, e.g. object recognition.
PCN potentially provides a new way to simultaneously train
a discriminative network for object recognition and a gener-
ative network for prediction or reconstruction.

4.1.4. COMPUTATIONAL REQUIREMENT

Given a static image, CNN processes it with a single feed-
forward pass in testing, but PCN needs several cycles of
recursive computation. For example, PCN-A-t requires
around 2t times the FLOPs of the plain CNN (0.68 billion
FLOPs, multiply-adds). However, if the input is a video,
CNN processes every video frame with a feedforward pass.
PCN processes every frame with a feedback pass and a feed-
forward pass. Thus, PCN only doubles the FLOPs compared
to the plain CNN given video input.

4.2. SVHN and MNIST

SVHN is a dataset of Googles Street View House Numbers
images (Netzer et al., 2011) and contains more than 600,000
color images of size 32×32, divided into training set, testing

set and an extra set. The task of this dataset is to classify
the digit located at the center of each image. Since the task
is easier than CIFAR datasets, we implemented PCN with
simpler network architectures (see Table 1). To validate the
hyper parameters, we randomly selected 400 samples per
class from the training set and 200 samples per class from
the extra set for validation, as in (Goodfellow et al., 2013).
The remainder of the training set and the extra set were
used for training. The preprocessing for SVHN was the
same as for CIFAR, i.e. per-channel normalization. No data
augmentation was used. We used the Adam (Kingma & Ba,
2014) optimization with a weight decay of 0.0005 and an
initial learning rate of 0.001 for a 20-10-10 epoch schedule.
The exponential decay rates for the first and second moment
estimates were 0.9 and 0.999, respectively. Table 3 shows
the classification performance for this dataset. Like what
we found for the CIFAR dataset, PCN always outperformed
the plain CNN counterpart.

The MNIST dataset consists of hand written digits 0-9.
There are 60,000 training images and 10,000 testing images
in total. Each image is a gray image of size 28 × 28. For
this dataset, the network architecture and training procedure
were the same as for SVHN. PCN consistently performed
better than its CNN counterpart (see Table 4). The best PCN
achieves 0.36% error rate, comparable to some previous
state-of-the-art models.
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Figure 5: Top-down image prediction by PCN. Here shows
example testing images in CIFAR-10 and their correspond-
ing images predicted by PCNs.

Table 3: Compare PCNs with start-of-the-art models on
SVHN. The accuracy was obtained from five repeats.

SVHN
Methods #L #P error rate (%)

Maxout (Goodfellow et al., 2013) - - 2.47
NIN(Lin et al., 2013) - - 2.35

Stochastic pooling (Zeiler & Fergus, 2013) - - 2.80
DSN (Lee et al., 2015) - - 1.92

RCNN (Liang & Hu, 2015) 6 2.67M 1.77
FitNet (Romero et al., 2014) 13 1.5M 2.42

Plain-D 7 0.29M 3.21(3.41±0.13)
PCN-D-2 (tied) 7 0.29M 2.63(2.92±0.11)

PCN-D-6 7 0.57M 2.28(2.42±0.09)
Plain-E 7 0.07M 3.19(3.41±0.13)

PCN-E-1 (tied) 7 0.07M 2.74(2.91±0.11)
PCN-E-6 7 0.14M 2.24(2.42±0.10)

5. Discussion and Conclusion
What defines PCN are 1) the use of bi-directional and recur-
rent connections as opposed to feedforward-only connec-
tions, and 2) the use of predictive coding as a mechanism
for the model to recursively run bottom-up and top-down
processes. When it is trained for image classification, the
model dynamically refines its representation of the input
image towards more accurate and definitive recognition. As
this computation is unfolded in time, PCN reuses a sin-
gle architecture and the same set of parameters to run an
increasingly longer cascade of nonlinear transformation.

We say it is longer instead of deeper, because the notion
behind PCN is different from the mindset in deep learning
that more layers are required to model more complex and
nonlinear relationships in data. In contrast, the brain does

Table 4: Compare PCNs with the start-of-the-art models on
MNIST. The accuracy was obtained from five repeats

MNIST
Methods #L #P error rate (%)

Maxout (Goodfellow et al., 2013) - - 0.45
NIN(Lin et al., 2013) - - 0.47

Stochastic pooling (Zeiler & Fergus, 2013) - - 0.47
DSN (Lee et al., 2015) - - 0.39

RCNN (Liang & Hu, 2015) 6 0.67M 0.31
FitNet (Romero et al., 2014) - - 0.51

PC/BC-DIM (Spratling, 2017) - - 2.19
Plain-D 7 0.29M 0.53(0.59±0.04)

PCN-D-1 (tied) 7 0.29M 0.43(0.50±0.06)
PCN-D-1 7 0.57M 0.38(0.46±0.06)
Plain-E 7 0.07M 0.68(0.74±0.03)

PCN-E-1 (tied) 7 0.07M 0.43(0.51±0.06)
PCN-E-4 7 0.14M 0.36(0.48±0.06)

not use a deeper network to do more challenging tasks. A
more challenging task simply takes the brain longer time to
process information through the same network.

Predictive coding tells PCN how to compute but not how
to learn. In this study, PCN is trained for image classifi-
cation based on the representation emerging from the top
layer after multiple cycles of computation. This helps the
learning to converge faster, while utilizing full knowledge
in training data. If an image takes the model more cycles
of computation to converge its representation, it means that
the image has more information than what the model can
explain or generate, and thus the image carries a greater
value for the model to learn. Therefore, it is more desirable
to train PCN for more challenging visual tasks, e.g. images
that are ambiguous or difficult to recognize, while reducing
the need for a large number of simple examples.

For image classification, PCN takes an image as the input
for all cycles of its recursive computation, while the errors
of top-down prediction sent to the first hidden layer vary
across cycles or in time. When the input is not a static image
but a video, the input to the first hidden layer represents the
errors of prediction of the present video frame given the
models representations from the past frames. This would
enable the model to compute and learn representations of
both spatial and temporal information in videos, which is an
important aspect that awaits to be explored in future studies.

As an initial step to explore predictive coding in computer
vision, it was our intention to start and compare with models
with a basic CNN architecture (e.g. VGG) in order to focus
on evaluation of the value of using predictive coding as a
computational mechanism. We expect that such predictive
coding based computation can also be used to other network
structures, e.g. ResNet and DenseNet. In a recent work (Han
et al., 2018), a variant of PCN with a deeper structure and
residual connections, has been developed and tested with
ImageNet. It used notably fewer layers and parameters and
but achieved competitive performance compared to classical
and state-of-the-art models.
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