
Local Density Estimation in High Dimensions
Supplementary Materials

Xian Wu Moses Charikar Vishnu Natchu

Preliminaries
We introduce here some definitions and notation that will be used throughout this supplement.

Suppose we are given a set of K hash tables, with binary addresses of length t. Therefore, each hash table contains 2t hash
buckets with addresses in {0, 1}t. Let d(i, j) denote the hamming distance between hash addresses i and j. Given a hash
table, let B denote the set of buckets in the table, and let bi be the number of elements in bucket i.

For any bucket address i, let Ni denote the set of neighbors of i, so address j ∈ Ni implies that d(i, j) = 1. For
a ∈ {0, . . . , t}, let Ni(a) denote the neighbors of i which match i’s hash sequence in the first a bits. Therefore, j ∈ Ni(a)
implies that d(i, j) = 1 and the first a bits of i match the first a bits of j. Note that Ni(0) degenerates to Ni as a special
case.

Let q denote the address of the bucket that a given query hashes to in a table. Oftentimes we are interested in elements that
fall into buckets at certain hamming distances to q. Denote the set of hamming distances of interest I. Without loss of
generality we always assume q = 0t, the hash address of all 0’s.

Definition .1 (Counts Vector). For a table k, a fixed hash address i, and r = 0, 1, . . . t, the counts vector Cki [r] gives the
number of elements hashed to buckets at hamming distance r away from i.

Definition .2 (Counts Matrix). For a table k and a fixed hash address i, the counts matrix Mk
i ∈ Z(t+1)×(t+1) has entries

Mk
i [s, a] that each gives a count of the number of elements hashed to buckets whose addresses are at hamming distance s

away from i and share the same first a bits as address i.

A. Computing the Average Counts Vector
We propose a message-passing algorithm, Aggregate-Counts (Algorithm 1), which for a single table k computesCki for
all buckets i in time O(t22t). Repeating for each of the K tables yields a total O(Kt22t) runtime. Aggregate-Counts
proceeds in t rounds where in each round r, each bucket i updates Cki [r] by aggregating information passed from its
neighbors in the set Ni.
Theorem 3.1 (Aggregate-Counts). Given a set of K hash tables, each with 2t hash buckets with addresses in {0, 1}t,
Aggregate-Counts (Algorithm 1) computes, for each hash address i, the number of elements in buckets that are
hamming distance 0, 1, . . . t away from i, in each of the K tables, in time O(Kt22t).

A.1. Analysis

We first analyze the correctness of Aggregate-Counts (Algorithm 1). Since the algorithm proceeds in rounds, we want
to show that at the end of each round r, each Ci[0], Ci[1], . . . Ci[r] correctly represents the number of elements in buckets of
hamming distance 0, 1, . . . r from address i, for all addresses i ∈ B. We use proof by induction on the number of rounds, r.

Base Case: In round r = 0, the update rule Ci[0] = bi is clearly correct. For round r = 1, the update rule
Ci[1] =

∑
j∈Ni

Cj [0] is also clearly correct.

Inductive Hypothesis: Assume that at end of round r − 1, each Ci[0], Ci[1], . . . Ci[r − 1] correctly represents the number
of elements in buckets of hamming distance 0, 1, . . . r − 1 from address i, for all addresses i ∈ B.

Local Density Estimation in High Dimensions

Algorithm 1 Aggregate-Counts

Require: Hash table with buckets B
1: for round r = 0, r ++, r ≤ t do
2: for hash address i ∈ B do
3: if r == 0 then
4: Ci[r] = bi
5: else if r ==1 then
6: Ci[r] =

∑
j∈Ni

Cj [r − 1]
7: else
8: Ci[r] =

∑
j∈Ni

Cj [r−1]−(t−r+2)Ci[r−2]
r

9: end if
10: end for
11: end for
12: Return Ci for all i ∈ B

Inductive Step: We want to show that at round r, Ci[r] =
∑

j∈Ni
Cj [r−1]−(t−r+2)Ci[r−2]

r correctly counts the number of
elements in buckets at hamming distance r from bucket i.

Without loss of generality, we focus on hash address 0t, the address with t (all) 0’s. The hash addresses that are hamming
distance r from 0t contain exactly r 1’s.

We first take
∑
j∈Ni

Cj [r − 1], the sum of the elements that are hamming distance r − 1 from 0t’s immediate neighbors.
However, this sum also includes elements that are r − 1 distance from 0t’s neighbors via 0t as an intermediate hop, which
consequently are not distance r from 0t, but rather r − 2 distance from 0t, since each neighbor is distance 1 from 0t. We
claim that there are exactly (t− r + 2)C0t

[r − 2] of these elements that were included in the sum. Fix any hash address h
that is distance r − 2 from 0t. Clearly h has exactly (r − 2) 1’s in its address. There are (t− r + 2) 0’s in h’s address. Any
neighbor j of 0t that has a 1 in any of those t− r + 2 slots will report h as part of its count Cj [r − 1]. There are t− r + 2
such neighbors, therefore, we must adjust

∑
j∈Ni

Cj [r − 1] by subtracting (t− r + 2)Ci[r − 2].

There is one other source of double-counting, which is that many neighbors j of 0t will include the same bucket of hamming
distance r away from 0t as part of their Cj [r − 1] count. This over-counting can be quantified in the following way. Fix
any hash address d that is distance r from 0t. Clearly the sequence d contains exactly (r) 1’s. So any neighbor j of 0t that
contains a 1 in any one of those r slots will include d as part of its Cj [r − 1] count, and there are r such neighbors. So our
final expression for C0t

(r) is

C0t
[r] =

∑
j∈Ni

Cj [r − 1]− (t− r + 2)C0t
[r − 2]

r

This same argument generalizes to any bucket i, so we conclude that our general update rule Ci[r] =∑
j∈Ni

Cj [r−1]−(t−r+2)Ci[r−2]
r is correct.

Aggregate-Counts proceeds in t+1 rounds in the outer loop. Each round iterates over 2t buckets in the inner loop. An
update for each bucket i looks at the neighbors Ni of i, and each hash address i has exactly t neighbors (each corresponding
to one bit flip in the length t hash address). So Aggregate-Counts terminates in time O(t22t).

When we want to compute the counts vectors for many tables, we invoke Aggregate-Counts for each of K tables so
the overall runtime is O(Kt22t).

B. Constructing a Uniform Sampler for Fixed Hamming Distances across Multiple Tables
We construct a sampler that, given a different hash address ik for each table k ∈ [K], and a certain set of hamming distances
I, returns a data point uniformly at random from the union of the set of elements in each table that are contained in buckets
of hamming distance I from hash address ik.

The high level implementation of our sampler works as follows. Given a set of hamming distances I that we are interested

Local Density Estimation in High Dimensions

in and hash address ik for each of our K tables, we know from Appendix A that we can construct Cki that gives the number
of elements in buckets that are hamming distance 0, 1, . . . t away from address ik for each table k. Then for each table,
we can add the relevant indices to obtain the total count for elements at hamming distances I, that is, we can compute∑

d∈I C
k
i [d] for each k. We choose to take a sample from table k∗ with probability

∑
d∈I C

k∗
i [d]∑

k

∑
d∈I C

k
i [d]

.

Now that we have fixed our choice of table k∗, we want to pick a particular hamming distance within I to sample from. This
can be done using the counts vector for that table, in particular we choose the hamming distance d∗ ∈ I with probability

Ck∗
i [d∗]∑

d∈I C
k∗
i [d]

.

Having now fixed a table k∗ and a particular hamming distance d∗, we introduce an algorithm
Hamming-Distance-Sampler that generates a sample uniformly from the set of elements hashed to buckets
at hamming distance d∗ from address 0t (without loss of generality) in table k∗. Our algorithm uses the counts matrix Mk

i

as the underlying data structure. Our main results says:

Theorem 3.2 (Sampler). Given a set of K hash tables, each with 2t hash buckets with addresses in {0, 1}t, a sampling
scheme consisting of a data structure and a sampling algorithm can generate a sample uniformly at random from any
fixed hash table k, an element at hamming distance d to hash address i. The data structure is a counts matrix that can be
precomputed in preprocessing time O(Kt32t), and the sampling algorithm Hamming-Distance-Sampler (Algorithm
2) generates a sample in time O(t).

We first describe the implementation of the sampler in SectionB.1 and then later describe the implementation for constructing
the Counts Matrix Mk

i in Section B.2. Our main result follows from Lemma B.1 and Lemma B.2

B.1. Uniform Sampler for One Table

In this section, we describe our algorithm, Hamming-Distance-Sampler (Algorithm 2), which helps to generate a
sample uniformly at random, from one hash table, an element from hamming distance d to hash address i. Suppose for each
hash address i in the table we are given its counts matrix Mi ∈ Z(t+1)×(t+1) such that Mi[s, a] gives a count of the number
of elements hashed to buckets whose addresses are at hamming distance s away from i and share the same first a bits as
address i. Hamming-Distance-Sampler uses this counts matrix to help decide which hash bucket to sample from.

Hamming-Distance-Sampler (Algorithm 2) chooses a target hash address that is hamming distance d from 0t by
iteratively generating a bit pattern to XOR with the query hash address. Without loss of generality, suppose the query hash
address is 0t. We start from left to right. We set the first bit of the XOR mask to 1 with probability proportional to the
number of elements at hamming distance d to 0t that have 1 as their first bit.

Now that we have decided on the first bit of the XOR mask, we move on to the second bit. Conditioned on our choice for
the first bit, we make our second choice. If we had chosen 1 for the first bit of the mask, now we choose to set the second bit
of the XOR mask with probability proportional to the number of elements at hamming distance d to 0t that have 11 as their
first two bits, and we choose to set the second bit to 0 with probability proportional to the number of elements at hamming
distance d to 0t that have 10 as their first two bits, and so on and so forth.

We continue until we arrive at a target hash address that is exactly hamming distance d from i, which is the output of
Hamming-Distance-Sampler. After we choose our target sampling hash address, we sample uniformly at random
the elements within that hash bucket. Hamming-Distance-Sampler is formally written as Algorithm 2.

B.1.1. ANALYSIS OF ALGORITHM

We prove the following guarantee for Hamming-Distance-Sampler (Algorithm 2):

Lemma B.1. Suppose there are a total of D elements that are contained in buckets of hamming distance d from
hash address i ∈ {0, 1}t, and bucket b which is hamming distance d from address i contains m elements. Then
Hamming-Distance-Sampler (Algorithm 2) returns address b with probability m

D in time O(t).

Once we have the output of Hamming-Distance-Sampler, which is a hash address b that was generated with
probability m

D , then we can pick an element uniformly at random from within bucket b to generate a sample with uniform
probability 1

D .

Local Density Estimation in High Dimensions

Algorithm 2 Hamming Distance Sampler

Require: Hash table with buckets B, hash address i, hamming distance d, counts matrix Mb for all buckets b ∈ B
1: MASK = 0t
2: g = 0
3: for round r = 0, r++, r < t do
4: while g < d do
5: i′ = i⊕MASK
6: i′′ = i⊕MASK⊕ 0r10t−r−1

7: pr =
Mi′′ [d−g−1,r+1]

Mi′′ [d−g−1,r+1]+Mi′ [d−g,r+1]

8: Flip a biased coin with probability pr of coming up heads. Let f = 1 if heads, f = 0 else.
9: if f = 1 then

10: g ← g + 1 //Update the count of 1’s already chosen
11: MASK← MASK⊕ 0r10t−r−1 //Update the MASK to make the (r + 1)-th bit 1
12: end if
13: end while
14: end for
15: Return i⊕MASK

Proof. Without loss of generality, we assume that the hash address of interest i = 0t.

We first notice that the set of all possible realizations of this algorithm can be represented as a binary tree with depth at most
t, and each round can be viewed as traversing the binary tree. We first describe this tree. The root of the tree has label 0t,
and its value is the total number of elements in buckets at hamming distance d from 0t. Its left child node has label 0t and
its value is the total number of elements across all buckets at hamming distance d away from 0t that share the first bit (0).
The root’s right child node has label 10t−1 and its value is the total number of elements across all buckets that are hamming
distance d− 1 away from 10t−1.

In general, each node V at depth r can be expressed as a label, value pair (l, v), where the label l is a hash address, and if
we let g = d(i, l), and the value v is a count of elements at hamming distance d− g away from the label hash address l. Its
left child is labeled by l and its value is the total number of elements across all buckets at hamming distance d− g away
from the label of the node (l) that match the first r + 1 bits as its label. The parent’s right child is labeled by l ⊕ 0r10t−r−1.
and its value is the total number of elements across all buckets that are hamming distance d− g − 1 away from its label and
that share the first r + 1 bits as its label.

Clearly the leaves of the tree are the set of labels (bucket addresses) that are of hamming distance d away from i, and have
values that correspond to the number of elements in each bucket. We also note that the label of each node corresponds to the
XOR mask in our algorithm, and the value corresponds to an entry in the Mk

i .

We now analyze the correctness of Hamming-Distance-Sampler using proof by induction. We start at the root of the
tree, with label 0t. We want to show that the probabilities that the XOR mask takes on a specific value at the end of round r
for r = 0, . . . t lead to uniform probabilities of choosing an element hashed to a bucket at hamming distance d from 0t.

Suppose further there are a total of D elements that are contained in buckets of hamming distance d from hash address 0t.

Base Case: After round r = 0, the probability that the XOR mask becomes 10t−1 is
M10t−1

[d−1,1]
M0t [d,1]+M10t−1

[d−1,1] =

M10t−1
[d−1,1]
D .

Inductive Hypothesis: Assume that at end of round r − 1, the probability that we reach a certain node at level r with label
(XOR mask) l, and with gl 1’s in the mask, is Ml[d−gl,r]

D .

Inductive Step: We want to show that at the end of round r, the probability that we reach a certain node at level r + 1 with
label c (for child), and with gc 1’s in the mask, is Mc[d−gc,r+1]

D .

This follows directly from the inductive hypothesis. Note that at the end of round r − 1, we have reached a certain

Local Density Estimation in High Dimensions

node at level r with label (XOR mask) l, and with gl 1’s in the mask, is Ml[d−gl,r]
D . From this node, the proba-

bility of reaching the left child lc is Mlc[d−glc,r+1]
Ml[d−gl,r] and the probability of reaching the right child is Mrc[d−grc,r+1]

Ml[d−gl,r] .
Multiplying this by the probability that we reach the parent from the inductive hypothesis gives the proof of the inductive step.

Since there are a total of D elements that are contained in buckets of hamming distance d from hash address 0t, and bucket
b, which is hamming distance d from address i, contains m elements. The probability of reaching b by traversing down this
tree is m

D .

Additionally, this algorithm takes O(t) time to produce the hash address b. This is clear since the tree has depth at most t,
and each step in the traversal is a constant time operation.

B.2. Computing the Counts Matrix

Since Hamming-Distance-Sampler (Algorithm 2) requires a matrix Mi ∈ Z(t+1)×(t+1) such that Mi[s, a] gives a
count of the number of elements that are hamming distance s away from i and share the same first a bits as address i, we
show how to precompute such a counts matrix in time O(Kt32t) for each i ∈ {0, 1}t over the K hash tables.

Lemma B.2. The counts matrix Mk
i ∈ Z(t+1)×(t+1) can be computed in time O(Kt32t) for each i ∈ {0, 1}t and

k ∈ {1, . . .K}.

Proof. We use the algorithm that we develop in Appendix A, Aggregate-Counts (Algorithm 1), to compute matrix
Mi.

Now, to use Aggregate-Counts, we observe that Mi[s, a] for all s ∈ {0, 1, . . . t} is just another instance of the
Aggregate-Counts problem, restricted to the case where we only consider buckets that match i on the first a bits.
Clearly, by the Appendix A Main Theorem we can computeMi[s][0] for all s ∈ {0, . . . t} (the entire column) simultaneously
for all i in time O(t22t).

In fact, fixing each a ∈ {0, 1, . . . t}, it is possible to computeMi[s][a] for all s ∈ {0, . . . t} (the entire column) simultaneously
for all i in time O(t22t). This is because in our updates for each i, we can just consider the buckets that match i on the first a
bits. We can invoke Aggregate-Counts using neighbor buckets Ni(a), and the number of rounds would be t− a. The
runtime to update each column of Mi (fixing a and over all i) is O(t22t) (one invocation of Aggregate-Counts), so the
total runtime to compute Mk

i over all i is O(t32t). Repeating for each of K tables yields the final runtime of O(Kt32t).

C. Omitted Proofs From Local Density Estimation in High Dimensions

C.1. Preprocessing

Lemma 3.1 (Expectation of Z). The expectation of Z over the random choice of hash functions is |Aq|, i.e. E(Z) = |Aq|.
The expectation of Z given a specific realization of hash functions, or equivalently, given W , is E(Z|W) =W .

Proof. We sample each x ∈ Aq with probability
∑K

k=1 1(x∈B
k
q (I))∑K

k=1 C
k
q (I)

. Given W =
∑
x∈Aq

∑K
k=1 1(x∈B

k
q (I))

K·p(x) , we have:

E(Z|W) =
∑
x∈Aq

∑K
k=1 C

k
q (I)

K · p(x)
·
∑K
k=1 1(x ∈ Bkq (I))∑K

k=1 C
k
q (I)

∣∣∣∣∣W
=
∑
x∈Aq

∑K
k=1 1(x ∈ Bkq (I))

K · p(x)

∣∣∣∣∣W
=W

Local Density Estimation in High Dimensions

Now,

E(W) =
1

K

K∑
k=1

∑
x∈Aq

E(1(x ∈ Bkq (I)))
p(x)

=
1

K

K∑
k=1

∑
x∈Aq

p(x)

p(x)
= |Aq|

Then clearly, E(Z|W) =W and E(Z) = E(E(Z|W)) = |Aq|.

Lemma 3.2 (Variance of W). σ2(W) = 1
K

∑
x,y∈Aq

(
p(x,y)
p(x)p(y) − 1

)

Proof. We want to compute:

E[W 2] =
1

K2

K∑
k=1

∑
x∈Aq
y∈Aq

E(1(x ∈ Bkq (I), y ∈ Bkq (I)))
p(x)p(y)

+

1

K2

K∑
k=1

∑
l 6=k

∑
x∈Aq
y∈Aq

E[1(x ∈ Bkq (I))1(y ∈ Blq(I))]
p(x)p(y)

=
1

K

∑
x,y∈Aq

p(x, y)

p(x)p(y)
+

1

K2

K∑
k=1

∑
l 6=k

∑
x∈Aq
y∈Aq

p(x)p(y)

p(x)p(y)

=
1

K

∑
x,y∈Aq

p(x, y)

p(x)p(y)
+

(
1− 1

K

)
|Aq|2

Since σ2(W) = E[W 2]− (E[W])2, we appeal to Lemma 3.1 to conclude:

σ2(W) =
1

K

∑
x,y∈Aq

(
p(x, y)

p(x)p(y)
− 1

)
.

C.2. Sampling

Lemma 4.1 (Variance of Estimator).

E

(∑S
i=1 Zi
S

− |Aq|

)2
 ≤ E[Z2]

S
+ σ2(W)

Local Density Estimation in High Dimensions

Proof. The variance can be expressed as:

E

(∑S
i=1 Zi
S

− |Aq|

)2
 = E

(∑S
i=1(Zi −W)

S
+ (W − |Aq|)

)2


= E

[∑S
i=1(Zi −W)2

S2
+ (W − |Aq|)2

]

= E
[
(Z −W)2

S
+ (W − |Aq|)2

]
=

E[Z2]− E[W 2]

S
+ E[W 2]− |Aq|2

≤ E[Z2]

S
+ E[W 2]− |Aq|2

=
E[Z2]

S
+ σ2(W)

Lemma 4.2 (Variance of Z).

E[Z2] =
∑
x∈Aq

∑
y∈D

[
p(x, y)

K · p(x)2
+

(
1− 1

K

)
p(y)

p(x)

]

Proof. To analyze the second moment of Z, as with our first moment analysis of Z, we first condition on fixing the hash
tables, so given g1, . . . gK , we know which elements of interest in Aq end up in our hamming distance set of interest I.

E[Z2|g1, . . . gK] =
1

K2

(
K∑
k=1

Ckq (I)

) K∑
k=1

∑
x∈Aq∩Bk

q (I)

1

p(x)2



=
1

K2


K∑
k=1

∑
x∈Aq∩Bkq

y∈Bkq

1

p(x)2
+

K∑
k=1

∑
l 6=k

∑
x∈Aq∩Bkq

y∈Blq

1

p(x)2


Now using the fact that E[Z2] = E[E[Z2|g1, . . . gK]], we have:

E[Z2] =
1

K2
E

 K∑
k=1

∑
x∈Aq
y∈D

1(x ∈ Bkq (I))1(y ∈ Bkq (I))
p(x)2


+

1

K2
E

 K∑
k=1

∑
l 6=k

∑
x∈Aq
y∈D

1(x ∈ Bkq (I))1(y ∈ Blq(I))
p(x)2


=

1

K

∑
x∈Aq
y∈D

p(x, y)

p(x)2
+

(
1− 1

K

) ∑
x∈Aq
y∈D

p(x)p(y)

p(x)2

=
∑
x∈Aq

∑
y∈D

[
p(x, y)

K · p(x)2
+

(
1− 1

K

)
p(y)

p(x)

]
(3)

