A. Supplement to “A Listwise Approach to Collaborative Ranking”

A.1. Proofs in Theory Section

Proof of Theorem 1. Notice that \(\Pi_{i1} \) is the argument, \(k \), that minimizes \(Y_{ik} \), and \(\mathbb{P}\{\Pi_{i1} = k\} = \mathbb{P}\{Y_{ik} \leq \min\{Y_{ij}\}_{j \neq k}\} \). Furthermore, \(\min\{Y_{ij}\}_{j \neq k} \) is exponential with rate parameter \(\sum_{j \neq k} \phi(X_{ij}) \) and is independent of \(Y_{ik} \). Hence,

\[
\mathbb{P}\{Y_{ik} \leq \min\{Y_{ij}\}_{j \neq k}\} = \int_0^\infty \phi(X_{ik}) e^{-u\phi(X_{ik})} e^{-\sum_{j \neq k} u\phi(X_{ij})} du = \frac{\phi(X_{ik})}{\sum_j \phi(X_{ij})}.
\]

Furthermore,

\[
\mathbb{P}\{\Pi_{i1} = \ldots = \Pi_{im}\} = \mathbb{P}\{Y_{i1} \geq \ldots \geq Y_{im}\} = \mathbb{P}\{Y_{i1} < Y_{i2} < \ldots < Y_{im}\}.
\]

By the memorylessness property, we have that the joint distribution of \(Y_{i1}, Y_{i2}, \ldots, Y_{im} \) is equivalent to the distribution of \(Y_{i1}, \ldots, Y_{i1}, Z \), where \(Z \) is independent of \(Y_{i1} \). Hence, we can apply induction with the previous argument, and the tower property of conditional probability.

Proof of Lemma 1. By optimality,

\[
\frac{1}{n} \sum_{i=1}^n - \log P_{X_i^*}(\Pi_i) \leq \frac{1}{n} \sum_{i=1}^n - \log P_{X_{i1}^*}(\Pi_i) = \sum_{i=1}^n - \log \frac{P_{X_i^*}(\Pi_i)}{P_{X_{i1}^*}(\Pi_i)} \geq 0.
\]

Thus, we can subtract the expectation,

\[
\frac{1}{n} \sum_{i=1}^n \mathbb{E} \log \frac{P_{X_i^*}(\Pi_i)}{P_{X_{i1}^*}(\Pi_i)} \leq - \frac{1}{n} \sum_{i=1}^n \left(\log \frac{P_{X_i^*}(\Pi_i)}{P_{X_{i1}^*}(\Pi_i)} - \mathbb{E} \log \frac{P_{X_i^*}(\Pi_i)}{P_{X_{i1}^*}(\Pi_i)} \right)
\]

where the expectation \(\mathbb{E} \) is with respect to the draw of \(\Pi_i \) conditional on \(X \).

Lemma 2. Let \(\pi \) be a permutation vector and \(x \) be a score vector each of length \(m \). Suppose that \(|\log \phi(x_j)| \leq C \) for all \(j = 1, \ldots, m \). Define the relative loss function,

\[
L_{x,x'}(\pi) := \log \frac{P_x(\pi)}{P_{x'}(\pi)}.
\]

Consider translating an item in position \(\ell \) to position \(\ell' \) in the permutation \(\pi \), thus forming \(\pi' \) where \(\pi'_{\ell} = \pi_{\ell'} \). Specifically, \(\pi'_{k} = \pi_k \) if \(k < \min\{\ell, \ell'\} \) or \(k > \max\{\ell, \ell'\} \); if \(\ell < \ell' \) then \(\pi'_{k} = \pi_{k+1} \) for \(k = \ell, \ldots, \ell' - 1 \); if \(\ell' < \ell \) then \(\pi'_{k} = \pi_{k-1} \) for \(k = \ell' + 1, \ldots, \ell \). The relative loss function has bounded differences in the sense that

\[
|L_{x,x'}(\pi) - L_{x,x'}(\pi')| \leq C_0 \| \log (\phi(x)) - \log (\phi(x')) \|_{\infty},
\]

where \(\phi(x) \) is applied elementwise and \(C_0 = 2 + e^{2C} \ln(m+1) \).

Proof. Suppose that \(\ell < \ell' \), and define the following shorthand,

\[
\lambda_j = \phi(x_{\pi_j}), \quad \Lambda_j = \sum_{k=j}^m \lambda_k,
\]

and let \(\lambda'_j, \Lambda'_j \) be similarly defined with \(x' \). Then by replacing the permutation \(\pi \) with \(\pi' \) causes the \(\Lambda_j \) to be replaced with \(\Lambda_j - \lambda_j + \lambda_{\ell} \) for \(j = \ell + 1, \ldots, \ell' \). Hence,

\[
\log Q_x(\pi) - \log Q_{x'}(\pi') = \sum_{j=\ell+1}^{\ell'} \log (\lambda_j - \lambda_{j-1} + \lambda_{\ell}) - \log (\lambda_j) = \sum_{j=\ell+1}^{\ell'} \log \left(1 + \frac{\lambda_j}{\Lambda_j} \right) + \log \Lambda_{\ell} - \log \Lambda_{\ell'}.
\]

So we can bound the difference,

\[
|L_{x,x'}(\pi) - L_{x,x'}(\pi')| \leq \left| \log \frac{\Lambda_{\ell}}{\Lambda_{\ell'}} - \log \frac{\lambda_j}{\lambda_{j'}} \right| + \sum_{j=\ell}^{\ell'-1} \left| \log \left(1 + \frac{\lambda_j}{\Lambda_j} \right) - \log \left(1 + \frac{\lambda_j}{\Lambda_j} \right) \right|.
\]

Suppose that for each \(j \), \(|\log \lambda_j - \log \lambda'_{j'}| \leq \delta \) and that \(|\log \Lambda_j| \leq C \). Then we have that

\[
\left| \log \frac{\Lambda_{\ell}}{\Lambda_{\ell'}} \right| \leq \max_{j \geq x} \left| \log \frac{\lambda_j}{\lambda_{j'}} \right| \leq \delta.
\]

The same equation can be made for this term with \(\ell' \). Let

\[
\alpha_j = \max \left\{ \frac{\lambda_j}{\Lambda_j}, \frac{\lambda_{j'}}{\Lambda_j} \right\}.
\]

Then we have

\[
\left| \log \left(1 + \frac{\lambda_j}{\Lambda_j} \right) - \log \left(1 + \frac{\lambda_{j'}}{\Lambda_j} \right) \right| \leq |\log(1+\alpha_j) - \log(1+e^{-\delta}\alpha_j)| \leq |1-e^{-\delta}| |\alpha_j|.
\]
Furthermore, because \(\Lambda_j \geq (m - j + 1)e^{-c} \) then \(|\alpha_j| \leq (m - j + 1)^{-1}e^{2c} \) and
\[
|L_{x,x'}(\pi) - L_{x,x'}(\pi')| \leq 2\delta \\
+ \sum_{j=\ell}^{\ell-1} |1 - e^{-\delta}| \frac{e^{2c}}{m-j+1} \\
\leq 2\delta + |1 - e^{-\delta}|e^{2c}H_m \\
\leq \delta(2 + e^{2c}\ln(m+1)).
\]
In the above equation, \(H_m \) is the \(m \)th harmonic number.
A similar calculation can be made when \(\ell > \ell \). Setting \(\delta = ||\log \phi(x) - \log \phi(x')||_\infty \) concludes the proof. \(\square \)

Proof of Theorem 2. Define the empirical process function to be
\[
\rho_n(x) := \frac{1}{n} \sum_{i=1}^{n} \left(\log \frac{P_{X_i}(1)}{P_{X_i}(1)} - \log \frac{P_{X_i}(1)}{P_{X_i}(1)} \right).
\]
By the listwise representation theorem, \(\rho_n(x) \) is a function of \(n \times m \) independent exponential random variables. Moreover, if we were to change the value of a single element \(y_{ik} \) then this would result in a change of permutation of the type described in Lemma 2. Notice that the bound on the change in the relative loss is \(C_0||\log \phi(X_i) - \log \phi(X_i')||_\infty \), where \(C_0 = 2 + e^{2c}\ln(m+1) \), and notice that the sum of squares of these bounds are
\[
\sum_{i,k} C_0^2||\log \phi(X_i) - \log \phi(X_i')||_\infty^2 \\
= mC_0^2 \sum_{i=1}^{n} ||\log \phi(X_i) - \log \phi(X_i')||_\infty^2 \\
= mC_0^2 ||Z - Z'||_{\infty,2}^2,
\]
where \(Z, Z' \) are \(\log \phi \) applied elementwise to \(X, X' \) respectively. By Lemma 2 and McDiarmid’s inequality,
\[
\mathbb{P}(\rho_n(x) - \rho_n(x') > \epsilon) \leq \exp \left(-\frac{2\epsilon^2}{mC_0^2 ||Z - Z'||_{\infty,2}^2} \right).
\]
Hence, the stochastic process \(\{\rho_n(X) : X \in \mathcal{X}\} \) is a subGaussian field with canonical distance,
\[
d(X, X') := \sqrt{mC_0} ||Z - Z'||_{\infty,2}.
\]
The result follows by Dudley’s chaining (Talagrand, 2006). \(\square \)

Lemma 3. If \(\log \phi \) is \(1 \)-Lipschitz then we have that \(g(Z) \leq g(\mathcal{X}) \).

Proof. Let \(X, X' \in \mathcal{X} \), and \(Z = \log \phi(X), Z' = \log \phi(X') \). Then
\[
|z_{ij} - z'_{ij}| \leq |x_{ij} - x'_{ij}|
\]
by the Lipschitz property. Hence, \(||Z - Z'||_{\infty,2} \leq ||X - X'||_{\infty,2} \), and so
\[
\mathcal{N}(u, Z, ||.,||_{\infty,2}) \leq \mathcal{N}(u, X, ||.,||_{\infty,2}).
\]
\(\square \)

Proof of Corollary 1. Consider two matrices \(X, X' \) in the model (7) then
\[
||x_i - x'_i||_{\infty} = \max_j |\beta z_{ij} - \beta' z_{ij}| \leq ||\beta - \beta'||_2 ||Z_i||_{2,\infty}.
\]
Let \(\zeta = \max_i ||Z_i||_{2,\infty} \) then
\[
||X - X'||_{\infty,2} \leq \zeta ||\beta - \beta'||_2.
\]
The covering number of \(\mathcal{X} \) is therefore bounded by
\[
\mathcal{N}(\mathcal{X}, u, ||.,||_{\infty,2}) \leq \mathcal{N}(B_{c_0, u/\zeta}, ||.,||_2) \leq \left(\frac{CC_0c_k}{u} \right)^s,
\]
for an absolute constant \(C_0 \), where \(B_{c_0} \) is the \(\ell_2 \) ball of radius \(c_0 \). The result follows by Lemma 3 and Theorem 2. \(\square \)

Proof of Corollary 2. Let \(X = UV^T \) and \(X' = U'V'^T \) such that \(U, V, U', V' \) bounded by 1 in Frobenius norm (modifying the Frobenius norm bound does not change the substance of the proof). Consider
\[
|u_i v_j - u'_i v'_j| \leq |u_i v_j - u'_i v_j| + |u'_i v_j - u'_i v'_j| \\
\leq ||u_i - u'_i||_2 ||v_j|| + ||u'_i||_2 ||v_j - v'_j||.
\]
Maximizing this over the selection of \(j \),
\[
\max_j |u_i v_j - u'_i v'_j| \\
\leq ||u_i - u'_i||_2 ||V||_{2,\infty} + ||u'_i||_2 ||V' - V'||_{2,\infty}.
\]
Hence,
\[
||X - X'||_{\infty,2} \leq ||U - U'||_F ||V||_{2,\infty} + ||U'||_F ||V' - V'||_{2,\infty} \\
\leq ||U - U'||_F + ||V - V'||_{2,\infty}.
\]
Consider the vectorization mapping from the \(m \times r \) matrix to the \(mr \) dimensional vectors. The Frobenius norm is mapped to the \(\ell_2 \) norm, and we can consider the \(2, \infty \) norm to be, the norm \(||x||_{\rho} = \max_j \| (x_{j+1}, \ldots, x_{j+r+1}) \|_2 \). The \(\rho \)-norm unit ball \(B_{p, \rho} \) is just the Cartesian product of the \(\ell_2 \) norm ball in \(K \) dimensions. The volume of a \(d \)-dimensional ball, \(V_d \), is bounded by
\[
C_d \leq \frac{V_d}{(\pi d/2)^{d/2}} \leq C_u,
\]
where $C_l < C_u$ are universal constants. So the volume ratio between the ℓ_2 norm ball and the ρ norm ball is bounded by
\[
\frac{V(B_2)}{V(B_\rho)} \leq C \left(\frac{\rho^{r/2}}{(e\pi)^{r/2}} \right)^m / \left(\frac{(rm)^{rm/2}}{(e\pi)^{rm/2}} \right)
\leq Cm^{-rm/2},
\]
where $C = C_u/C_l$.

\[
\mathcal{N}(\epsilon, B_2, \|\cdot\|_\rho) \leq C \left(\frac{2}{\epsilon} + 1 \right)^{rm} m^{-rm/2}
\leq C \left(\frac{3}{\epsilon \sqrt{m}} \right)^{rm},
\]
for $\epsilon \leq 1$. This is also the covering number of the Frobenius norm ball in the $2, \infty$ norm. Moreover, we know that the covering number of the unit Frobenius norm ball in $n \times K$ matrices (B_F) in the Frobenius norm is
\[
\mathcal{N}(\epsilon, B_F, \|\cdot\|_F) \leq C \left(\frac{\epsilon}{\epsilon} \right)^{nr},
\]
for some constant c. Consider covering the space X, by selecting centers U, V from the $\epsilon/2$-coverings of B_F in the F-norm and $2, \infty$ norm respectively. By the above norm bound, this produces an ϵ-covering in the $\infty, 2$ norm. Dudley’s entropy bound is thus
\[
\int_0^\infty \sqrt{\log \mathcal{N}(\epsilon, B_F, \|\cdot\|_F) + \log \mathcal{N}(\epsilon, B_F, \|\cdot\|_{2, \infty})} \, d\epsilon
\leq \int_0^c \sqrt{nr \log(c/\epsilon)} \, d\epsilon + \int_c^{3/\sqrt{m}} \sqrt{-mr \log(\epsilon/\sqrt{m})} \, d\epsilon.
\]
So that
\[
\int_0^c \sqrt{nr \log(c/\epsilon)} \, d\epsilon
\leq c' \sqrt{m}
\]
for some absolute constant c' and
\[
\int_0^{3/\sqrt{m}} \sqrt{-mr \log(\epsilon/\sqrt{m})} \, d\epsilon \leq \int_0^3 \sqrt{r \log(u/3)} \, du
\leq c' \sqrt{r}.
\]
Hence, for $g(X) \leq c' \sqrt{m}$ and we have the result.

A.2. Algorithms

Algorithm 3 Compute gradient for V when U fixed

Input: Π, U, V, λ, ρ

Output: $g \{ g \in \mathbb{R}^{r \times m} is the gradient for f(V) \}$

$g = \lambda \cdot V$

for $i = 1$ to n

Precompute $h_t = u^T v_{||i}$ for $1 \leq t \leq \tilde{m}$ (For implicit feedback, it should be $(1 + \rho) \cdot \tilde{m}$ instead of \tilde{m}, since $\rho \cdot \tilde{m}$ 0’s are appended to the back)

Initialize $total = 0, tt = 0$

for $t = \tilde{m}$ to 1 do

$\text{total} += \exp(h_t)$

$tt += 1/\text{total}$

end for

Initialize $c[t] = 0$ for $1 \leq t \leq \tilde{m}$

for $t = \tilde{m}$ to 1 do

$c[t] += h_t \cdot (1 - h_t)$

$c[t] += \exp(h_t) \cdot h_t \cdot (1 - h_t) \cdot tt$

$\text{total} += \exp(h_t)$

$tt -= 1/\text{total}$

end for

for $t = 1$ to \tilde{m} do

$g[:; \Pi_u] += c[t] \cdot u_i$

end for

end for

Return g

Algorithm 4 Gradient update for V (Same procedure for updating U)

Input: $V, ss, rate \{ rate \text{ refers to the decaying rate of the step size } ss \}$

Output: V

Compute gradient g for V (see alg 3)

$V -= ss \cdot g$

$ss *= rate$

Return V
Figure 4. Effectiveness of Stochastic Queuing Process.

Figure 5. Effectiveness of using full lists.