SQL-Rank: A Listwise Approach to Collaborative Ranking

A. Supplement to “A Listwise Approach to
Collaborative Ranking”

A.1. Proofs in Theory section

Proof of Theorem 1. Notice that II;; is the argument, k,
that minimizes Y, and P{Il;; = k} P{Yyy <
min{Y; } ;2 }. Furthermore, min{Y;;} x is exponential
with rate parameter ) _; ,; ¢(X;) and is independent of Y.
Hence,
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By the memorylessness property, we have that the joint
distribution of YH YHu? e Ynim — Ynil i > Y
Vj > 1is equivalent to the distribution of Y11,,,..., Ym,,,.
Hence, we can apply induction with the previous argument,
and the tower property of conditional probability. O
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Proof of Lemma 1. By optimality,
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Thus, we can subtract the expectation,
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where the expectation E is with respect to the draw of II;
conditional on X. O

Lemma 2. Let w be a permutation vector and x be a score
vector each of length m. Suppose that |log ¢(z;)| < C for
all j = 1,...,m. Define the relative loss function,
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Consider translating an item in position £ to position {'
in the permutation w, thus forming 7' where m, = .
Specifically, m, = mp, if k < min{¢, '} or k > max{¢,'};
ift < V' thenm) = mpy1fork =40,....0 =1 ift/ </
then mj, = mp_1 for k = ¢' + 1,...,L. The relative loss
function has bounded differences in the sense that
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where ¢(z) is applied elementwise and Cy = 2+€2¢ In(m-+

1).

Proof. Suppose that ¢ < ¢’, and define the following short-

hand,
Aj = Z Ak

and let )\;, A;» be similarly defined with z’. Then by replac-
ing the permutation 7 with 7" causes the A; to be replaced
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with Aj —X\j + Agforj=0¢+1,...,¢. Hence,
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So we can bound the difference,
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Suppose that for each j, |log ),
|log A;| < C. Then we have that

— log )\;| < § and that
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The same equation can be made for this term with ¢'. Let
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Then we have
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Furthermore, because A; > (m — j + 1)e~C then |a;| <
(m —j+1)"e2¢ and

|Lyz (7) — Ly o (7)) < 26

-1 s o2C
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In the above equation, H,, is the mth harmonic number.
A similar calculation can be made when ¢ > ¢. Setting
d = ||log ¢(x) — log ¢(2’)|| s concludes the proof. O

Proof of Theorem 2. Define the empirical process function
to be

Py (11;) )

By the listwise representation theorem, py, () is a function
of n X m independent exponential random variables. More-
over, if we were to change the value of a single element y;,
then this would result in a change of permutation of the type
described in Lemma 2. Notice that the bound on the change
in the relative loss is Co|| log ¢(X;) — log ¢(X}) || oo, Where

Coy=2+e%¢ In(m + 1), and notice that the sum of squares
of these bounds are,

3" C2|llog ¢(X:) — log (X)),

ik

=mC? Z [log ¢(X;) — log (X)) 1%
i=1

= mC3Z - 72

00,29

where Z, Z' are log ¢ applied elementwise to X, X' respec-
tively. By Lemma 2 and McDiarmid’s inequality,

P{n(pn(2)—pals')) > €} < exp <_mC’§||Z2€ Z'|I2 ) '

Hence, the stochastic process {np,(X) : X € X} isa

subGaussian field with canonical distance,
d(X,X") == /mCy|Z — Z'| o0 2-

The result follows by Dudley’s chaining (Talagrand, 2006).
O

Lemma 3. [flog ¢ is 1-Lipschitz then we have that g(Z) <
9(X).

Proof. Let X, X'
log ¢(X’). Then

€ X, and Z = log¢p(X), 2" =

|2ij — 2i5| < lwij — 2,

by the Lipschitz property. Hence,
X'|| 0,2, and so
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Proof of Corollary 1. Consider two matrices X, X’ in the
model (7) then

i —2i]lco = m?mezij—ﬂ’sz <|1B=8'l211Z:
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Let ( = max; HZiHQ,oo then
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The covering number of X is therefore bounded by
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for an absolute constant Cj, where B, is the {5 ball of
radius cp. The result follows by Lemma 3 and Theorem
2. O

Proof of Corollary 2. Let X = UV and X' = U'V'T
such that U, V,U’, V' bounded by 1 in Frobenius norm
(modifying the Frobenius norm bound does not change the
substance of the proof). Consider

lug v — i vj] < Juf vy —uiT o]+ JupT oy — g
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Maximizing this over the selection of j,
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Hence,
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Consider the vectorization mapping from the m X r matrix to
the mr dimensional vectors. The Frobenius norm is mapped
to the /5 norm, and we can consider the 2, oo norm to be, the
norm ||z, = max; |[(2jr41, ..., Zjir+1))|l2. The p-norm
unit ball (B)) is just the Cartesian product of the {5 norm
ball in K dimensions. The volume of a d-dimensional ball,
V4, is bounded by
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where C; < C,, are universal constants. So the volume ratio
between the £5 norm ball and the p norm ball is bounded by
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where C = C,,/C.
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for e < 1. This is also the covering number of the Frobenius
norm ball in the 2, oo norm. Moreover, we know that the
covering number of the unit Frobenius norm ball in n x K
matrices (Bg) in the Frobenius norm is

Ne.Br. I < (£)"

for some constant c. Consider covering the space X', by
selecting centers U,V from the €/2-coverings of Bp in
the F-norm and 2, 0o norm respectively. By the above
norm bound, this produces an e-covering in the oo, 2 norm.
Dudley’s entropy bound is thus

[ flosN(e.Br ) + g (e, B [ )
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< /OC V/nrrlog(c/e)de + /j/ﬁ \/—mr log(ey/m/3)de.

So that
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for some absolute constant ¢’ and
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Hence, for g(X) < ¢\/nr and we have the result. O

A.2. Algorithms

Algorithm 3 Compute gradient for V' when U fixed
Input: ILU,V, A\, p
Output: g {g € R™*™ is the gradient for f(V')}
g=A-V
for: =1tondo
Precompute h; = u? vy, for 1 < ¢ </ {For implicit
feedback, it should be (1 + p) - m instead of 7, since
p - m 0’s are appended to the back}
Initialize total = 0, tt =0
fort =mto1do
total += exp(h¢)
tt += 1/total
end for
Initialize c[t] =0 for 1 < ¢ <m
fort =mto1do
clt] +=he - (1 — hy)
clt] +=exp(he) - he - (L—he) - 1
total += exp(hy)
tt —= 1/total
end for
fort = 1tom do
gl Wit] += cft] - us
end for
end for
Return g

Algorithm 4 Gradient update for V' (Same procedure for
updating U)

Input: V, ss, rate {rate refers to the decaying rate of
the step size ss}

Output: V
Compute gradient g for V' {see alg 3}
V-—=ss-9g
88 *= rate
Return V'
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Figure 3. Comparing implicit feedback methods.
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Implicit feedback for Movielens1m Dataset: training per user = 50
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Figure 4. Effectiveness of Stochastic Queuing Process.

Explicit feedback for Movielenslm Dataset: training per user = 50
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Figure 5. Effectiveness of using full lists.



