A. Supplement to "A Listwise Approach to Collaborative Ranking"

A.1. Proofs in Theory section

Proof of Theorem 1. Notice that $\Pi_{i 1}$ is the argument, k, that minimizes $Y_{i k}$, and $\mathbb{P}\left\{\Pi_{i 1}=k\right\}=\mathbb{P}\left\{Y_{i k} \leq\right.$ $\left.\min \left\{Y_{i j}\right\}_{j \neq k}\right\}$. Furthermore, $\min \left\{Y_{i j}\right\}_{j \neq k}$ is exponential with rate parameter $\sum_{j \neq k} \phi\left(X_{i j}\right)$ and is independent of $Y_{i k}$. Hence,

$$
\begin{aligned}
& \mathbb{P}\left\{Y_{i k} \leq \min \left\{Y_{i j}\right\}_{j \neq k}\right\} \\
& =\int_{0}^{\infty} \phi\left(X_{i k}\right) e^{-u \phi\left(X_{i k}\right)} e^{-\sum_{j \neq k} u \phi\left(X_{i j}\right)} \mathrm{d} u \\
& =\frac{\phi\left(X_{i k}\right)}{\sum_{j} \phi\left(X_{i j}\right)} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \mathbb{P}\left\{\Pi_{i} \mid \Pi_{i 1}\right\}=\mathbb{P}\left\{Y_{\Pi_{i_{2}}} \leq \ldots \leq Y_{\Pi_{i m}} \mid Y_{\Pi_{i j}} \geq Y_{\Pi_{i 1}}, \forall j\right\} \\
& =\mathbb{P}\left\{Y_{\Pi_{i 2}}-Y_{\Pi_{i 1}} \leq \ldots \leq Y_{\Pi_{i m}}-Y_{\Pi_{i 1} \mid} \mid Y_{\Pi_{i j}} \geq Y_{\Pi_{i 1}}, \forall j\right\}
\end{aligned}
$$

By the memorylessness property, we have that the joint distribution of $Y_{\Pi_{i 2}}-Y_{\Pi_{i 1}}, \ldots, Y_{\Pi_{i m}}-Y_{\Pi_{i 1}} \mid Y_{\Pi_{i j}} \geq Y_{\Pi_{i 1}}$, $\forall j>1$ is equivalent to the distribution of $Y_{\Pi_{i 2}}, \ldots, Y_{\Pi_{i m}}$. Hence, we can apply induction with the previous argument, and the tower property of conditional probability.

Proof of Lemma 1. By optimality,

$$
\frac{1}{n} \sum_{i=1}^{n}-\log P_{\hat{X}_{i}}\left(\Pi_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n}-\log P_{X_{i}^{\star}}\left(\Pi_{i}\right)
$$

Which is equivalent to

$$
\frac{1}{n} \sum_{i=1}^{n}-\log \frac{P_{X_{i}^{\star}}\left(\Pi_{i}\right)}{P_{\hat{X}_{i}}\left(\Pi_{i}\right)} \geq 0
$$

Thus, we can subtract the expectation,

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \log \frac{P_{X_{i}^{\star}}\left(\Pi_{i}\right)}{P_{\hat{X}_{i}}\left(\Pi_{i}\right)} \\
& \leq-\frac{1}{n} \sum_{i=1}^{n}\left(\log \frac{P_{X_{i}^{\star}}\left(\Pi_{i}\right)}{P_{\hat{X}_{i}}\left(\Pi_{i}\right)}-\mathbb{E} \log \frac{P_{X_{i}^{\star}}\left(\Pi_{i}\right)}{P_{\hat{X}_{i}}\left(\Pi_{i}\right)}\right)
\end{aligned}
$$

where the expectation \mathbb{E} is with respect to the draw of Π_{i} conditional on X.

Lemma 2. Let π be a permutation vector and x be a score vector each of length m. Suppose that $\left|\log \phi\left(x_{j}\right)\right| \leq C$ for all $j=1, \ldots, m$. Define the relative loss function,

$$
L_{x, x^{\prime}}(\pi):=\log \frac{P_{x}(\pi)}{P_{x^{\prime}}(\pi)}
$$

Consider translating an item in position ℓ to position ℓ^{\prime} in the permutation π, thus forming π^{\prime} where $\pi_{\ell^{\prime}}^{\prime}=\pi_{\ell}$. Specifically, $\pi_{k}^{\prime}=\pi_{k}$ if $k<\min \left\{\ell, \ell^{\prime}\right\}$ or $k>\max \left\{\ell, \ell^{\prime}\right\}$; if $\ell<\ell^{\prime}$ then $\pi_{k}^{\prime}=\pi_{k+1}$ for $k=\ell, \ldots, \ell^{\prime}-1$; if $\ell^{\prime}<\ell$ then $\pi_{k}^{\prime}=\pi_{k-1}$ for $k=\ell^{\prime}+1, \ldots, \ell$. The relative loss function has bounded differences in the sense that

$$
\left|L_{x, x^{\prime}}(\pi)-L_{x, x^{\prime}}\left(\pi^{\prime}\right)\right| \leq C_{0}\left\|\log \phi(x)-\log \phi\left(x^{\prime}\right)\right\|_{\infty}
$$

where $\phi(x)$ is applied elementwise and $C_{0}=2+e^{2 C} \ln (m+$ $1)$.

Proof. Suppose that $\ell<\ell^{\prime}$, and define the following shorthand,

$$
\lambda_{j}=\phi\left(x_{\pi_{j}}\right), \quad \Lambda_{j}=\sum_{k=j}^{m} \lambda_{k}
$$

and let $\lambda_{j}^{\prime}, \Lambda_{j}^{\prime}$ be similarly defined with x^{\prime}. Then by replacing the permutation π with π^{\prime} causes the Λ_{j} to be replaced with $\Lambda_{j}-\lambda_{j}+\lambda_{\ell}$ for $j=\ell+1, \ldots, \ell^{\prime}$. Hence,

$$
\begin{aligned}
& \log Q_{x}(\pi)-\log Q_{x}\left(\pi^{\prime}\right) \\
& =\sum_{j=\ell+1}^{\ell^{\prime}} \log \left(\Lambda_{j}-\lambda_{j}+\lambda_{\ell}\right)-\log \left(\Lambda_{j}\right) \\
& =\sum_{j=\ell+1}^{\ell^{\prime}} \log \left(\Lambda_{j-1}+\lambda_{\ell}\right)-\log \left(\Lambda_{j}\right) \\
& =\sum_{j=\ell}^{\ell^{\prime}-1} \log \left(1+\frac{\lambda_{\ell}}{\Lambda_{j}}\right)+\log \Lambda_{\ell}-\log \Lambda_{\ell^{\prime}} .
\end{aligned}
$$

So we can bound the difference,

$$
\begin{aligned}
& \left|L_{x, x^{\prime}}(\pi)-L_{x, x^{\prime}}\left(\pi^{\prime}\right)\right| \leq\left|\log \frac{\Lambda_{\ell}}{\Lambda_{\ell}^{\prime}}-\log \frac{\Lambda_{\ell^{\prime}}}{\Lambda_{\ell^{\prime}}^{\prime}}\right| \\
& +\sum_{j=\ell}^{\ell^{\prime}-1}\left|\log \left(1+\frac{\lambda_{\ell}}{\Lambda_{j}}\right)-\log \left(1+\frac{\lambda_{\ell}^{\prime}}{\Lambda_{j}^{\prime}}\right)\right|
\end{aligned}
$$

Suppose that for each $j,\left|\log \lambda_{j}-\log \lambda_{j}^{\prime}\right| \leq \delta$ and that $\left|\log \lambda_{j}\right| \leq C$. Then we have that

$$
\left|\log \frac{\Lambda_{\ell}}{\Lambda_{\ell}^{\prime}}\right| \leq \max _{j \geq \ell}\left|\log \frac{\lambda_{j}}{\lambda_{j}^{\prime}}\right| \leq \delta
$$

The same equation can be made for this term with ℓ^{\prime}. Let

$$
\alpha_{j}=\max \left\{\frac{\lambda_{\ell}}{\Lambda_{j}}, \frac{\lambda_{\ell}^{\prime}}{\Lambda_{j}^{\prime}}\right\}
$$

Then we have

$$
\begin{aligned}
& \left|\log \left(1+\frac{\lambda_{\ell}}{\Lambda_{j}}\right)-\log \left(1+\frac{\lambda_{\ell}^{\prime}}{\Lambda_{j}^{\prime}}\right)\right| \\
& \leq\left|\log \left(1+\alpha_{j}\right)-\log \left(1+e^{-\delta} \alpha_{j}\right)\right| \leq\left|1-e^{-\delta}\right|\left|\alpha_{j}\right|
\end{aligned}
$$

Furthermore, because $\Lambda_{j} \geq(m-j+1) e^{-C}$ then $\left|\alpha_{j}\right| \leq$ $(m-j+1)^{-1} e^{2 C}$ and

$$
\begin{aligned}
& \left|L_{x, x^{\prime}}(\pi)-L_{x, x^{\prime}}\left(\pi^{\prime}\right)\right| \leq 2 \delta \\
& +\sum_{j=\ell}^{\ell^{\prime}-1}\left|1-e^{-\delta}\right| \frac{e^{2 C}}{m-j+1} \\
& \leq 2 \delta+\left|1-e^{-\delta}\right| e^{2 C} H_{m} \\
& \leq \delta\left(2+e^{2 C} \ln (m+1)\right) .
\end{aligned}
$$

In the above equation, H_{m} is the m th harmonic number. A similar calculation can be made when $\ell^{\prime}>\ell$. Setting $\delta=\left\|\log \phi(x)-\log \phi\left(x^{\prime}\right)\right\|_{\infty}$ concludes the proof.

Proof of Theorem 2. Define the empirical process function to be

$$
\rho_{n}(x):=\frac{1}{n} \sum_{i=1}^{n}\left(\log \frac{P_{X_{i}^{\star}}\left(\Pi_{i}\right)}{P_{X_{i}}\left(\Pi_{i}\right)}-\mathbb{E} \log \frac{P_{X_{i}^{\star}}\left(\Pi_{i}\right)}{P_{X_{i}}\left(\Pi_{i}\right)}\right) .
$$

By the listwise representation theorem, $\rho_{n}(x)$ is a function of $n \times m$ independent exponential random variables. Moreover, if we were to change the value of a single element $y_{i k}$ then this would result in a change of permutation of the type described in Lemma 2. Notice that the bound on the change in the relative loss is $C_{0}\left\|\log \phi\left(X_{i}\right)-\log \phi\left(X_{i}^{\prime}\right)\right\|_{\infty}$, where $C_{0}=2+e^{2 C} \ln (m+1)$, and notice that the sum of squares of these bounds are,

$$
\begin{aligned}
& \sum_{i, k} C_{0}^{2}\left\|\log \phi\left(X_{i}\right)-\log \phi\left(X_{i}^{\prime}\right)\right\|_{\infty}^{2} \\
& =m C_{0}^{2} \sum_{i=1}^{n}\left\|\log \phi\left(X_{i}\right)-\log \phi\left(X_{i}^{\prime}\right)\right\|_{\infty}^{2} \\
& =m C_{0}^{2}\left\|Z-Z^{\prime}\right\|_{\infty, 2}^{2}
\end{aligned}
$$

where Z, Z^{\prime} are $\log \phi$ applied elementwise to X, X^{\prime} respectively. By Lemma 2 and McDiarmid's inequality,
$\mathbb{P}\left\{n\left(\rho_{n}(x)-\rho_{n}\left(x^{\prime}\right)\right)>\epsilon\right\} \leq \exp \left(-\frac{2 \epsilon^{2}}{m C_{0}^{2}\left\|Z-Z^{\prime}\right\|_{\infty, 2}^{2}}\right)$.
Hence, the stochastic process $\left\{n \rho_{n}(X): X \in \mathcal{X}\right\}$ is a subGaussian field with canonical distance,

$$
d\left(X, X^{\prime}\right):=\sqrt{m} C_{0}\left\|Z-Z^{\prime}\right\|_{\infty, 2}
$$

The result follows by Dudley's chaining (Talagrand, 2006).

Lemma 3. If $\log \phi$ is 1 -Lipschitz then we have that $g(\mathcal{Z}) \leq$ $g(\mathcal{X})$.

Proof. Let $X, X^{\prime} \in \mathcal{X}$, and $Z=\log \phi(X), Z^{\prime}=$ $\log \phi\left(X^{\prime}\right)$. Then

$$
\left|z_{i j}-z_{i j}^{\prime}\right| \leq\left|x_{i j}-x_{i j}^{\prime}\right|
$$

by the Lipschitz property. Hence, $\left\|Z-Z^{\prime}\right\|_{\infty, 2} \leq \| X-$ $X^{\prime} \|_{\infty, 2}$, and so

$$
\mathcal{N}\left(u, \mathcal{Z},\|\cdot\|_{\infty, 2}\right) \leq \mathcal{N}\left(u, \mathcal{X},\|\cdot\|_{\infty, 2}\right)
$$

Proof of Corollary 1. Consider two matrices X, X^{\prime} in the model (7) then

$$
\left\|x_{i}-x_{i}^{\prime}\right\|_{\infty}=\max _{j}\left|\beta^{\top} z_{i j}-\beta^{\prime \top} z_{i j}\right| \leq\left\|\beta-\beta^{\prime}\right\|_{2}\left\|Z_{i}\right\|_{2, \infty}
$$

Let $\zeta=\max _{i}\left\|Z_{i}\right\|_{2, \infty}$ then

$$
\left\|X-X^{\prime}\right\|_{\infty, 2} \leq \zeta\left\|\beta-\beta^{\prime}\right\|_{2}
$$

The covering number of \mathcal{X} is therefore bounded by

$$
\mathcal{N}\left(\mathcal{X}, u,\|\cdot\|_{\infty, 2}\right) \leq \mathcal{N}\left(B_{c_{b}}, u / \zeta,\|\cdot\|_{2}\right) \leq\left(\frac{\zeta C_{0} c_{b}}{u}\right)^{s}
$$

for an absolute constant C_{0}, where $B_{c_{b}}$ is the ℓ_{2} ball of radius c_{b}. The result follows by Lemma 3 and Theorem 2.

Proof of Corollary 2. Let $X=U V^{\top}$ and $X^{\prime}=U^{\prime} V^{\prime \top}$ such that $U, V, U^{\prime}, V^{\prime}$ bounded by 1 in Frobenius norm (modifying the Frobenius norm bound does not change the substance of the proof). Consider

$$
\begin{aligned}
& \left|u_{i}^{\top} v_{j}-u_{i}^{\prime \top} v_{j}^{\prime}\right| \leq\left|u_{i}^{\top} v_{j}-u_{i}^{\prime \top} v_{j}\right|+\left|u_{i}^{\prime \top} v_{j}-u_{i}^{\prime \top} v_{j}^{\prime}\right| \\
& \quad \leq\left\|u_{i}-u_{i}^{\prime}\right\|\left\|v_{j}\right\|+\left\|u_{i}^{\prime}\right\|\left\|v_{j}-v_{j}^{\prime}\right\| .
\end{aligned}
$$

Maximizing this over the selection of j,

$$
\begin{aligned}
& \max _{j}\left|u_{i}^{\top} v_{j}-u_{i}^{\prime \top} v_{j}^{\prime}\right| \\
& \leq\left\|u_{i}-u_{i}^{\prime}\right\|_{2}\|V\|_{2, \infty}+\left\|u_{i}\right\|_{2}\left\|V-V^{\prime}\right\|_{2, \infty}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\|X-X^{\prime}\right\|_{\infty, 2} \\
& \leq\left\|U-U^{\prime}\right\|_{F}\|V\|_{2, \infty}+\left\|U^{\prime}\right\|_{F}\left\|V-V^{\prime}\right\|_{2, \infty} \\
& \leq\left\|U-U^{\prime}\right\|_{F}+\left\|V-V^{\prime}\right\|_{2, \infty}
\end{aligned}
$$

Consider the vectorization mapping from the $m \times r$ matrix to the $m r$ dimensional vectors. The Frobenius norm is mapped to the ℓ_{2} norm, and we can consider the $2, \infty$ norm to be, the norm $\|x\|_{\rho}=\max _{j}\left\|\left(x_{j r+1}, \ldots, x_{j(r+1)}\right)\right\|_{2}$. The ρ-norm unit ball $\left(B_{\rho}\right)$ is just the Cartesian product of the ℓ_{2} norm ball in K dimensions. The volume of a d-dimensional ball, V_{d}, is bounded by

$$
C_{l} \leq \frac{V_{d}}{(e \pi)^{d / 2}} d^{\frac{d}{2}} \leq C_{u}
$$

where $C_{l}<C_{u}$ are universal constants. So the volume ratio between the ℓ_{2} norm ball and the ρ norm ball is bounded by

$$
\begin{aligned}
& \frac{V\left(B_{2}\right)}{V\left(B_{\rho}\right)} \leq C\left(\frac{r^{r / 2}}{(e \pi)^{r / 2}}\right)^{m} /\left(\frac{(r m)^{r m / 2}}{(e \pi)^{r m / 2}}\right) \\
& \leq C m^{-r m / 2}
\end{aligned}
$$

where $C=C_{u} / C_{l}$.

$$
\begin{aligned}
& \mathcal{N}\left(\epsilon, B_{2},\|\cdot\|_{\rho}\right) \leq C_{r}\left(\frac{2}{\epsilon}+1\right)^{r m} m^{-r m / 2} \\
& \leq C\left(\frac{3}{\epsilon \sqrt{m}}\right)^{r m}
\end{aligned}
$$

for $\epsilon \leq 1$. This is also the covering number of the Frobenius norm ball in the $2, \infty$ norm. Moreover, we know that the covering number of the unit Frobenius norm ball in $n \times K$ matrices $\left(B_{F}\right)$ in the Frobenius norm is

$$
\mathcal{N}\left(\epsilon, B_{F},\|\cdot\|_{F}\right) \leq\left(\frac{c}{\epsilon}\right)^{n r}
$$

for some constant c. Consider covering the space \mathcal{X}, by selecting centers U, V from the $\epsilon / 2$-coverings of B_{F} in the F-norm and $2, \infty$ norm respectively. By the above norm bound, this produces an ϵ-covering in the $\infty, 2$ norm. Dudley's entropy bound is thus

$$
\begin{aligned}
& \int_{0}^{\infty} \sqrt{\log \mathcal{N}\left(\epsilon, B_{F},\|\cdot\|_{F}\right)+\log \mathcal{N}\left(\epsilon, B_{F},\|\cdot\|_{2, \infty}\right)} \mathrm{d} \epsilon \\
& \leq \int_{0}^{c} \sqrt{n r \log (c / \epsilon)} \mathrm{d} \epsilon+\int_{0}^{3 / \sqrt{m}} \sqrt{-m r \log (\epsilon \sqrt{m} / 3)} \mathrm{d} \epsilon
\end{aligned}
$$

So that

$$
\begin{aligned}
& \int_{0}^{c} \sqrt{n r \log (c / \epsilon)} \mathrm{d} \epsilon \\
& \leq c^{\prime} \sqrt{n r}
\end{aligned}
$$

for some absolute constant c^{\prime} and

$$
\begin{aligned}
& \int_{0}^{3 / \sqrt{m}} \sqrt{-m r \log (\epsilon \sqrt{m} / 3)} \mathrm{d} \epsilon \leq \int_{0}^{3} \sqrt{r \log (u / 3)} \mathrm{d} u \\
& \leq c^{\prime} \sqrt{r}
\end{aligned}
$$

Hence, for $g(\mathcal{X}) \leq c^{\prime} \sqrt{n r}$ and we have the result.

A.2. Algorithms

```
Algorithm 3 Compute gradient for \(V\) when \(U\) fixed
    Input: \(\Pi, U, V, \lambda, \rho\)
    Output: \(g\left\{g \in \mathbb{R}^{r \times m}\right.\) is the gradient for \(\left.f(V)\right\}\)
    \(g=\lambda \cdot V\)
    for \(i=1\) to \(n\) do
        Precompute \(h_{t}=u_{i}^{T} v_{\Pi_{i t}}\) for \(1 \leq t \leq \bar{m}\{\) For implicit
        feedback, it should be \((1+\rho) \cdot \tilde{m}\) instead of \(\tilde{m}\), since
        \(\rho \cdot \tilde{m} 0\) 's are appended to the back \(\}\)
        Initialize total \(=0, t t=0\)
        for \(t=\bar{m}\) to 1 do
        total \(+=\exp \left(h_{t}\right)\)
        \(t t+=1 /\) total
        end for
        Initialize \(c[t]=0\) for \(1 \leq t \leq \bar{m}\)
        for \(t=\bar{m}\) to 1 do
            \(c[t]+=h_{t} \cdot\left(1-h_{t}\right)\)
            \(c[t]+=\exp \left(h_{t}\right) \cdot h_{t} \cdot\left(1-h_{t}\right) \cdot t t\)
            total \(+=\exp \left(h_{t}\right)\)
            \(t t-=1 /\) total
        end for
        for \(t=1\) to \(\bar{m}\) do
        \(g\left[:, \Pi_{i t}\right]+=c[t] \cdot u_{i}\)
        end for
    end for
    Return \(g\)
```

Algorithm 4 Gradient update for V (Same procedure for updating U)

Input: V, ss, rate $\{$ rate refers to the decaying rate of the step size $s s\}$
Output: V
Compute gradient g for V see alg 3$\}$
$V-=s s \cdot g$
$s s *=$ rate
Return V

Figure 3. Comparing implicit feedback methods.

Figure 4. Effectiveness of Stochastic Queuing Process.

Figure 5. Effectiveness of using full lists.

