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A. Supplement to “A Listwise Approach to
Collaborative Ranking”

A.1. Proofs in Theory section
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Thus, we can subtract the expectation,
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where the expectation E is with respect to the draw of ⇧
i

conditional on X .

Lemma 2. Let ⇡ be a permutation vector and x be a score
vector each of length m. Suppose that | log �(x
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So we can bound the difference,
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Proof of Theorem 2. Define the empirical process function
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The result follows by Dudley’s chaining (Talagrand, 2006).
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for ✏  1. This is also the covering number of the Frobenius
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A.2. Algorithms

Algorithm 3 Compute gradient for V when U fixed
Input: ⇧, U , V , �, ⇢
Output: g {g 2 Rr⇥m is the gradient for f(V )}
g = � · V
for i = 1 to n do
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v⇧it for 1  t  m̄ {For implicit
feedback, it should be (1 + ⇢) · m̃ instead of m̃, since
⇢ · m̃ 0’s are appended to the back}
Initialize total = 0, tt = 0

for t = m̄ to 1 do
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end for
Initialize c[t] = 0 for 1  t  m̄
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end for
for t = 1 to m̄ do
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] += c[t] · u
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end for
end for
Return g

Algorithm 4 Gradient update for V (Same procedure for
updating U )

Input: V, ss, rate {rate refers to the decaying rate of
the step size ss}
Output: V
Compute gradient g for V {see alg 3}
V �= ss · g
ss ⇤= rate
Return V

Figure 3. Comparing implicit feedback methods.
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Figure 4. Effectiveness of Stochastic Queuing Process.

Figure 5. Effectiveness of using full lists.


