
SQL-Rank: A Listwise Approach to Collaborative Ranking

A. Supplement to “A Listwise Approach to
Collaborative Ranking”

A.1. Proofs in Theory section

Proof of Theorem 1. Notice that ⇧

i1 is the argument, k,
that minimizes Y

ik

, and P{⇧
i1 = k} = P{Y

ik


min{Y

ij

}
j 6=k

}. Furthermore, min{Y
ij

}
j 6=k

is exponential
with rate parameter

P
j 6=k

�(X
ij

) and is independent of Y
ik

.
Hence,

P {Y
ik

 min{Y
ij

}
j 6=k

}

=

Z 1

0
�(X

ik

)e�u�(Xik)e�
P

j 6=k u�(Xij)
du

=

�(X
ik

)P
j

�(X
ij

)

.

Furthermore,

P{⇧
i

|⇧
i1} = P{Y⇧i2

 . . .  Y⇧im |Y⇧ij � Y⇧i1 , 8j}
= P{Y⇧i2 � Y⇧i1  . . .  Y⇧im � Y⇧i1 |Y⇧ij � Y⇧i1 , 8j}.

By the memorylessness property, we have that the joint
distribution of Y⇧i2 �Y⇧i1 , . . . , Y⇧im �Y⇧i1 |Y⇧ij � Y⇧i1 ,
8j > 1 is equivalent to the distribution of Y⇧i2 , . . . , Y⇧im .
Hence, we can apply induction with the previous argument,
and the tower property of conditional probability.

Proof of Lemma 1. By optimality,

1

n

nX

i=1

� logP
X̂i

(⇧

i

)  1

n

nX

i=1

� logP
X

?
i
(⇧

i

).

Which is equivalent to

1

n

nX

i=1

� log

P
X

?
i
(⇧

i

)

P
X̂i

(⇧

i

)

� 0.

Thus, we can subtract the expectation,

1

n

nX

i=1

E log

P
X

?
i
(⇧

i

)

P
X̂i

(⇧

i

)

 � 1

n

nX

i=1

log

P
X

?
i
(⇧

i

)

P
X̂i

(⇧

i

)

� E log

P
X

?
i
(⇧

i

)

P
X̂i

(⇧

i

)

!

where the expectation E is with respect to the draw of ⇧
i

conditional on X .

Lemma 2. Let ⇡ be a permutation vector and x be a score
vector each of length m. Suppose that | log �(x

j

)|  C for
all j = 1, . . . ,m. Define the relative loss function,

L
x,x

0
(⇡) := log

P
x

(⇡)

P
x

0
(⇡)

.

Consider translating an item in position ` to position `0

in the permutation ⇡, thus forming ⇡0 where ⇡0
`

0 = ⇡
`

.
Specifically, ⇡0

k

= ⇡
k

if k < min{`, `0} or k > max{`, `0};
if ` < `0 then ⇡0

k

= ⇡
k+1 for k = `, . . . , `0 � 1; if `0 < `

then ⇡0
k

= ⇡
k�1 for k = `0 + 1, . . . , `. The relative loss

function has bounded differences in the sense that

|L
x,x

0
(⇡)� L

x,x

0
(⇡0

)|  C0k log �(x)� log �(x0
)k1,

where �(x) is applied elementwise and C0 = 2+e2C ln(m+

1).

Proof. Suppose that ` < `0, and define the following short-
hand,

�
j

= �(x
⇡j), ⇤

j

=

mX

k=j

�
k

,

and let �0
j

,⇤0
j

be similarly defined with x0. Then by replac-
ing the permutation ⇡ with ⇡0 causes the ⇤

j

to be replaced
with ⇤

j

� �
j

+ �
`

for j = `+ 1, . . . , `0. Hence,

logQ
x

(⇡)� logQ
x

(⇡0
)

=

`

0X

j=`+1

log (⇤

j

� �
j

+ �
`

)� log (⇤

j

)

=

`

0X

j=`+1

log (⇤

j�1 + �
`

)� log (⇤

j

)

=

`

0�1X

j=`

log

✓
1 +

�
`

⇤

j

◆
+ log⇤

`

� log⇤

`

0 .

So we can bound the difference,

|L
x,x

0
(⇡)� L

x,x

0
(⇡0

)| 
����log

⇤

`

⇤

0
`

� log

⇤

`

0

⇤

0
`

0

����

+

`

0�1X

j=`

�����log
✓
1 +

�
`

⇤

j

◆
� log

1 +

�0
`

⇤

0
j

!����� .

Suppose that for each j, | log �
j

� log �0
j

|  � and that
| log �

j

|  C. Then we have that
����log

⇤

`

⇤

0
`

����  max

j�`

�����log
�
j

�0
j

�����  �.

The same equation can be made for this term with `0. Let

↵
j

= max

(
�
`

⇤

j

,
�0
`

⇤

0
j

)
.

Then we have
�����log

✓
1 +

�
`

⇤

j

◆
� log

1 +

�0
`

⇤

0
j

!�����


��
log(1 + ↵

j

)� log(1 + e��↵
j

)

�� 
��
1� e��

�� |↵
j

|.

SQL-Rank: A Listwise Approach to Collaborative Ranking

Furthermore, because ⇤

j

� (m � j + 1)e�C then |↵
j

| 
(m� j + 1)

�1e2C and

|L
x,x

0
(⇡)� L

x,x

0
(⇡0

)|  2�

+

`

0�1X

j=`

|1� e��| e2C

m� j + 1

 2� + |1� e��|e2CH
m

 �(2 + e2C ln(m+ 1)).

In the above equation, H
m

is the mth harmonic number.
A similar calculation can be made when `0 > `. Setting
� = k log �(x)� log �(x0

)k1 concludes the proof.

Proof of Theorem 2. Define the empirical process function
to be

⇢
n

(x) :=
1

n

nX

i=1

✓
log

P
X

?
i
(⇧

i

)

P
Xi(⇧i

)

� E log

P
X

?
i
(⇧

i

)

P
Xi(⇧i

)

◆
.

By the listwise representation theorem, ⇢
n

(x) is a function
of n⇥m independent exponential random variables. More-
over, if we were to change the value of a single element y

ik

then this would result in a change of permutation of the type
described in Lemma 2. Notice that the bound on the change
in the relative loss is C0k log �(Xi

)� log �(X 0
i

)k1, where
C0 = 2+e2C ln(m+1), and notice that the sum of squares
of these bounds are,

X

i,k

C2
0k log �(Xi

)� log �(X 0
i

)k21

= mC2
0

nX

i=1

k log �(X
i

)� log �(X 0
i

)k21

= mC2
0kZ � Z 0k21,2,

where Z,Z 0 are log � applied elementwise to X,X 0 respec-
tively. By Lemma 2 and McDiarmid’s inequality,

P{n(⇢
n

(x)�⇢
n

(x0
)) > ✏}  exp

� 2✏2

mC2
0kZ � Z 0k21,2

!
.

Hence, the stochastic process {n⇢
n

(X) : X 2 X} is a
subGaussian field with canonical distance,

d(X,X 0
) :=

p
mC0kZ � Z 0k1,2.

The result follows by Dudley’s chaining (Talagrand, 2006).

Lemma 3. If log � is 1-Lipschitz then we have that g(Z) 
g(X).

Proof. Let X,X 0 2 X , and Z = log �(X), Z 0
=

log �(X 0
). Then

|z
ij

� z0
ij

|  |x
ij

� x0
ij

|,

by the Lipschitz property. Hence, kZ � Z 0k1,2  kX �
X 0k1,2, and so

N (u,Z, k.k1,2)  N (u,X , k.k1,2).

Proof of Corollary 1. Consider two matrices X,X 0 in the
model (7) then

kx
i

�x0
i

k1 = max

j

|�>z
ij

��0>z
ij

|  k���0k2kZi

k2,1.

Let ⇣ = max

i

kZ
i

k2,1 then

kX �X 0k1,2  ⇣k� � �0k2.

The covering number of X is therefore bounded by

N (X , u, k.k1,2)  N (B
cb , u/⇣, k.k2) 

✓
⇣C0cb
u

◆
s

,

for an absolute constant C0, where B
cb is the `2 ball of

radius c
b

. The result follows by Lemma 3 and Theorem
2.

Proof of Corollary 2. Let X = UV > and X 0
= U 0V 0>

such that U, V, U 0, V 0 bounded by 1 in Frobenius norm
(modifying the Frobenius norm bound does not change the
substance of the proof). Consider

|u>
i

v
j

� u0>
i

v0
j

|  |u>
i

v
j

� u0>
i

v
j

|+ |u0>
i

v
j

� u0>
i

v0
j

|
 ku

i

� u0
i

kkv
j

k+ ku0
i

kkv
j

� v0
j

k.

Maximizing this over the selection of j,

max

j

|u>
i

v
j

� u0>
i

v0
j

|

 ku
i

� u0
i

k2kV k2,1 + ku
i

k2kV � V 0k2,1.

Hence,

kX �X 0k1,2

 kU � U 0k
F

kV k2,1 + kU 0k
F

kV � V 0k2,1
 kU � U 0k

F

+ kV � V 0k2,1.

Consider the vectorization mapping from the m⇥r matrix to
the mr dimensional vectors. The Frobenius norm is mapped
to the `2 norm, and we can consider the 2,1 norm to be, the
norm kxk

⇢

= max

j

k(x
jr+1, . . . , x

j(r+1))k2. The ⇢-norm
unit ball (B

⇢

) is just the Cartesian product of the `2 norm
ball in K dimensions. The volume of a d-dimensional ball,
V
d

, is bounded by

C
l

 V
d

(e⇡)d/2
d

d
2  C

u

,

SQL-Rank: A Listwise Approach to Collaborative Ranking

where C
l

< C
u

are universal constants. So the volume ratio
between the `2 norm ball and the ⇢ norm ball is bounded by

V (B2)

V (B
⇢

)

 C

✓
rr/2

(e⇡)r/2

◆
m �

(rm)

rm/2

(e⇡)rm/2

!

 Cm�rm/2,

where C = C
u

/C
l

.

N (✏, B2, k.k⇢)  C
r

✓
2

✏
+ 1

◆
rm

m�rm/2

 C

✓
3

✏
p
m

◆
rm

,

for ✏  1. This is also the covering number of the Frobenius
norm ball in the 2,1 norm. Moreover, we know that the
covering number of the unit Frobenius norm ball in n⇥K
matrices (B

F

) in the Frobenius norm is

N (✏, B
F

, k.k
F

) 
⇣c
✏

⌘
nr

,

for some constant c. Consider covering the space X , by
selecting centers U, V from the ✏/2-coverings of B

F

in
the F -norm and 2,1 norm respectively. By the above
norm bound, this produces an ✏-covering in the 1, 2 norm.
Dudley’s entropy bound is thus
Z 1

0

q
logN (✏, B

F

, k.k
F

) + logN (✏, B
F

, k.k2,1)d✏


Z

c

0

p
nr log(c/✏)d✏+

Z 3/
p
m

0

q
�mr log(✏

p
m/3)d✏.

So that
Z

c

0

p
nr log(c/✏)d✏

 c0
p
nr

for some absolute constant c0 and
Z 3/

p
m

0

q
�mr log(✏

p
m/3)d✏ 

Z 3

0

p
r log(u/3)du

 c0
p
r.

Hence, for g(X)  c0
p
nr and we have the result.

A.2. Algorithms

Algorithm 3 Compute gradient for V when U fixed
Input: ⇧, U , V , �, ⇢
Output: g {g 2 Rr⇥m is the gradient for f(V)}
g = � · V
for i = 1 to n do

Precompute h
t

= uT

i

v⇧it for 1  t  m̄ {For implicit
feedback, it should be (1 + ⇢) · m̃ instead of m̃, since
⇢ · m̃ 0’s are appended to the back}
Initialize total = 0, tt = 0

for t = m̄ to 1 do
total += exp(h

t

)

tt += 1/total
end for
Initialize c[t] = 0 for 1  t  m̄
for t = m̄ to 1 do
c[t] += h

t

· (1� h
t

)

c[t] += exp(h
t

) · h
t

· (1� h
t

) · tt
total += exp(h

t

)

tt �= 1/total
end for
for t = 1 to m̄ do
g[:,⇧

it

] += c[t] · u
i

end for
end for
Return g

Algorithm 4 Gradient update for V (Same procedure for
updating U)

Input: V, ss, rate {rate refers to the decaying rate of
the step size ss}
Output: V
Compute gradient g for V {see alg 3}
V �= ss · g
ss ⇤= rate
Return V

Figure 3. Comparing implicit feedback methods.

SQL-Rank: A Listwise Approach to Collaborative Ranking

Figure 4. Effectiveness of Stochastic Queuing Process.

Figure 5. Effectiveness of using full lists.

