8. Proof for Lemma 2

Proof. By re-organizing the update rule of accumulated quantization error, we have:

$$
\begin{align*}
\mathbf{h}_{p}^{(t)} & =\beta \mathbf{h}_{p}^{(t-1)}+\left(\mathbf{g}_{p}^{(t-1)}-\tilde{\mathbf{g}}_{p}^{(t-1)}\right) \\
& =\beta \mathbf{h}_{p}^{(t-1)}+\left(-\alpha \mathbf{h}_{p}^{(t-1)}-\boldsymbol{\varepsilon}_{p}^{(t-1)}\right) \\
& =(\beta-\alpha) \cdot \mathbf{h}_{p}^{(t-1)}-\boldsymbol{\varepsilon}_{p}^{(t-1)} \tag{27}\\
& =-\sum_{t^{\prime}=0}^{t-1}(\beta-\alpha)^{t-t^{\prime}-1} \cdot \boldsymbol{\varepsilon}_{p}^{\left(t^{\prime}\right)}
\end{align*}
$$

which indicates that $\mathbf{h}_{p}^{(t)}$ is the linear combination of all the previous quantization errors.
Taking the expectation of squared l_{2}-norm of both sides of the second to the last equality in (27), we have:

$$
\begin{align*}
\mathbb{E}\left\|\mathbf{h}_{p}^{(t)}\right\|_{2}^{2} & =\mathbb{E}\left\|(\beta-\alpha) \cdot \mathbf{h}_{p}^{(t-1)}-\boldsymbol{\varepsilon}_{p}^{(t-1)}\right\|_{2}^{2} \tag{28}\\
& =(\beta-\alpha)^{2} \cdot \mathbb{E}\left\|\mathbf{h}_{p}^{(t-1)}\right\|_{2}^{2}+\mathbb{E}\left\|\varepsilon_{p}^{(t-1)}\right\|_{2}^{2}
\end{align*}
$$

and the last equality holds due to the independence between $\mathbf{h}_{p}^{(t-1)}$ and $\varepsilon_{p}^{(t-1)}$ (recall that all quantization errors are i.i.d. random noises).

Since the quantization error $\varepsilon_{p}^{(t-1)}$ have the following variance bound (from Theorem 1):

$$
\begin{align*}
\mathbb{E}\left\|\varepsilon_{p}^{(t-1)}\right\|_{2}^{2} & \leq \gamma \cdot \mathbb{E}\left\|\mathbf{g}_{p}^{(t-1)}+\alpha \mathbf{h}_{p}^{(t-1)}\right\|_{2}^{2} \\
& =\gamma \cdot \mathbb{E}\left\|\mathbf{g}_{p}^{(t-1)}\right\|_{2}^{2}+\alpha^{2} \gamma \cdot \mathbb{E}\left\|\mathbf{h}_{p}^{(t-1)}\right\|_{2}^{2} \tag{29}\\
& \leq \gamma B+\alpha^{2} \gamma \cdot \mathbb{E}\left\|\mathbf{h}_{p}^{(t-1)}\right\|_{2}^{2}
\end{align*}
$$

where the second equality is also derived from the independence between $\mathbf{g}_{p}^{(t-1)}$ and $\mathbf{h}_{p}^{(t-1)}$.
By substituting (29) into (28), we have:

$$
\begin{align*}
\mathbb{E}\left\|\mathbf{h}_{p}^{(t)}\right\|_{2}^{2} & \leq\left[\alpha^{2} \gamma+(\beta-\alpha)^{2}\right] \cdot \mathbb{E}\left\|\mathbf{h}_{p}^{(t-1)}\right\|_{2}^{2}+\gamma B \\
& \leq \sum_{t^{\prime}=0}^{t-1}\left[\alpha^{2} \gamma+(\beta-\alpha)^{2}\right]^{t-t^{\prime}-1} \cdot \gamma B \tag{30}\\
& =\frac{1-\lambda^{t}}{1-\lambda} \cdot \gamma B
\end{align*}
$$

where $\lambda=\alpha^{2} \gamma+(\beta-\alpha)^{2}$.
By substituting (30) into the variance bound of quantization error at the t-th iteration, we have:

$$
\begin{align*}
\mathbb{E}\left\|\varepsilon_{p}^{(t)}\right\|_{2}^{2} & \leq \gamma B+\alpha^{2} \gamma \cdot \mathbb{E}\left\|\mathbf{h}_{p}^{(t)}\right\|_{2}^{2} \\
& \leq\left[1+\alpha^{2} \gamma \cdot \frac{1-\lambda^{t}}{1-\lambda}\right] \cdot \gamma B \tag{31}
\end{align*}
$$

which completes the proof.

9. Proof for Theorem 1

Proof. Recall the update rule in ECQ-SGD:

$$
\begin{equation*}
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta\left(\mathbf{A} \mathbf{w}^{(t)}+\mathbf{b}+\boldsymbol{\xi}^{(t)}+\alpha \mathbf{h}^{(t)}+\boldsymbol{\varepsilon}^{(t)}\right) \tag{32}
\end{equation*}
$$

By applying the optimality of \mathbf{w}^{*}, and subtracting w^{*} from both sides of the above equality, we arrive at (note that we introduce $\mathbf{H}=\mathbf{I}-\eta \mathbf{A}$ for simplicity):

$$
\begin{align*}
\mathbf{w}^{(t+1)}-\mathbf{w}^{*} & =\mathbf{H}\left(\mathbf{w}^{(t)}-\mathbf{w}^{*}\right)-\eta\left(\boldsymbol{\xi}^{(t)}+\alpha \mathbf{h}^{(t)}+\boldsymbol{\varepsilon}^{(t)}\right) \tag{33}\\
& =\mathbf{H}^{t+1}\left(\mathbf{w}^{(0)}-\mathbf{w}^{*}\right)-\mathbf{\Psi}^{(t)}-\boldsymbol{\Phi}^{(t)}
\end{align*}
$$

where:

$$
\begin{align*}
& \boldsymbol{\Psi}^{(t)}=\eta \sum_{t^{\prime}=0}^{t} \mathbf{H}^{t-t^{\prime}} \boldsymbol{\xi}^{\left(t^{\prime}\right)} \\
& \boldsymbol{\Phi}^{(t)}=\eta \sum_{t^{\prime}=0}^{t} \mathbf{H}^{t-t^{\prime}}\left(\alpha \mathbf{h}^{\left(t^{\prime}\right)}+\boldsymbol{\varepsilon}^{\left(t^{\prime}\right)}\right) \tag{34}
\end{align*}
$$

Since each accumulated quantization error $\mathbf{h}^{\left(t^{\prime}\right)}$ is the linear combination of all previous quantization errors:

$$
\begin{equation*}
\mathbf{h}^{\left(t^{\prime}\right)}=\sum_{t^{\prime \prime}=0}^{t^{\prime}-1}(\beta-\alpha)^{t^{\prime}-t^{\prime \prime}-1} \cdot \varepsilon^{\left(t^{\prime \prime}\right)} \tag{35}
\end{equation*}
$$

we can further simplify $\boldsymbol{\Phi}^{(t)}$ as:

$$
\begin{equation*}
\boldsymbol{\Phi}^{(t)}=\eta \sum_{t^{\prime}=0}^{t} \boldsymbol{\Theta}^{\left(t^{\prime}\right)} \boldsymbol{\varepsilon}^{\left(t^{\prime}\right)} \tag{36}
\end{equation*}
$$

where:

$$
\begin{equation*}
\boldsymbol{\Theta}^{\left(t^{\prime}\right)}=\mathbf{H}^{t-t^{\prime}}-\sum_{t^{\prime \prime}=t^{\prime}+1}^{t} \alpha(\beta-\alpha)^{t^{\prime \prime}-t^{\prime}-1} \mathbf{H}^{t-t^{\prime \prime}} \tag{37}
\end{equation*}
$$

Due to the independence between all the random noises $\left(\left\{\boldsymbol{\xi}^{\left(t^{\prime}\right)}\right\}\right.$ and $\left.\left\{\boldsymbol{\varepsilon}^{\left(t^{\prime}\right)}\right\}\right)$, the expectation of squared Euclidean distance between $\mathbf{w}^{(t+1)}$ and \mathbf{w}^{*} is bounded by:

$$
\begin{align*}
\mathbb{E}\left\|\mathbf{w}^{(t+1)}-\mathbf{w}^{*}\right\|_{2}^{2} & =\mathbb{E}\left\|\mathbf{H}^{t+1}\left(\mathbf{w}^{(0)}-\mathbf{w}^{*}\right)\right\|_{2}^{2}+\eta^{2} \sum_{t^{\prime}=0}^{t}\left[\mathbb{E}\left\|\mathbf{H}^{t-t^{\prime}} \boldsymbol{\xi}^{\left(t^{\prime}\right)}\right\|_{2}^{2}+\mathbb{E}\left\|\boldsymbol{\Theta}^{\left(t^{\prime}\right)} \boldsymbol{\varepsilon}^{\left(t^{\prime}\right)}\right\|_{2}^{2}\right] \\
& \leq R^{2}\left\|\mathbf{H}^{t+1}\right\|_{2}^{2}+\eta^{2} \sigma^{2} \sum_{t^{\prime}=0}^{t}\left\|\mathbf{H}^{t^{\prime}}\right\|_{2}^{2}+\eta^{2} \mathbb{E}\left\|\varepsilon^{(t)}\right\|_{2}^{2}+\eta^{2} \sum_{t^{\prime}=0}^{t-1}\left\|\boldsymbol{\Theta}^{\left(t^{\prime}\right)}\right\|_{2}^{2} \cdot \mathbb{E}\left\|\varepsilon^{\left(t^{\prime}\right)}\right\|_{2}^{2} \tag{38}
\end{align*}
$$

which completes the proof.

10. Proof for Lemma 3

Proof. Since $\mathbf{A} \succeq a_{1} \mathbf{I}$, and the learning rate satisfies $\eta a_{1}<1$, we have $\mathbf{I}-\eta \mathbf{A} \preceq\left(1-\eta a_{1}\right) \mathbf{I}$, which implies that $(\mathbf{I}-\eta \mathbf{A})^{t^{\prime \prime}} \preceq\left(1-\eta a_{1}\right)^{t^{\prime \prime}} \mathbf{I}$ holds for any positive integer $t^{\prime \prime}$. Therefore, we can derive the following inequality:

$$
\begin{align*}
(\mathbf{I}-\eta \mathbf{A})^{t} & =(\mathbf{I}-\eta \mathbf{A})^{t-t^{\prime}}(\mathbf{I}-\eta \mathbf{A})^{t^{\prime}} \tag{39}\\
& \preceq\left(1-\eta a_{1}\right)^{t-t^{\prime}}(\mathbf{I}-\eta \mathbf{A})^{t^{\prime}}
\end{align*}
$$

By substituting the above inequality into the definition of $\mathbf{\Theta}^{\left(t^{\prime}\right)}\left(t^{\prime}<t\right)$, we arrive at:

$$
\begin{align*}
\mathbf{\Theta}^{\left(t^{\prime}\right)} & \preceq\left[1-\sum_{t^{\prime \prime}=t^{\prime}+1}^{t} \frac{\alpha(\beta-\alpha)^{t^{\prime \prime}-t^{\prime}-1}}{\left(1-\eta a_{1}\right)^{t^{\prime \prime}-t^{\prime}}}\right] \cdot(\mathbf{I}-\eta \mathbf{A})^{t-t^{\prime}} \\
& =\left[1-\frac{\alpha}{\beta-\alpha} \sum_{t^{\prime \prime}=1}^{t-t^{\prime}}\left(\frac{\beta-\alpha}{1-\eta a_{1}}\right)^{t^{\prime \prime}}\right] \cdot(\mathbf{I}-\eta \mathbf{A})^{t-t^{\prime}} \tag{40}\\
& =\left[1-\frac{\alpha}{1-\eta a_{1}} \frac{1-\nu^{t-t^{\prime}}}{1-\nu}\right] \cdot(\mathbf{I}-\eta \mathbf{A})^{t-t^{\prime}}
\end{align*}
$$

where $\nu=(\beta-\alpha) /\left(1-\eta a_{1}\right)$.

11. Proof for Lemma 4

Proof. Here we use $\Delta t=t-t^{\prime}$ to denote the time gap. With $\beta=1-\eta a_{1}$ and $0<\alpha<\beta$, we have $\nu=\frac{\beta-\alpha}{1-\eta a_{1}} \in(0,1)$, which leads to:

$$
\begin{equation*}
\lim _{\Delta t \rightarrow \infty} \nu^{\Delta t}=0 \tag{41}
\end{equation*}
$$

Recall that the upper bound of reduction ratio is given by:

$$
\begin{equation*}
\frac{\tau^{(t-\Delta t)}}{\tau_{Q S G D}^{(t-\Delta t)}}<\left(1-\frac{\alpha}{1-\eta a_{1}} \cdot \frac{1-\nu^{\Delta t}}{1-\nu}\right)^{2} \cdot\left(1+\frac{\alpha^{2} \gamma}{1-\lambda}\right) \tag{42}
\end{equation*}
$$

and substituting $\beta=1-\eta a_{1}$ into it, we arrive at:

$$
\begin{equation*}
\lim _{\Delta t \rightarrow \infty} \frac{\tau^{(t-\Delta t)}}{\tau_{Q S G D}^{(t-\Delta t)}}=\left(1-\frac{\alpha}{1-\eta a_{1}} \cdot \frac{1}{1-\frac{1-\eta a_{1}-\alpha}{1-\eta a_{1}}}\right)^{2} \cdot\left(1+\frac{\alpha^{2} \gamma}{1-\lambda}\right)=0 \tag{43}
\end{equation*}
$$

which completes the proof.

