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8. Proof for Lemma 2

Proof. By re-organizing the update rule of accumulated quantization error, we have:
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which indicates that h,(,t) is the linear combination of all the previous quantization errors.
Taking the expectation of squared /o-norm of both sides of the second to the last equality in (27), we have:
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and the last equality holds due to the independence between hl(ffl) and el(ffl) (recall that all quantization errors are i.i.d.
random noises).

(28)

Since the quantization error e,(,tfl) have the following variance bound (from Theorem 1):
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where the second equality is also derived from the independence between gl(ffl) and hl(ffl).

By substituting (29) into (28), we have:
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where A = oy + (8 — a).
By substituting (30) into the variance bound of quantization error at the ¢-th iteration, we have:
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which completes the proof. O
9. Proof for Theorem 1
Proof. Recall the update rule in ECQ-SGD:
wittD) — w(® _ n(Aw(t) +b+£&D +ah® + €(t)) (32)

By applying the optimality of w*, and subtracting w* from both sides of the above equality, we arrive at (note that we
introduce H = I — nA for simplicity):
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where:
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Since each accumulated quantization error h(*") is the linear combination of all previous quantization errors:
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we can further simplify & as:
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Due to the independence between all the random noises ({& (t/)} and {e(t/) 1), the expectation of squared Euclidean distance
between w(**t1) and w* is bounded by:
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which completes the proof. O

10. Proof for Lemma 3

Proof. Since A > a11, and the learning rate satisfies na; < 1, we have I — nA =< (1 — naq)I, which implies that
(I—nA)"" < (1 —nay)" I holds for any positive integer ¢’ Therefore, we can derive the following inequality:
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By substituting the above inequality into the definition of o) (t' < t), we arrive at:
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where v = (8 — a)/(1 — nay). O
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11. Proof for Lemma 4

Proof. Here we use At =t — t’ to denote the time gap. With 3 =1 —naj and 0 < < 3, we have v = 15;72‘1 € (0,1),

which leads to:
lim vt =0 41)
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Recall that the upper bound of reduction ratio is given by:

(t—At) 1— pAr\2 2
T Q@ v a®y
—_ 1-— . (1 42
TC(;SG%E))<< 1—nay l—u) <+1—)\) (42)

and substituting 3 = 1 — nay into it, we arrive at:
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which completes the proof.



