A. Proof of Proposition 1

Proof. Let $\alpha=1-p$. If \mathcal{B} happens, then $F_{\theta}\left(\mathbf{x}^{\prime}\right)_{y} \leq \alpha$ for some $\mathbf{x}^{\prime} \in \mathbf{x}+\mathcal{S}$, and $\kappa(\theta, \mathbf{x}, y) \geq \tau_{L}(\alpha)$, therefore ${ }^{2}$,

$$
\begin{aligned}
\operatorname{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}}[\mathcal{B}] & \leq \operatorname{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}}\left[\kappa(\theta, \mathbf{x}, y) \geq \tau_{L}(\alpha)\right] \\
& \leq \frac{\mathbb{E}[\kappa(\theta, \mathbf{x}, y)]}{\tau_{L}(\alpha)} \quad \quad \text { (Markov's inequality) } \\
& \leq \frac{\varepsilon}{\tau_{L}(\alpha)}
\end{aligned}
$$

The proof is complete.

B. Proof of Proposition 2

Proof. Let \mathcal{B} be the event $\left\{\left(\exists y^{\prime} \neq y, \mathbf{x}^{\prime} \in \mathbf{x}+\mathcal{S}\right) C_{F_{\theta}}\left(\mathbf{x}^{\prime}\right)=y^{\prime}\right\}$. If \mathcal{B} happens then $F_{\theta}\left(\mathbf{x}^{\prime}\right)_{y} \leq \frac{1}{2}$ (otherwise \mathbf{x}^{\prime} will be classified as y), and so $\kappa(\theta, \mathbf{x}, y) \geq \tau_{L}(1 / 2)$. On the other hand, if \mathcal{B} does not happen, then we can lower bound $\kappa(\theta, \mathbf{x}, y)$ by 0 . Therefore $\varepsilon \geq \mathbb{E}[\kappa(\theta, \mathbf{x}, y)] \geq \operatorname{Pr}[\neg \mathcal{B}] \cdot 0+\operatorname{Pr}[\mathcal{B}] \cdot \tau_{L}(1 / 2)=\operatorname{Pr}[\mathcal{B}] \cdot \tau_{L}(1 / 2)$. Tightness follows as we can force equality for each of the inequalities. The proof is complete.

C. Proof of Proposition 3

Proof. By contraposition it suffices to prove the following

$$
\begin{aligned}
& \operatorname{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}}\left[\left(\forall y^{\prime} \neq y, \mathbf{x}^{\prime} \in N(\mathbf{x}, \eta)\right), \Gamma_{\xi}^{\mathrm{MCN}}\left(\mathbf{x}^{\prime}\right)_{y^{\prime}}<1-p\right] \\
& \geq 1-q .
\end{aligned}
$$

By assumption that F satisfies (p, q, δ)-separation, with probability at least $1-q$ that $(\mathbf{x}, y) \sim \mathcal{D},(\mathbf{x}, y)$ is (p, δ)-good. For every such (p, δ)-good point (\mathbf{x}, y), by assumption, every $\mathbf{z} \in N(\mathbf{x}, \eta)$ is $\left(p, \mathrm{MCN}_{\xi}\right)$-good. Therefore for every such \mathbf{z}, $\Gamma_{\xi}^{\mathrm{MCN}}(\mathbf{z})_{y} \geq p$, and so $\left(\forall y^{\prime} \neq y\right), \Gamma_{\xi}^{\mathrm{MCN}}(\mathbf{z})_{y^{\prime}}<1-p$. The proof is complete.

D. Bounding the probability for (p, q, δ)-separation

This section gives details of our estimation of (p, q, δ)-separation from statistics in Table 1 . Note that event \mathcal{E}_{b} corresponds to a Bernoulli trial. Let X_{1}, \ldots, X_{t} be independent indicator random variables, where

$$
X_{i}= \begin{cases}1 & \text { if } \mathcal{E}_{b} \text { happens } \\ 0 & \text { otherwise }\end{cases}
$$

and $X=\left(\sum_{i=1}^{t} X_{i}\right) / t$. Recall Chebyshev's inequality:
Theorem 1 (Chebyshev's Inequality). For independent random variables X_{1}, \ldots, X_{t} bounded in $[0,1]$, and $X=$ $\left(\sum_{i=1}^{t} X_{i}\right) / t$, we have $\operatorname{Pr}[|X-\mathbb{E}[X]| \geq \varepsilon] \leq \frac{\operatorname{Var}[X]}{\varepsilon^{2}}$.

In our case, $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]=\cdots=\mathbb{E}\left[X_{t}\right]$ and let it be μ, and let the computed frequency be $\hat{\mu}$ (observed value). Thus $\operatorname{Pr}[|\hat{\mu}-\mu| \geq \varepsilon] \leq 1 /\left(4 \varepsilon^{2} t\right)$ since $\operatorname{Var}[X]=\mu(1-\mu) / t<1 / 4 t$. We thus have the following proposition about (p, q, δ)-separation.
Proposition 5. Let $\alpha, \varepsilon \in[0,1]$. For sufficiently large t where $\frac{1}{4 \varepsilon^{2} t} \leq 1-\alpha$ holds, we have:

- (Upper bound) With probability at least α, μ is smaller than $\hat{\mu}+\varepsilon$.
- (Lower bound) With probability at least α, μ is bigger than $\hat{\mu}-\varepsilon$.

For example, we have guarantees for $\alpha=.9$ by putting $\varepsilon=.1$ and $t \geq 250$.

[^0]
[^0]: ${ }^{2}$ Let X be a nonnegative random variable and $a>0$, Markov's inequality says that $\operatorname{Pr}[X \geq a] \leq \mathbb{E}[X] / a$.

