A. Proof of Proposition 1

Proof. Let $\alpha = 1 - p$. If \mathcal{B} happens, then $F_{\theta}(\mathbf{x}')_y \leq \alpha$ for some $\mathbf{x}' \in \mathbf{x} + \mathcal{S}$, and $\kappa(\theta, \mathbf{x}, y) \geq \tau_L(\alpha)$, therefore²,

$$\Pr_{(\mathbf{x},y)\sim\mathcal{D}}[\mathcal{B}] \leq \Pr_{(\mathbf{x},y)\sim\mathcal{D}}\left[\kappa(\theta,\mathbf{x},y) \geq \tau_L(\alpha)\right]$$
$$\leq \frac{\mathbb{E}[\kappa(\theta,\mathbf{x},y)]}{\tau_L(\alpha)} \qquad \text{(Markov's inequality)}$$
$$\leq \frac{\varepsilon}{\tau_L(\alpha)}.$$

The proof is complete.

B. Proof of Proposition 2

Proof. Let \mathcal{B} be the event $\{(\exists y' \neq y, \mathbf{x}' \in \mathbf{x} + \mathcal{S}) C_{F_{\theta}}(\mathbf{x}') = y'\}$. If \mathcal{B} happens then $F_{\theta}(\mathbf{x}')_y \leq \frac{1}{2}$ (otherwise \mathbf{x}' will be classified as y), and so $\kappa(\theta, \mathbf{x}, y) \geq \tau_L(1/2)$. On the other hand, if \mathcal{B} does not happen, then we can lower bound $\kappa(\theta, \mathbf{x}, y)$ by 0. Therefore $\varepsilon \geq \mathbb{E}[\kappa(\theta, \mathbf{x}, y)] \geq \Pr[\neg \mathcal{B}] \cdot 0 + \Pr[\mathcal{B}] \cdot \tau_L(1/2) = \Pr[\mathcal{B}] \cdot \tau_L(1/2)$. Tightness follows as we can force equality for each of the inequalities. The proof is complete.

C. Proof of Proposition 3

Proof. By contraposition it suffices to prove the following

$$\begin{split} &\Pr_{(\mathbf{x},y)\sim\mathcal{D}}\left[(\forall y'\neq y, \mathbf{x}'\in N(\mathbf{x},\eta)), \Gamma_{\xi}^{\texttt{MCN}}(\mathbf{x}')_{y'}<1-p\right]\\ &\geq 1-q. \end{split}$$

By assumption that F satisfies (p, q, δ) -separation, with probability at least 1 - q that $(\mathbf{x}, y) \sim \mathcal{D}$, (\mathbf{x}, y) is (p, δ) -good. For every such (p, δ) -good point (\mathbf{x}, y) , by assumption, every $\mathbf{z} \in N(\mathbf{x}, \eta)$ is (p, MCN_{ξ}) -good. Therefore for every such \mathbf{z} , $\Gamma_{\varepsilon}^{\mathsf{MCN}}(\mathbf{z})_y \geq p$, and so $(\forall y' \neq y), \Gamma_{\varepsilon}^{\mathsf{MCN}}(\mathbf{z})_{y'} < 1 - p$. The proof is complete.

D. Bounding the probability for (p, q, δ) -separation

This section gives details of our estimation of (p, q, δ) -separation from statistics in Table 1. Note that event \mathcal{E}_b corresponds to a Bernoulli trial. Let X_1, \ldots, X_t be independent indicator random variables, where

$$X_i = \begin{cases} 1 & \text{if } \mathcal{E}_b \text{ happens,} \\ 0 & \text{otherwise} \end{cases}$$

and $X = (\sum_{i=1}^{t} X_i)/t$. Recall Chebyshev's inequality:

Theorem 1 (Chebyshev's Inequality). For independent random variables X_1, \ldots, X_t bounded in [0, 1], and $X = (\sum_{i=1}^t X_i)/t$, we have $\Pr[|X - \mathbb{E}[X]| \ge \varepsilon] \le \frac{\operatorname{Var}[X]}{\varepsilon^2}$.

In our case, $\mathbb{E}[X] = \mathbb{E}[X_1] = \cdots = \mathbb{E}[X_t]$ and let it be μ , and let the computed frequency be $\hat{\mu}$ (observed value). Thus $\Pr[|\hat{\mu} - \mu| \ge \varepsilon] \le 1/(4\varepsilon^2 t)$ since $\operatorname{Var}[X] = \mu(1 - \mu)/t < 1/4t$. We thus have the following proposition about (p, q, δ) -separation.

Proposition 5. Let $\alpha, \varepsilon \in [0, 1]$. For sufficiently large t where $\frac{1}{4\varepsilon^2 t} \leq 1 - \alpha$ holds, we have:

- (Upper bound) With probability at least α , μ is smaller than $\hat{\mu} + \varepsilon$.
- (Lower bound) With probability at least α , μ is bigger than $\hat{\mu} \varepsilon$.

For example, we have guarantees for $\alpha = .9$ by putting $\varepsilon = .1$ and $t \ge 250$.

² Let X be a nonnegative random variable and a > 0, Markov's inequality says that $\Pr[X \ge a] \le \mathbb{E}[X]/a$.