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A. Background on Measure-theoretical
Probability Theory

We assume familiarity with measure-theoretic approaches to proba-
bility theory, but provide the fundamental definitions. The standard
Borel σ-algebra is assumed in all the discussion. See (Durrett,
2013) and (Kallenberg, 2002) for introduction and further details.

A measurable space (X,X ) (space, for short) is an underlying
set X paired with a σ-algebra X ⊆ 2X of measurable subsets of
X , i.e., a family of subsets containing the underlying set X which
is closed under complements and countable unions. We’ll denote
the measurable space simply by X where no ambiguity results. A
function f : X → Y between measurable spaces is measurable
if measurable sets pullback to measurable sets: f−1(B) ∈ X for
all B ∈ Y . A measure µ on a measurable space X is a func-
tion µ : X → [0,∞] which satisfies countable additivity: for any
countable sequence A1, A2, · · · ∈ X of disjoint measurable sets
µ(∪iAi) =

∑
i µ(Ai). Pµ[S] denotes the probability of a state-

ment S under the base measure µ, and similarly for conditional
probabilities. A probability kernel is the measure-theoretic gen-
eralization of a conditional distribution. It is commonly used to
construct measures over a product space, analogously to how con-
ditional distributions are used to define joint distributions in the
chain rule.

Definition A.1. A probability kernel K from one measurable
space X to another Y is a function K : X ×Y → [0, 1] such that
(a) for every x ∈ X , K(x, ·) is a probability measure over Y , and
(b) for every B ∈ Y , K(·, B) is a measurable function from X to
[0, 1].

Given an arbitrary index set T and spaces Xt for each index t ∈ T ,
the product space X =

∏
t∈T Xt is the space with underlying

set X =
∏
t∈T Xt the Cartesian product of the underlying sets,

adorned with the smallest σ-algebra such that the projection func-
tions πt : X → Xt are measurable.

B. MTBNs Represent Unique Measures
We prove here Theorem 3.6. Its proof requires a series of interme-
diate results. We first define a projective family of measures. This
gives a way to recursively construct our measure µ. We define a
notion of consistency such that every consistent projective family
constructs a measure that M represents. We end by giving an
explicit characterization of the unique consistent projective fam-
ily, and thus of the unique measure M represents. The appendix
contains additional technical material required in the proofs.

Intuitively, the main objective of this section is to show that an
MTBN defines a unique measure that “factorizes” according to
the network, as an extension to the corresponding result for Bayes

Nets.

B.1. Consistent projective family of measures

Let K be a kernel from X → Y and L a kernel from Y → Z .
Their composition K ◦ L (note the ordering!) is a kernel from X
to Z defined for x ∈ X , C ∈ Z by:

(K ◦ L)(x,C) =

∫
K(x, dy)

∫
L(y, dz) 1C(z). (5)

To allow uniform notation, we will treat measurable functions
and measures as special cases of kernels. A measurable function
f : X → Y corresponds to the kernel Kf from X to Y given by
Kf (x,B) = 1(f(x) ∈ B) for x ∈ X and B ∈ Y . A measure
µ on a space X is a kernel Kµ from 1, the one element measure
space, to X given by Kµ(·, A) = µ(A) for A ∈ X . Where this
yields no confusion, we use f and µ in place of Kf and Kµ. (5)
simplifies if the kernels are measures or functions. Let µ be a
measure on Y1, K be a kernel from X1 to Y1, f be a measurable
function from X2 to X1, and g be a measurable function from
Y1 to Y2. Then µ ◦ g is a measure on Y2 and f ◦ K ◦ g is
a kernel from X2 to Y2 with: (µ ◦ g)(B) = µ(g−1(B)), and
(f ◦K ◦ g)(x,B) = K(f(x), g−1(B)).

Let Λ denote the class of upwardly closed sets: subsets of V
containing all their elements’ parents.

Definition B.1. A projective family of measures is a family {µU :
U ∈ Λ} consisting of a measure µU on XU for every U ∈ Λ such
that whenever W ⊆ U we have µW = µU ◦ πUW , i.e., for all
A ∈ XW , µW (A) = µU ((πUW )−1(A)).

Def. B.1 captures the measure-theoretic version of the probability
of a subset of variables being equal to the marginals obtained while
“summing out” the probabilities of the other variables in a joint
distribution.

Definition B.2. Let µ be a measure on a measure space X , and
K a kernel from X to a measure space Y . Then µ ⊗ K is the
measure on X × Y defined for B ∈ X ⊗ Y by: (µ⊗K)(B) =∫
µ(dx)

∫
K(x, dy) 1B(x, y).

Def. B.2 defines the operation of composing a conditional prob-
ability with a prior on a parent, to obtain the corresponding joint
distribution.

Definition B.3. Let Kw for w ∈ W be kernels from XU to
X{w}. Denote by

∏
w∈W Kw the kernel from XU to XW de-

fined for each xU ∈ XU by the infinite product of measures:(∏
w∈W Kw

)
(xU , ·) = ⊗w∈WKw(xU , ·).

See (Kallenberg, 2002) 1.27 and 6.18 for definition and existence
of infinite products of measures. Def. B.3 captures the kernel
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representation for taking the equivalent of products of conditional
distributions of a set of variables with a common set U of parents.

Definition B.4. A projective family {µU : U ∈ Λ} is consistent
with M if for any W,U ∈ Λ such that W ⊂ U and pa(U) ⊆W ,
then: µU = µW ⊗

∏
u∈U\W (πWpa(u) ◦Ku).

Consistency in Def. B.4 captures the global condition that we
would like to see in a generalization of a Bayes network. Namely,
the distribution of any set of parent-closed random variables should
“factorize” according to the network

A projective family {µU : U ∈ Λ} is consistent with M exactly
when M represents µV :

Lemma B.5. Let µ be a measure on XV , and define the projective
family {µU : U ∈ Λ} by µU = µ ◦ πVU . This projective family is
consistent with M iff M represents µ.

Proof. First we’ll relate consistency (Def. 8) with conditional
expectation and distribution properties of random variables. Take
any W,U ∈ Λ such that W ⊂ U and pa(U) ⊆ W and observe
that the following are equivalent:

• µU = µW ⊗
∏
u∈U\W (πWpa(u) ◦Ku)

•
∏
u∈U\W (πWpa(u) ◦Ku) is a version of the conditional dis-

tribution of XU\W given XW ,
• Ku is a version of the conditional distribution of Xu given
Xpa(u) for all u ∈ U \W , and {XW , Xu : u ∈ U \W}
are mutually independent conditional on Xpa(U).

The forward direction is straightforward. For the converse we
use the fact that conditional independence of families of random
variables holds if it holds for all finite subsets, establishing that by
chaining conditional independence (see (Kallenberg, 2002) p109
and 6.8).

Lemma B.5 shows that Def. B.4 follows iff an MTBN represents
the joint distribution – in other words, it follows iff the local
Markov property holds.

B.2. There exists a unique consistent family

Each vertex v ∈ V is assigned the unique minimal ordinal d(v)
such that d(u) < d(v) whenever (u, v) ∈ E (see (Jech, 2003)
for an introduction to ordinals). For any U ∈ Λ denote by Uα =
{u ∈ U : v(u) < α} the restriction of U to vertices of depth less
than α. Defining D = supv∈V (d(v) + 1), the least strict upper
bound on depth, we have that UD = U for all U ∈ Λ. In the
following, fix a limit ordinal λ.

Definition B.6. {να : α < λ} is a projective sequence of mea-
sures on XUα if whenever α < β < λ we have να = νβ ◦ π

Uβ
Uα

.

Def. B.6 generalizes the notion of subset relationships and the
marginalization operations that hold between supersets and subsets
to the case of infinite dependency chains

Definition B.7. The limit limα<λ να of a projective sequence
{να : α < λ} of measures is the unique measure on XU such that
να = (limα<λ να) ◦ πUUα for all α < β.

Definition B.8. Given any U ∈ Λ, inductively define a measure

µαU on XUα by

µ0
U = 1,

µα+1
U = µαU ⊗

∏
v∈U :d(v)=α

(πU
α

pa(v) ◦Kv),

µλU = lim
α<λ

µαU if λ is a limit ordinal.

µαU stabilizes for α ≥ D to define a measure on XU .

The above definition is coherent as µαU can be inductively shown
to be a projective sequence. Lemma B.9 and B.10 allow us to show
in Theorem B.11 that {µDU : U ∈ Λ} is the unique consistent
projective family of measures.
Lemma B.9. If W ⊆ U for W,U ∈ Λ, then for all α: µαW =

µαU ◦ πU
α

Wα .

Proof is in Appx. C.
Lemma B.10. If W ⊂ U where W,U ∈ Λ, and if pa(U) ⊆
W , then Wα ⊂ Uα, pa(Uα) ⊆ Wα, and µαU = µαW ⊗∏
u∈Uα\Wα(πW

α

pa(u) ◦Ku).

Proof is in Appx. D.

Using the above, the following shows MTBNs satisfy the proper-
ties (1-3) mention in the beginning of Sec. 1.1:
Theorem B.11. {µDU : U ∈ Λ} is the unique projective family of
measures consistent with M .

Proof is in Appx. E.

Intuitively, by Lemma B.9 and Lemma B.10, we assert that con-
sistency holds for any ordinal-bounded (prefix in terms of parent
ordering) sub-network. Then the main result, Thm. B.11, fol-
lows by setting this bound appropriately. Finally Lemma B.5 and
Theorem B.11 lead to Theorem 3.6.

Note that combining Thm. 3.6 and Thm. 5.6 lead to all the 4 desired
properties mentioned in Sec. 1.1.

C. Proof for Lemma B.9
Proof. Proof by induction. Trivially true for α = 0, so suppose
this holds for α, and consider α+ 1. Then:

µα+1
W = µαW ⊗

∏
v∈W :d(v)=α

(πW
α

pa(v) ◦Kv)

=
(
µαU ◦ πU

α

Wα

)
⊗

 ∏
v∈U :d(v)=α

(πW
α

pa(v) ◦Kv)

 ◦ πUα+1\Uα

Wα+1\Wα


=

µαU ⊗
πUαWα ◦

∏
v∈U :d(v)=α

(πW
α

pa(v) ◦Kv)


◦ (πU

α

Wα × πU
α+1\Uα

Wα+1\Wα)

=

µαU ⊗ ∏
v∈U :d(v)=α

(πU
α

pa(v) ◦Kv)

 ◦ πUα+1

Wα+1

= µα+1
U ◦ πU

α+1

Wα+1
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The first step by Def. 12, the second by inductive hypothesis and
Lemma G.11 as {v ∈W : d(v) = α} = Wα+1 \Wα and {v ∈
U : d(v) = α} = Uα+1 \Uα, the third by Lemma G.6, the fourth
by Lemma G.10 since πU

α

pa(v) = πW
α

pa(v) ◦ πU
α

Wα and by elementary
properties of projections, and the fifth by Definition B.8.

Finally, suppose λ is a limit ordinal. We need to show:

lim
α<λ

(
µαU ◦ πU

α

Wα

)
=

(
lim
α<λ

µαU

)
◦ πU

λ

Wλ .

This follows from Lemma G.2 because for all α < λ we have:((
lim
α<λ

µαU

)
◦ πU

λ

Wλ

)
◦ πW

λ

Wα =

((
lim
α<λ

µαU

)
◦ πU

λ

Uα

)
◦ πU

α

Wα

= µαU ◦ πU
α

Wα

The first by properties of projections, the second by Lemma G.2
characterizing limits.

D. Proof for Lemma B.10
Proof. Trivial for α = 0, so suppose this holds for α, and consider
α+ 1. Then:

µα+1
U

= µαU ⊗
∏

v∈U :d(v)=α

(πU
α

pa(v) ◦Kv)

= µαW ⊗
∏

u∈Uα\Wα

(πW
α

pa(u) ◦Ku)⊗
∏

v∈U :d(v)=α

(πU
α

pa(v) ◦Kv)

= µαW ⊗
∏

u∈Uα+1\Wα

(πW
α

pa(u) ◦Ku)

= µαW ⊗
∏

v∈W :d(v)=α

(πW
α

pa(v) ◦Kv)

⊗
∏

u∈Uα+1\Wα+1

(πW
α+1

pa(u) ◦Ku)

= µα+1
W ⊗

∏
u∈Uα+1\Wα+1

(πW
α+1

pa(u) ◦Ku),

The first step by Definition B.8, the second by inductive hypothesis.
The third by Lemmas G.8 and G.9 since Uα+1 \Wα = Uα \
Wα ∪ {v ∈ U : d(v) = α} where the union is disjoint, and as
pa(v) ⊆ Wα when v ∈ U and d(v) = α implies that πU

α

pa(v) =

πU
α

Wα ◦ πW
α

pa(v). The fourth by Lemmas G.8 and G.9 since Uα+1 \
Wα = Uα+1 \ Wα+1 ∪ {v ∈ W : d(v) = α} where the
union is disjoint, and as pa(u) ⊆Wα when u ∈ Uα+1 \Wα+1

implies that πW
α+1

pa(v) = πW
α+1

Wα ◦ πW
α

pa(v). Finally, the fifth by
Definition B.8.

Finally, suppose λ is a limit ordinal. The result will follow from
the inductive hypothesis, Definition B.8, and as limits preserve
products Lemma G.7 if we can show that

lim
α<λ

∏
u∈Uα\Wα

(πW
α

pa(u) ◦Ku) =
∏

u∈Uλ\Wλ

(πW
λ

pa(u) ◦Ku).

First we must show the limit on the left is well-defined. Note
that the kernel inside the limit maps from XWα to XUα\Wα . As

Wα and Uα \Wα are both increasing sets, we verify projective
sequence property by taking any β > α and observing that

πW
β

Wα ◦
∏

u∈Uα\Wα

(πW
α

pa(u) ◦Ku)

=
∏

u∈Uα\Wα

(πW
β

pa(u) ◦Ku)

=

 ∏
u∈Uβ\Wβ

(πW
β

pa(u) ◦Ku)

 ◦ πUβ\Wβ

Uα\Wα

the first step from Lemma G.10 and properties of projections, and
the second from Lemma G.11.

Finally, we must show the expression on the right satisfies the
properties characterizing the limit. However, observe this follows
from our demonstration of the projective sequence property above
by simply replacing β with λ.

E. Proof for Theorem B.11
Proof. That this is a consistent projective family follows from
Lemmas B.9 and B.10 since UD = U for all U ∈ Λ.

For uniqueness, let {µ̂U : U ∈ Λ} be a consistent projective
family of measures, any fix any U ∈ Λ. We’ll show inductively
that µ̂Uα = µαU , and thus with α = D that µ̂U = µU , giving our
result. This is trivial for α = 0, so inductively suppose it holds for
α. But then:

µ̂Uα+1 = µ̂Uα ⊗
∏

u∈Uα+1\Uα
(πU

α

pa(u) ◦Ku)

= µαU ⊗
∏

u∈Uα+1\Uα
(πU

α

pa(u) ◦Ku).

The first step by consistency of {µ̂U} (Definition B.4) since Uα ⊆
Uα+1 and pa(Uα+1) ⊆ Uα, the second by inductive hypothesis,
and the third by Definition B.8.

Let α be a limit ordinal. Since {µ̂Uα} is a projective family
and Uα =

⋃
β<α U

β , by Lemma G.2 µ̂Uα = limβ<α µ̂Uβ . By
definition µαU = limβ<α µ

β
U . Then since µβU = µ̂Uβ for β < α

inductively, µαU = µ̂Uα as the limit of this sequence is unique.

F. Proof of Lemma 5.4
Proof. The possible world 〈Uσ, Iσ〉 is defined as follows. Uσ =
〈Uσ1 , . . . , Uσk 〉, where Uσj = {cj : cj is a distinct constant of type
τj inM} ∪ {uν,ū,l ∈ UM : ν is a number statement of type τj
and σ(Vν [ū]) ≥ l}.

Iσ is defined as follows. For each function symbol f(x̄) inM,
for each tuple ū of the type of x̄ constructed using elements of
Uσ , [f ]σ(ū) = σ(Vf [ū]). The element σ(Vf [ū]) is a member
of Uσ because of the last clause in the definition of consistent
assignments (Def. 5.3) and the construction of Uσ .

G. Additional Technical Details
For reasons of space, we present the following without their
(straightforward) proofs.
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Lemma G.1. If µ is a measure on X , and is K a kernel from X
to Y , then (µ⊗K) ◦ πX×YX = µ.

Lemma G.2. A projective sequence of measures has a unique
limit.

Fix an ordinal λ, and suppose {Uα ⊆ V : α < λ} is an increasing
sequence of subsets of V , i.e., such that if α < β < λ then
Uα ⊆ Uβ . Define U =

⋃
α<λ Uα. Let {Wα ⊆ V : α < λ} and

W be another such sequence, supposing U and W are disjoint.

Definition G.3. {Kα : α < λ} is a projective sequence of
kernels from XUα to XWα if whenever α < β < λ we have
π
Uβ
Uα
◦Kα = Kβ ◦ π

Wβ
Wα

.

Definition G.4. The limit limα<βKα of a projective sequence
{Kα : α < λ} of kernels is the unique kernel from XU to XW
such that for all α < λ πUUα ◦Kα = (limα<βKα) ◦ πWWα .
Lemma G.5. A projective sequence of kernels has a unique limit.

Lemma G.6. Let X1,Y1,X2,Y2 be measurable spaces, µ be
a measure on X1, K a kernel from X2 to Y1, f : X1 → X2 a
measurable function, and g : Y1 → Y2 a measurable function.
Then: (µ⊗ (f ◦K)) ◦ (f × g) = (µ ◦ f)⊗ (K ◦ g) where f × g
is the measurable function mapping (x, y) to ((f(x), g(y)).

Lemma G.7. Let να and Kα be as in Lemmas G.2 and G.5. Then
limα<λ(να ⊗Kα) = (limα<λ να)⊗ (limα<λKα).

Lemma G.8. µ measure on X , K1 a kernel from X to Y1, K2 a
kernel from X to Y2, µ⊗K1⊗ (πX×Y1X ◦K2) = µ⊗

∏
i=1,2 Ki.

where by abuse of notation πX×Y1X denotes the projection from
X × Y1 to X .

Lemma G.9. If Ki,j are kernels from X to Yi,j then∏
i

∏
j Ki,j =

∏
i,j Ki,j .

Lemma G.10. If f : X ′ → X and Ki are kernels from X to Yi
then f ◦

∏
iKi =

∏
i f ◦Ki.

Lemma G.11. If Kv for v ∈ U are kernels from X to Xv , and
W ⊆ U then

(∏
v∈U Kv

)
◦ πUW =

∏
v∈W Kv .

Lemma G.12. Let (X,X ) be a measurable space,
X,X1, X2, . . . an iid random sequence on X , and w(x)
be non-negative real-valued function of (X,X ). Then∑n
i=1 w(Xi)f(Xi)∑n

i=1 w(Xi)

a.s.→ Ew(X)f(X)

Ew(X)
.

Lemma G.13. For any measurable setE and measurable function
f(x): EP (E|X)f(X)

EP (E|X)
= E[f(X)|E].




