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Abstract
Off-policy learning, the task of evaluating and
improving policies using historic data collected
from a logging policy, is important because on-
policy evaluation is usually expensive and has
adverse impacts. One of the major challenge of
off-policy learning is to derive counterfactual es-
timators that also has low variance and thus low
generalization error. In this work, inspired by
learning bounds for importance sampling prob-
lems, we present a new counterfactual learning
principle for off-policy learning with bandit feed-
backs. Our method regularizes the generalization
error by minimizing the distribution divergence
between the logging policy and the new policy,
and removes the need for iterating through all
training samples to compute sample variance reg-
ularization in prior work. With neural network
policies, our end-to-end training algorithms us-
ing variational divergence minimization showed
significant improvement over conventional base-
line algorithms and is also consistent with our
theoretical results.

1. Introduction
Off-policy learning refers to evaluating and improving a
deterministic policy using historic data collected from a
stationary policy, which is important because in real-world
scenarios on-policy evaluation is oftentimes expensive and
has adverse impacts. For instance, evaluating a new treat-
ment option, a clinical policy, by administering it to patients
requires rigorous human clinical trials, in which patients are
exposed to risks of serious side effects. As another example,
an online advertising A/B testing can incur high cost for
advertisers and bring them few gains. Therefore, we need
to utilize historic data to perform off-policy evaluation and
learning that can enable safe exploration of the hypothesis
space of policies before deploying them.
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There has been extensive studies on off-policy learning in
the context of reinforcement learning and contextual ban-
dits, including various methods such as Q learning (Sutton
& Barto, 1998), doubly robust estimator (Dudı́k et al., 2014),
self-normalized (Swaminathan & Joachims, 2015b), etc. A
recently emerging direction of off-policy learning involves
the use of logged interaction data with bandit feedback.
However, in this setting, we can only observe limited feed-
back, often in the form of a scalar reward or loss, for every
action; a larger amount of information about other possibili-
ties is never revealed, such as what reward we could have
obtained had we taken another action, the best action we
should have take, and the relationship between the change
in policy and the change in reward. For example, after an
item is suggested to a user by an online recommendation
system, although we can observe the user’s subsequent in-
teractions with this particular item, we cannot anticipate the
user’s reaction to other items that could have been the better
options.

Using historic data to perform off-policy learning in bandit
feedback case faces a common challenge in counterfactual
inference: How do we handle the distribution mismatch be-
tween the logging policy and a new policy and the induced
generalization error? To answer this question, (Swami-
nathan & Joachims, 2015a) derived the new counterfactual
risk minimization framework, that added the sample vari-
ance as a regularization term into conventional empirical
risk minimization objective. However, the parametrization
of policies in their work as linear stochastic models has lim-
ited representation power, and the computation of sample
variance regularization requires iterating through all training
samples. Although a first-order approximation technique
was proposed in the paper, deriving accurate and efficient
end-to-end training algorithms under this framework still
remains a challenging task.

Our contribution in this paper is three-fold:

1. By drawing a connection to the generalization error
bound of importance sampling (Cortes et al., 2010), we
propose a new learning principle for off-policy learning
with bandit feedback. We explicitly regularize the
generalization error of the new policy by minimizing
the distribution divergence between it and the logging
policy. The proposed learning objective automatically
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trade off between empirical risk and sample variance.

2. To enable end-to-end training, we propose to
parametrize the policy as a neural network, and solves
the divergence minimization problem using recent
work on variational divergence minimization (Nowozin
et al., 2016) and Gumbel soft-max (Jang et al., 2016)
sampling.

3. Our experiment evaluation on benchmark datasets
shows significant improvement in performance over
conventional baselines, and case studies also corrobo-
rates the soundness of our theoretical proofs.

2. Background
2.1. Problem Framework

We first review the framework of off-policy learning with
logged bandit feedback introduced in (Swaminathan &
Joachims, 2015a). A policy maps an input x ∈ X to a
structured (discrete) output y ∈ Y . For example, the input
x can be profiles of users, and we recommend movies of rel-
evance to the users as the output y; or in the reinforcement
learning setting, the input is the trajectory of the agent, and
the output is the action the agent should take in the next time
point. We use a family of stochastic policies, where each
policy defines a posterior distribution over the output space
given the input x, parametrized by some θ, i.e., hθ(Y|x).
Note that here a distribution which has all its probability
density mass on one action corresponds to a deterministic
policy. With the distribution h(Y|x), we take actions by
sampling from it, and each action y has a probability of
h(y|x) being selected. In the discussion later, we will use h
and h(y|x) interchangeably when there will not create any
confusion.

In online systems, we observe feedbacks δ(x, y; y∗) for the
action y sampled from h(Y|x) by comparing it to some un-
derlying ‘best’ y∗ that was not revealed to the system. For
example, in recommendation system, we can use a scalar
loss function δ(x, y; y∗)→ [0, L], with smaller values indi-
cating higher satisfaction with recommended items.

The risk of a policy h(Y|x) is defined as

R(h) = Ex∼P(X ),y∼h(Y|x)[δ(x, y)]

, and the goal of off-policy learning is to find a policy with
minimum risk on test data.

In the off-line logged learning setting, we only have data
collected from a logging policy h0(Y|x), and we aim to find
an improved policy h(Y|x) that has lower risks R(h) <
R(h0). Specifically, the data we will use will be

D = {xi, yi, δi = δi(xi, yi), pi = h0(yi|xi)}, i = 1, ..., N,

where δi and pi are the observed loss feedback and the
logging probability (also called propensity score), and N is
the number of training samples.

Two main challenges are associated with this task: 1) If the
distribution of a logging policy is skewed towards a spe-
cific region of the whole space, and doesn’t have support
everywhere, feedbacks of certain actions cannot be obtained
and improvement for these actions is not possible as a re-
sult. 2) since we cannot compute the expectation exactly,
we need to resort to empirical estimation using finite sam-
ples, which creates generalization error and needs additional
regularization.

A vanilla approach to solve the problem is propensity scor-
ing approach using importance sampling (Rosenbaum &
Rubin, 1983), by accounting for the distribution mismatch
between h and h0. Specifically, we can rewrite the risk w.r.t
h as the risk w.r.t h0 using an importance reweighting:

R(h) = Ex∼P(X ),y∼h(y|x)[δ(x, y)]

= Ex∼P(X ),y∼h0(y|x)[
h(y|x)

h0(y|x)
δ(x, y)] (1)

With the collected historic dataset D, we can estimate the
empirical risk R̂D(h), short as R̂(h)

R̂(h) =
1

N

N∑
i=1

h(yi|xi)
h0(yi|xi)

δi(xi, yi) (2)

2.2. Counterfactual Risk Minimization

(Swaminathan & Joachims, 2015a) pointed out several flaws
with the vanilla approach, namely, not being invariant to loss
scaling, large and potentially unbounded variance. To reg-
ularize the variance, the authors proposed a regularization
term for sample variance derived from empirical Bernstein
bounds.

The modified objective function to minimize is now:

R̂(h) =
1

N

N∑
i=1

ui + λ

√
V ar(ū)

N
(3)

, where ui = h(yi|xi)
h0(yi|xi)δi, ū = 1

N

N∑
i=1

ui is the average of

{ui} obtained from training data, and V ar(ū) is the sample
variance of {ui}.
As the variance term is dependent on the whole dataset,
stochastic training is difficult, the authors approximated
the regularization term via first-order Taylor expansion and
obtained a stochastic optimization algorithm. Despite its
simplicity, such first-order approximation neglects the non-
linear terms from second-order and above, and introduces
approximation errors while trying to reduce the sample vari-
ance.
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3. Variance Regularization Objective
3.1. Theoretical Motivation

Instead of estimating variance empirically from the samples,
which prohibits direct stochastic training, the fact that we
have a parametrized version of the policy h(Y|x) motivates
us to think: can we derive a variance bound directly from
the parametrized distribution?

We first note that the empirical risk term R̂(h) is the average
loss reweighted by importance sampling function h(y|x)

h0(y|x) ,
and a general learning bound exist for the second moment
of importance weighted loss:
Theorem 1. Let X be a random variable distributed ac-
cording to distribution P with density p(x), Y be a random
variable, and δ(x, y) be a loss function over (x, y) that
is bounded in [0, L]. For two sampling distributions of y,
h(y|x) and h0(y|x), define their conditional divergence as
d2(h(y|x)||h0(y|x);P(x)), we have

Ex∼P(X ),y∼h0(y|x)[w
2(y|x)δ2(x, y)]

≤ L2d2(h(y|x)||h0(y|x);P(x)) (4)

The bound is similar to that of (Cortes et al., 2010) for a
single random variable except that we are working with
a joint distribution over x, y here. Detailed proofs can be
found in Appendix 1.
Theorem 2. Let Rh be the risk of the new policy on loss
function δ, and R̂h be the emprical risk. We additionally
assume the divergence is bounded by M , i.e., d2(h||h0) ≤
d∞(h||h0) = M

Then with probability at least 1− η,

R(h) ≤ R̂(h)+
2LM log 1/η

3N
+L

√
2d(h||h0;P(x)) log 1/η

N

The proof of this theorem is an application of Bernstein
inequality and the second moment bound, and detailed proof
is in Appendix. This result highlights the bias-variance
trade-offs as seen in empirical risk minimization (ERM)
problems, where R̂h approximates the empirical risk/ bias,
and the third term characterize the variance of the solution
with distribution divergence. It thus motivates us that in
bandit learning setting, instead of directly optimizing the
reweighted loss and suffer huge variance in test setting, we
can try to minimize the variance regularized objectives as

min
h=h(Y|x)

R̂(h) + λ

√
1

N
d2(h||h0;P(x)) (5)

λ =
√

2L2 log 1/η is a model hyper-parameter controlling
the trade-off between empirical risk and model variance,

but we are still faced with the challenge of setting λ em-
pirically and the difficulty in optimizing the objective (See
Appendix for a comparison). Thus, in light of the recent
success of distributionally robust learning, we explore an
alternative formulation of the above regularized ERM in the
next subsection.

3.2. Robustly Regularized Formulation

Instead of solving a ‘loss + regularizer’ objective function,
we here study a closely related constrained optimization
formulation, whose intuition comes from the method of
Langaragian mutliplier for constrained optimization.

The new formulation is:

min
h

1

N

m∑
i=1

h(yi|xi)
pi

δi

s.t. d2(h||h0;P(X)) ≤ ρ/N, (6)

where ρ is a pre-determined constant as the regularization
hyper-parameter.

We analyzes the generalization property of the minimizer
h∗ to the constrained problem: first showing the bound of
empirical risk of h∗ compared to that of h0, then move to
the expectation setting.

Propoistion 1. The minimizing value of R̂(h∗) satisfies that

−
√

2ρ

N
ˆV ar ≤ R̂(h∗)− R̂(h0) ≤ −(

√
2ρ

N
ˆV ar − 2ρL

N
)+

(7)

where ˆV ar = ˆV arh0
[δi

hi
h0[i]

] is the empirical variance for
the reweighted loss. The results come from algebraic com-
putation using KKT conditions for a Lagrange multiplier
argument, and we show the calculation in Appendix.

With the above proposition, we can prove the following
bound for a minimizer h∗ to the optimization problem

Theorem 3. For a minimier h∗, we have that with proba-
bility at least 1− exp(−t),

R(h∗) ≤ R(h0)− 2(
√
ρ−
√
t)√

N

√
ˆV ar (8)

+
(4 + 6ρ)L

3N
t+

6tL2

3N
+

√
2t ˆV arh0

[δi]

N
(9)

where ˆV ar is the policy-reweighted loss, and the constant
ˆV arh0 [δi] is the variance of the original losses.

We show the detailed proof in Appendix, which combines
Benett’s inequality and the proposition above. These results
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suggest that the risk of our minimizer is a good surrogate
to the best risk plus a variance term, with their difference
controlled by the regularization hyper-parameter ρ and ap-
proaches 0 when N → 0. Moreover, we can recognize, in
some cases, e.g. ˆV ar is considerably large while ρ > t, we
are guaranteed to have an improvement on the losses.

At first glance, the new objective function removes the needs
to compute the sample variance in existing bounds (3), but
when we have a parametrized distribution of h(y|x), and
finite samples {xi, yi}Ni=1 from h0(yi|xi), estimating the di-
vergence function is not an easy task. In the next subsection,
we will present how recent f-gan networks for variational
divergence minimization (Nowozin et al., 2016) and Gum-
bel soft-max sampling (Jang et al., 2016) can help solve the
task.

Discussion: Possibility of Counterfactual Learning:
One interesting aspect of our bounds also stresses the need
for the stochasticity of the logging policy (Langford et al.,
2008). For a deterministic logging policy, if the correspond-
ing probability distribution can only have some peaked
masses, and zeros elsewhere in its domain, our intution
suggests that learning will be difficult, as those regions are
never explored. Our theory well reflects this intuition in
the calculation of the divergence term, the integral of form∫
y
h2(y|x)/h0(y|x)dy. A deterministic policy has a non-

zero measure region of h0(Y|x) with probability density
of h0(y|x) = 0, while the corresponding h(y|x) can have
finite values in the region. The resulting integral results is
thus unbounded, and in turn induces an unbounded general-
ization bound, making counterfactual learning in this case
not possible

4. Adversarial Training Algorithm
4.1. Adversarial Learning of the Divergence

The derived variance regularized objective (5) requires us
to minimize the square root of the conditional divergence,
d2(h||h0;P(X)) = Ex

∫
y
h2

h0
dy.

For simplicity, we can examine the term inside the expecta-
tion operation first. With simple calculation, we have∫

y

h(y|x)2

h0(y|x)
dy =

∫
y

h0(y|x)[(
h(y|x)

h0(y|x)
)2 − 1 + 1]

= Df (h(Y|x)||h0(Y|x)) + 1,

where f(t) = t2 − 1 is a convex function in the do-
main {t : t ≥ 0} with f(1) = 0. Combining with
the expectation operator gives a minimization objective of
Df (h||h0;P(X)) (+1 omitted as constant).

The above calculation draws connection between our diver-
gence and the f-divergence measure (Nguyen et al., 2010).

Follow the f-GAN for variational divergence minimization
method proposed in (Nowozin et al., 2016), we can reach a
lower bound of the above objective as

Df (h(Y|x)||h0(Y|x);P(X))

= Ex[

∫
y

f(
h(y|x)

h0(y|x)
)dh0(y|x)]

= Ex[sup
T
{Ey∼h[T (y)]− Ey∼h0 [f∗(T (y))])} (10)

= sup
T
{ExEy∼h[T (x, y)]− ExEy∼h0

[f∗(T (x, y))]}

≥ sup
T∈T
{ExEy∼h[T (x, y)]− ExEy∼h0 [f∗(T (x, y))]}

= sup
T∈T
{Ex,y∼hT (x, y)− Ex,y∼h0f

∗(T (x, y))} (11)

, F (T, h) (12)

For the second equality, as f is a convex function and apply-
ing Fenchel convex duality (f∗ = supu{u′v− f(u)}) gives
the dual formulation. Because the expectation is taken w.r.t
to x while the supreme is taken w.r.t. all functions T , we
can safely swap the two operators. We note that the bound
is tight when T0(x) = f ′(h/h0), where f ′ is the first order
derivative of f as f ′(t) = 2t (Nguyen et al., 2010).

The third inequality follows because we restrict T to a family
of functions instead of all functions. Luckily, the universal
approximation theorem of neural networks (Hornik et al.,
1989) states that neural networks with arbitrary number
of hidden units can approximate continous functions on a
compact set with any desired precision. Thus, by choosing
the family of T to be the family of neural networks, the
equality condition of the second equality can be satisfied
theoretically.

The final objective (11) is a saddle point of a function
T (x, y) : X×Y → R that maps input pairs to a scalar value,
and the policy we want to learn h(Y|x) acts as a sampling
distribution. Although being a lower bound with achievable
equality conditions, theoretically, this saddle point trained
with mini-batch estimation is a consistent estimator of the
true divergence (Proof in Appendix).

We use Df = supT
∫
Tdhdx −

∫
f∗(T )dh0dx to denote

the true divergence, and D̂f = supT∈T
∫
T (xi, yi)dĥdx−∫

f∗T (xj , yj)dĥ0dx the empirical estimator we use, where
ĥ and ĥ0 are the empirical distribution obtained by sampling
from the two distribution respectively.

Propoistion 2. D̂f is a consistent estimator of Df .

Again, a generative-adversarial approach (Goodfellow et al.,
2014) can be applied. Toward this end, we represent the
T function as a discriminator network parametrized as
Tw(x, y). We then parametrize the distribution of our pol-
icy h(y|x) as another generator neural network hθ(y|x)
mapping x to the probability of sampling y. For structured
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Algorithm 1 Variational Minimizing Df (h||h0;P(X))

Input: D = {xi, yi}Ni=1 sampled from logging policy h0;
a predefined threshold D0; an initial generator distribu-
tion hθ0(y|x); an initial discriminator function Tw0(x, y);
max iteration I
Output: An optimized generator hθ∗(y|x) distribution
that has minimum divergence to h0
initialization
repeat

Sample a mini-batch ‘real’ samples (xi, yi) from D
Sample a mini-batch x from D, and construct ‘fake’
samples (xi, ŷi) by sampling ŷ from hθt(y|x) with
Gubmel soft-max
Update wt+1 = wt + ηw∂F (Tw, hθ)(11)
Update θt+1 = θt − ηθ∂F (Tw, hθ)(11)

until D̂f (h||h0;P(X)) < D0 or iter > I

output problems with discrete values of y, to allow the gra-
dients of samples obtained from sampling backpropagated
to all other parameters, we use the Gumbel soft-max sam-
pling (Jang et al., 2016) methods for differential sampling
from the distribution h(y|x). We list the complete training
procedure Alg. 1 for completeness. As shown by (Nowozin
et al., 2016), when the saddle point solution exisits, under
some mild conditions, Alg. 1 decreases the objective value
with a geometric rate.

For our purpose of minimizing the variance regularization
term, we can similarly derive a training algorithm, as the
gradient of t→

√
t+ 1 can also be backpropagated.

4.2. Training algorithm

With the above two components, we are now ready to
present the full treatment of our end-to-end learning for
counterfactual risk minimization from logged data. The
following algorithm solve the robust regularized formula-
tion and for completeness, training for the original ERM
formulation in Sec. 3.1 (referred to co-training version in
the later experiment sections) is included in Appendix.

The algorithm works in two seperate training steps: 1)
update the parameters of the policy h to minimize the
reweighted loss 2) update the parameters of the policy/ gen-
erator and the discriminator to regularize the variance thus to
improve the generalization performance of the new policy.

5. Experiments
5.1. Experiment Setups

For empirical evaluation of our proposed algorithms, we
follow the conversion from supervised learning to bandit
feedback method (Agarwal et al., 2014). For a given su-

Algorithm 2 Minimizing Variance Regularized Risk - Sep-
arate Training

Input: D = {xi, yi, pi, δi}Ni=0 sampled from h0; regu-
larization hyper-parameter ρ, and maximum iteration of
divergence minimization steps I , and max epochs for the
whole algorithm MAX
Output: An optimized generator h∗θ(y|x) that is an ap-
proximate minimizer of R(w)
initialization
repeat

Sample a mini-batch of m samples from D {Update θ
to minimize the reweighted loss below}
Estimate the reweighted loss as R̂t =

1
m

m∑
i=1

hθt (yi|xi)
pi

δi and get the gradient as g1 = ∂θR
t

Update θt+1 = θt − ηθg1 {Update discriminator and
generator for divergence minimization below}
Call Algorithm 1 to minimize the divergence
D2(h||h0;P(X)) with threshold = ρ, and max iter
set to I

until epoch >MAX

pervised dataset D∗ = {(xi, y∗i )}Ni=1, we first construct a
logging policy h0(Y|x), and then for each sample xi, we
sample a prediction yi ∼ h0(y|xi), and collect the feedback
as δ(y∗i , yi). For the purpose of benchmarks, we also use the
conditional random field (CRF) policy trained on 5% of D∗
as the logging policy h0 , and use hamming loss, the number
of incorrectly misclassified labels between yi and y∗i , as the
loss function δ ((Swaminathan & Joachims, 2015a)). To
create bandit feedback datasets D = {xi, yi, δi, pi}, each of
the samples xi were passed four times to the logging policy
h0 and sampled actions yi were recorded along with the loss
value δi and the propensity score pi = h0(yi|xi).

In evaluation, we use two type of evaluation metrics
for the probabilistic policy h(Y|x). The first is the
expected loss (referred to as ‘EXP’ later) R(h) =

1
Ntest

∑
i Ey∼h(y|xi)δ(y∗i , y), a direct measure of the gener-

alization performance of the learned policy. The second is
the average hamming loss of maximum a posteriori prob-
ability (MAP) prediction yMAP = arg maxh(y|x) derived
from the learned policy, as MAP is a faster way to generate
predictions without the need for sampling in practice. How-
ever, since MAP predictions only depend on the regions
with highest probability, and doesn’t take into account the
diverse of predictions, two policies with same MAP perfor-
mance could have very different generalization performance.
Thus, a model with high MAP performance but low EXP
performance might be over-fitting, as it may be centering
most of its probability masses in the regions where h0 policy
obtained good performance.
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5.2. Benchmark Comparison

Baselines Vanilla importance sampling algorithms using
inverse propensity score (IPS), and the counterfactual risk
minimization algorithm from (Swaminathan & Joachims,
2015a) (POEM) are compared, with both L-BFGS opti-
mization and stochastic optimization solvers. The hyper-
parameters are selected by performance on validation set
and more details of their methods can be found in the origi-
nal paper (Swaminathan & Joachims, 2015a).

Neural network policies without divergence regularization
(short as NN-NoReg in later discussions) is also compared
as baselines, to verify the effectiveness of variance regular-
ization.

Dataset We use four multi-label classification dataset col-
lected in the UCI machine learning repo (Asuncion & New-
man, 2007), and perform the supervised to bandit conversion.
We report the statistics in Table 2 in the Appendix.

For these datasets, we choose a three-layer feed-forward
neural network for our policy distribution, and a two or
three layer feed-forward neural network as the discriminator
for divergence minimization. Detailed configurations can
be found in the Appendix 6.

For benchmark comparison, we use the separate training
version 2 as it has faster convergence and better performance
(See the section in Appendix for an empirical comparison).

The networks are trained with Adam (Kingma & Ba,
2014) of learning rate 0.001 and 0.01 respectively for the
reweighted loss and the divergence minimization part. We
used PyTorch to implement the pipelines and trained net-
works with Nvidia K80 GPU cards. 1

Results by an average of 10 experiment runs are obtained
and we report the two evaluation metrics in Table 1. We
report the regularized neural network policies with two
Gumbel-softmax sampling schemes, soft Gumbel soft-max
(NN-Soft), and straight-through Gumbel soft-max (NN-
Hard).

As we can see from the result, by introducing a neural net-
work parametrization of the policies, we are able to improve
the test performance by a large margin compared to the
baseline CRF policies, as the representation power of net-
works are often reported to be stronger than other models.
The introduction of additional variance regularization term
(comparing NN-Hard/Soft to NN-NoReg), we can observe
an additional improvement in both testing loss and MAP pre-
diction loss. We observe no significant difference between
the two Gumbel soft-max sampling schemes.

1Codes for reproducing the results can be found in the link
https://github.com/hang-wu/VRCRM.

5.3. Effect of Variance Regularization

To study the effectiveness of variance regularization quan-
titatively, we vary the maximum number of iterations (I in
Alg. 2) we take in each divergence minimization sub loop.
For example, ‘NN-Hard-10’ indicates that we use ST Gub-
mel soft-max and set the maximum number of iterations to
10. Here we set the thresholds for divergence slightly larger
so maximum iterations are executed so that results are more
comparable. We plot the expected loss in test sets against
the epochs average over 10 runs with error bars using the
dataset yeast.

As we can see from the figure, models with no regulariza-
tion (gray lines in the figure) have higher loss, and slower
convergence rate. As the number of maximum iterations for
divergence minimization increases, the test loss decreased
faster and the final test loss is also lower. This behavior
suggests that by adding the regularization term, our learned
policies are able to generalize better to test sets, and the
stronger the regularization we impose by taking more diver-
gence minimization steps, the better the test performance
is. The regularization also helps the training algorithm to
converge faster, as shown by the trend.

5.4. Generalization Performance

Our theoretical bounds implies that the generalization perfor-
mance of our algorithm improves as the number of training
samples increases. We vary the number of passes of training
data x was passed to the logging policy to sample an action
y, and vary it in the range 2[1,2,...,8] with log scales.

When the number of training samples in the bandit dataset
increases, both models with and without regularization have
an increasing test performance in the expected loss and
reaches a relatively stable level in the end. Moreover, reg-
ularized policies have a better generalization performance
compared to the model without regularization constantly.
This matches our theoretical intuitions that explicitly reg-
ularizing the variance can help improve the generalization
ability, and that stronger regularization induces better gen-
eralization performance. But as indicated by the MAP per-
formance, after the replay of training samples are more than
24, MAP prediction performance starts to decrease, which
suggests the models may be starting over-fitting already.

5.5. Effect of logging policy vs results

In this section, we discuss how the effect of logging policies,
in terms of stochasticity and quality, will affect the learning
performance and additional visualizations of other metrics
can be found in the Appendix.

As discussed before, the ability of our algorithm to learn an
improved policy relies on the stochasticity of the logging

https://github.com/hang-wu/VRCRM
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Table 1: Benchmark Comparison Results.

Dataset Scene Yeast TMC LYRL

Evaluation Metrics MAP EXP MAP EXP MAP EXP MAP EXP

Logging Policy h0 (5% data CRF) 1.069 1.887 3.255 5.485 4.995 5.053 1.047 1.949

NN-NoReg 1.465 1.981 3.223 4.705 1.706 1.724 0.247 0.263
NN-Hard 1.303 1.463 3.047 3.788 1.694 1.720 0.248 0.255
NN-Soft 1.347 1.457 3.097 3.789 1.683 1.707 0.247 0.255

IPS 1.350 1.350 4.256 4.521 4.601 4.416 1.240 1.240
POEM 1.169 1.169 4.238 4.508 4.611 4.505 1.169 1.306
IPS(Stochastic) 1.291 1.291 4.090 4.605 2.812 2.737 1.149 1.479
POEM(Stochastic) 1.322 1.323 4.140 4.570 3.601 3.561 1.237 1.237

Supervised Learning (NN) 0.943 2.238 3.101 4.300 1.530 3.786 0.217 0.519
Supervised Learning (CRF) 1.110 1.423 2.807 4.047 1.344 1.241 0.240 0.437
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(b) Test Hamming Loss with MAP Predictions

Figure 1: Stronger regularization can help obtain faster convergence and better test performance.

policy. To test how this stochasticity affects our learning,
we modify the parameter of h0 by introducing a temperature
multiplier α. For CRF logging policies, the prediction is
made by normalizing values of wTφ(x, y), where w is the
model parameter and can be modified by α with w → αw.
As α becomes higher, h0 will have a more peaked distri-
bution, and ultimately become a deterministic policy with
α→∞.

We varied α in the range of 2[−1,1,...,8], and report the av-
erage ratio of expected test loss to the logging policy loss
of our algorithms (Y-axis in Fig 3a, where smaller values
indicate a larger improvement). We can see that NN poli-
cies are performing better than logging policy when the
stochasticity of h0 is sufficient, while after the temperature
parameter increases greater than 23, it’s much harder and
even impossible (ratio ¿ 1) to learn improved NN policies.
We also note here that the stochasticity doesn’t affect the
expected loss values themselves, and the drop in the ratios

mainly resulted from the decreased loss of the logging pol-
icy h0. In addition, comparing within NN policies, policies
with stronger regularization have slight better performance
against models with weaker ones, which in some extent
shows the robustness of our learning principle.

Finally, we discusses the impact of logging policies to the
our learned improved policies. Intuitively, a better policy
that has lower hamming loss can produce bandit datasets
with more correct predictions, however, it’s also possible
that the sampling biases introduced by the logging policy is
larger, and such that some predictions might not be available
for feedbacks. To study the trade-off between better policy
accuracy and the sampling biases, we vary the proportion
of training data points used to train the logging policy from
0.05 to 1, and compare the performance of our improved
policies obtained by in Fig. 3b. We can see that as the
logging policy improves gradually, both NN and NN-Reg
policies are outperforming the logging policy, indicating that
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(b) Test Hamming Loss with MAP Predictions

Figure 2: Neural network policies both have increasing performance with increasing number of training data, while models
with regularization have faster convergence rate and better performance.
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Figure 3: a) The decreasing stochasticity of h0 makes it harder to obtain an improved NN policy, and our regularization can
help the model be more robust and achieve better generalization performance. b) As h0 improves, the models constantly
outperform the baselines, however, the difficulty is increasing with the quality of h0. Note: more visualizations of other
metrics can be found in the Appendix.

they are able to address the sampling biases. The increasing
ratios of test expected loss to h0 performance, as a proxy
for relative policy improvement, also matches our intuition
that h0 with better quality is harder to beat.

6. Conclusion
In this paper, we showed how divergence regularization
can help improve off-policy learning both theoretically via
importance sampling bounds and empirically by our adver-
sarial learning algorithms on real-world datasets.

Limitations of the work mainly lies in the need for the
propensity scores (the probability an action is taken by the
logging policy), which may not always be available. Learn-
ing to estimate propensity scores and plug the estimation

into our training framework will increase the applicability
of our algorithms. For example, as suggested by (Cortes
et al., 2010), directly learning importance weights (the ratio
between new policy probability to the logging policy proba-
bility) has comparable theoretical guarantees, which might
be a good extension for the proposed algorithm.

Although the work focuses on off-policy from logged data,
the techniques and theorems may be extended to general
supervised learning and reinforcement learning. It will be
interesting to study how this training algorithm can work for
empirical risk minimization and what generalization bounds
it may have as the future direction of research.
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