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A. Additional Background
A.1. Sobolev Spaces

The RKHS induced from the Matérn kernel cα defined in Equation 1 is norm-equivalent to a Sobolev space (Adams &
Fournier, 2003). When α ∈ N, these spaces are defined as:

Wα
2 (X ) := {f ∈ L2(X ) : Dνf ∈ L2(X ) exists ∀ν ∈ Np0 with |ν| ≤ α} ,

with inner product

〈f, g〉Wα
2 (X ) :=

∑
|ν|≤α

〈Dνf,Dνg〉L2(X )

for all f, g ∈ Wα
2 (X ). This means that all functions in Hkα will have smoothness α (here Dν denotes the total derivative

corresponding to the multi-index ν = (ν1, . . . , νp) ∈ Np0).

It is also possible to have fractional Sobolev spaces; i.e. the smoothness α > 0 can take any positive real value. For
X = Rp and denoting by f̂ the Fourier transform of f , these spaces are given by:

Hα(Rp) :=

{
f ∈ L2(Rp) :

∫
|f̂(ξ)|2(1 + ‖ξ‖2)αdξ <∞

}
with associated inner product:

〈f, g〉Hα(Rp) :=

∫
f̂(ξ)ĝ(ξ)(1 + ‖ξ‖2)αdξ

for all f, g ∈ Hα(Rd) where ĝ denoted the complex conjugate of ĝ.

A.2. Lipschitz Boundary Conditions

In this section we introduce the notion of Lipschitz boundary condition, which is required for our domain X in the theory
in Section 3. The introduction in this section follows that of Section 3 in (Kanagawa et al., 2017).

To do so, we begin by introducing special Lispchitz domains. For d > 2, we say that an open set X ⊂ Rp is a special
Lipschitz domain if there exists a rotation of X , denoted by X̃ , and a function φ : Rp−1 → R that satisfy the following:

1. X̃ = {(x, y) ∈ Rp : y > φ(x)}.

2. φ is a Lipschitz function such that |φ(x)− φ(x′)| ≤M‖x− x′‖∀x, x′ ∈ Rp−1, where M > 0 is called the Lipschitz
bound of X .

With this definition now complete, we can define the notion of a domain with Lipschitz boundary. Let X ⊂ Rp be an open
set and ∂X be its boundary. We say the boundary is Lipschitz ∃ε,M > 0,K ∈ N and open sets U1, . . . , UL ⊂ Rp where
L ∈ N ∪ {∞} such that the following holds:

1. For any x ∈ ∂X , ∃i such that B(x, ε), the ball centred at x of radius ε, satisfies B(x, ε) ⊂ Ui.

2. Ui1 ∩ . . . ∩ UiK+1
= ∅ for any distinct indices {i1, . . . , iK+1}.

3. For each index i, ∃ a special Lipschitz domain Xi ⊂ Rp with Lipschitz bound b such that Ui ∩ X = Ui ∩ Xi and
b ≤M .

B. Proofs
PROOF OF PROPOSITION 1

Proof. This proof follows directly the proof for the uni-output case in (Briol et al., 2015b). Suppose we have a prior on f ,
denoted g, which is a Gaussian process GP(0,C). Conditioning on some observations (X,Y ) = {(Xj ,Yj)}Dj=1, we get
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a Gaussian process posterior gN where the mean and covariance functions are given by:

mN (x) = C(x,X)C(X,X)−1f(X),

CN (x,x′) = C(x,x′)−C(x,X)C(X,X)−1C(X,x′).

Several applications of Fubini’s theorem on each element of the vectors give:

E [Π[gN ]] =

∫
Ω

∫
X
gN (x, ω)Π(dx)P(dω) =

∫
X
mN (x)Π(dx) = Π[C(·,X)]C(X,X)−1f(X),

V[Π[gN ]] =

∫
Ω

[∫
X
gN (x, ω)Π(dx)−

∫
X
mN (x)Π(dx)

]2

P(dω)

=

∫
X

∫
X

∫
Ω

[gN (x, ω)−mN (x)] [gN (x′, ω)−mN (x′)]P(dω)Π(dx)Π(dx′)

=

∫
X

∫
X
CN (x,x′)Π(dx)Π(dx′)

= ΠΠ̄[C]−Π[C(·,X)]C(X,X)−1Π̄[C(X, ·)].

PROOF OF PROPOSITION 2

Proof. Denote by ed the vertical vector of length D with dth entry taking value 1 and all other entries taking value 0, and
by Cd

x(y) = C(y,x)ed the dth column of C(y,x). We notice that the representer of the integral is given by:

Π[fd] = Π[f>ed] = Π [〈f ,C(·,x)ed〉C ] = 〈f ,Π [C(·,x)ed]〉C =
〈
f ,Π

[
Cd

x

]〉
C
.

Using the Cauchy-Schwartz inequality, we get:∣∣∣Π[fd]− Π̂[fd]
∣∣∣ ≤ ‖f‖C

∥∥∥Π[Cd
x]− Π̂[Cd

x]
∥∥∥
C
.

Taking supremums, we then obtain the following expression for the worst-case integration error:

sup
‖f‖C≤1

∣∣∣Π[fd]− Π̂[fd]
∣∣∣ =

∥∥∥Π[Cd
x]− Π̂[Cd

x]
∥∥∥
C
.

We note that Π[Cd
x] ∈ HC and that the multi-output BQ rule is given by

Π̂BQ[Cd
x] = Π[C(·,X)]C(X,X)−1Cd

x(X),

and corresponds to an optimal interpolant in the sense of Thm 3.1 (Micchelli & Pontil, 2005). We must therefore have that,
for fixed quadrature pointsX , any quadrature rule Π̂[Cd

x] satisfies:∥∥∥Π[Cd
x]− Π̂BQ[Cd

x]
∥∥∥
C
≤

∥∥∥Π[Cd
x]− Π̂[Cd

x]
∥∥∥
C
.

Combining the equation above with the expression for the worst-case integration error of fd gives us our final result.

PROOF OF THEOREM 1

Proof. For the sake of clarity, we will distinguish between uni-output BQ and multi-output BQ rules and weights by adding
subscripts corresponding to their kernel; i.e. ΠC

BQ[f ] and WC
BQ denote the multi-output case and Πc

BQ[f ] and W c
BQ denote

the uni-output case.
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We start this proof by writing an expression for the weights of the multi-output BQ algorithm in terms of weights for the
uni-output BQ algorithm:

WC
BQ =

(
Π[C(·,X)]C(X,X)−1

)>
=

(
(Π[B ⊗ c(·,X)]) (B ⊗ c(X,X))

−1
)>

=
(
(B ⊗Π[c(·,X)])

(
B−1 ⊗ c(X,X)−1

))>
=

(
BB−1 ⊗Π[c(·,X)]c(X,X)−1

)>
=

(
ID ⊗

(
wc

BQ

)>)>
= ID ⊗wc

BQ.

Using the above, we can find an expression for the multi-output BQ approximation with some kernel C1 = Bc1 of the
project mean element with respect to kernel C2 = Bc2 in terms of the uni-output BQ approximation with kernel c1 of the
kernel mean of c2.

Π̂C1

BQ [(C2)dx] =
(
WC1

BQ

)>
(C2)dx(X)

= (I ⊗wc1
BQ)>(C2)dx(X)

= (I ⊗wc1
BQ)>(Bed ⊗ c2(X,x))

= IBed ⊗
(
wc1

BQ

)>
c2(X,x)

= BedΠ̂
c1
BQ[c2(·,x)].

As discussed, taking both kernels to be the same, the integration error for each individual integrand can be bounded as
follows:

sup
‖f‖C2

≤1

∣∣∣Π[fd]− Π̂C1

BQ [fd]
∣∣∣2 =

∥∥∥Π
[
(C2)dx

]
− Π̂C1

BQ

[
(C2)dx

]∥∥∥2

C2

=
∥∥∥(Bed)

(
Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
)∥∥∥2

C2

=

D∑
i,j=1

(B−1)ij ×
〈
Bid(Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]),Bjd(Π [c2(·,x)]− Π̂c1
BQ [c2(·,x)])

〉
c2

=

D∑
i,j=1

(B−1)ijBidBjd

∥∥∥Π [c2(·,x)]− Π̂c1
BQ [c2(·,x)]

∥∥∥2

c2

≤ K
∥∥∥Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
∥∥∥2

c2
.

Here, we first used the definition of worst-case error, then the definition of the HC2 norm in terms of Hc2 norm (as
given for the seperable kernel in (Alvarez et al., 2012)), and the final inequality follows by taking K > 0 to be K =
|
∑D
i,j=1(B−1)ijBidBjd|. Taking the square-root on either side gives us:

sup
‖f‖C2

≤1

∣∣∣Π[fd]− Π̂C1

BQ [fd]
∣∣∣ ≤ √

K
∥∥∥Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
∥∥∥
c2

=
√
K sup
‖f‖c2≤1

∣∣∣Π[fd]− Π̂c1
BQ[fd]

∣∣∣ . (3)

We can take C1 equal to C2 to get:

sup
‖f‖C≤1

∣∣∣Π[fd]− Π̂C
BQ[fd]

∣∣∣ ≤ √
K sup
‖f‖c≤1

∣∣∣Π[fd]− Π̂c
BQ[fd]

∣∣∣ .
The convergence for the separable kernel case is therefore driven by the convergence of the scalar-valued kernel. We can
therefore use results from the uni-output case in (Briol et al., 2015b; Oates et al., 2016; Briol et al., 2017; Kanagawa et al.,
2017) to complete the proof.
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PROOF OF PROPOSITION 3

Proof. Note that if the kernel is actually of the form C(x,x′) =
∑Q
q=1Bqcq(x,x

′), we can use the triangle inequality
satisfied by the norm ofHC to show that (for some C2 > 0):

sup
‖f‖C≤1

∣∣∣Π[fd]− Π̂BQ[fd]
∣∣∣ ≤ C2

Q∑
q=1

∥∥∥Π [cq(·,x)]− Π̂BQ [cq(·,x)]
∥∥∥2

c
,

so that the overall convergence is dominated by the slowest decaying term.

B.1. Proof of Theorem 2

Proof. Denote by Π̂Cα
BQ[f ] the multi-output BQ rule based onCα, Π̂cα

BQ[f ] the uni-output BQ rule based on cα and f̂αd the
interpolant corresponding this rule. We start by upper bounding the integration error in the uni-output case:∣∣∣Π[f ]− Π̂cα

BQ[f ]
∣∣∣ ≤ K1‖π‖L∞(X )‖f − f̂α‖L1(X )

≤ K2‖f − f̂α‖L2(X )

≤ K3h
β
X,Xρ

α
X,X ‖f‖L2(X )

≤ K4h
β
X,Xρ

α
X,X ‖f‖Wβ

2 (X )

≤ K5h
β
X,Xρ

α
X,X ‖f‖cβ ,

for some K1, . . . ,K5 > 0. The first and second inequality correspond to Holder’s inequality and the third inequality
follows from Theorem 4.2 in (Narcowich et al., 2006). Finally, the fourth and fifth inequalities follow from the definition
the Sobolev norm and the norm-equivalence ofHcβ and W β

2 (X ).

Dividing the above by ‖fd‖β on both sides and taking supremums over the unit ball ofHcβ we get a result for the worst-case
error in the uni-output case:

e(Hcβ , Π̂
cα
BQ,X) ≤ K6h

β
X,Xρ

α
X,X .

We can then upper bound the integration error in the multi-output case using Theorem 1 as follows:∣∣∣Π[fd]− Π̂Cα
BQ[fd]

∣∣∣ ≤ ‖f‖Cβe(HCβ , Π̂
Cα
BQ,X, d)

≤ K6‖f‖Cβe(Hcβ , Π̂
cα
BQ,X)

≤ K7‖f‖Cβh
β
X,Xρ

α
X,X ,

for some K6,K7 > 0. When (A2) is satisfied, then we can use the assumption that hX,X ≤ CqX for some constant
C > 0 and the fact that hX,X converges as N−

1
p to show that the integration error satisfies:∣∣∣Π[fd]− Π̂Cα

BQ[fd]
∣∣∣ ≤ K7‖f‖Cβh

β
X,Xρ

α
X,X ≤ K8‖f‖Cβh

β
X,X = O

(
N−

β
p

)
,

for some K8 > 0.

C. Implementation
In this appendix, we present some complementary details which will help users reproduce experiments in the paper.

C.1. Prior specification

C.1.1. SEPARABLE KERNEL

The separable matrix-valued kernel is of the form C(x,x′) = Bc(x,x′) where c : X ×X → R is a scalar-valued kernel.
If all of the elements fd of the vector-valued function f are evaluated on the same data set X = (x1, . . . ,xN ), then the
Gram matrix can be expressed as

C(X,X) = B ⊗ c(X,X),
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where ⊗ denotes the Kronecker product. Due to properties of the Kronecker, its inverse can then be computed as:

C(X,X)−1 = B−1 ⊗ c(X,X)−1.

It is straightforward to show that similar expressions can be obtained for the multi-output case of the kernel mean:

Π[C(·,X)] = B ⊗Π[c(·,X)] = B ⊗
(∫
X
c(x,X)Π(dx)

)
,

and initial error:

ΠΠ[C] = B ΠΠ̄[c] = B

∫
X×X

c(x,x′)Π(dx)Π(dx′).

These expressions can of course be obtained in closed form whenever the kernel mean and initial error of the scalar-valued
kernel are available in closed form. We refer the reader to the table in (Briol et al., 2015b) for a list of popular kernels for
which this is possible.

C.1.2. PROCESS CONVOLUTION KERNEL

In this section, we consider the process convolution kernel given by:

(C(x, x′))d,d′ = cd,d′(x, x
′) + cwd(x, x′)δd,d′ ,

cd,d′(x, x
′) =

R∑
i=1

∫
X
Gid(x− z)

∫
X
Gid′(x

′ − z′)ci(z, z′)dz′dz,

This is used in Sec. 4 in the two-output case. There, blurring kernels and reproducing kernels are:

G1
1(r) = λ2

1 exp

(
− r2

2σ2
1

)
,

G1
2(r) = λ2

2 exp

(
− r2

2σ2
2

)
,

c1(x, y) = λ2
3 exp

(
− (x− y)2

2σ2
3

)
,

G2
1(r) = λ2

4 exp

(
− r2

2σ2
4

)
,

G2
2(r) = λ2

5 exp

(
− r2

2σ2
5

)
,

c2(x, y) = λ2
6 exp

(
− (x− y)2

2σ2
6

)
,

for some constants σi, λi > 0 for i = 1, . . . , 6. Note that for simplicity, we did not include cw1
and cw2

. The kernel mean
and initial error can easily be computed in closed form using Gaussian identities.

C.2. Hyper-parameters

One of the main challenges when using uni-output BQ and multi-output BQ is the selection of appropriate hyperparameters.
In this section, we consider multi-output BQ with GP(0,C) prior we denote the hyperparameters of the kernelC in vector
form as θ = (θ1, . . . , θl). To optimise these parameters, we propose to use an empirical-Bayes approach and maximise the
log-marginal likelihood:

log p (f(X)|X,θ) = −1

2
f(X)>C(X,X)−1f(X)− 1

2
log |C(X,X)| − ND

2
log(2π).

This can be efficiently optimised by making use of gradients of the log-marginal likelihood ∀i ∈ {1, . . . , l}:

∂ log p (f(X)|X,θ)

∂θi
=

1

2
f(X)>C(X,X)−1 ∂C(X,X)

∂θi
C(X,X)−1f(X)− 1

2
Tr
(
C(X,X)−1 ∂C(X,X)

∂θi

)
.
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D. Extended Numerical Experiments
In this appendix, we provide additional results for the multi-output BQ experiments provided in Sec. 4 for the multifidelity
toy models and the global illumination problem. We also include numerical results for a popular variational approximation
of multi-output GP.

D.1. Scaling multi-output BQ with variational approximations

Computational burdens are heavy for multi-output BQ due to the inversion of ND × ND matrix. The computational
complexity is O(N3D3) and the storage is O(N2D2). (Álvarez & Lawrence, 2011) introduced and fully discussed a
sparse approximation of multi-output GPs with process convolution kernels, using the fact that outputs are conditionally
independent if the latent functions is fully observed. This idea can then be extended to multi-output BQ by taking our
posterior on the value of the integrals as the pushforward through the integral operator of the approximate multi-output GP.

Consider functions f1(x) = 3 cos(πx5 ) and f2(x) = 0.7 cos( 2.2πx
10 ) on X = [−5, 5]. Computational times and log-

errors of multi-output BQ estimates for integrals of these functions against a uniform measure Π with and without the
variational approximation by (Álvarez & Lawrence, 2011) using different number of equidistant points between −5 and 5
are given in Fig. 5. This approximation is considered for different number of points evaluated from the latent function, i.e.
C = 5, 15, 25, 35. Regarding the process convolution kernel, G1

1, G2
1, c1, G1

2, G2
2, c2 are squared-exponential kernels with

amplitude and lengthscale parameters (
√

3, 1.3), (0.7, 1), (1, 1), (0.9, 0.6), (0.6, 0.5) and (0.8, 1) respectively.

Clearly, with a large enough number of points C, the same integration accuracy as for the full GP can be obtained at much
lower computation cost. This could make variational approximations a promising approach for multi-output BQ, but this
would warrant a much more extensive study.

Figure 5. Variational approximation: Plot of the computational times (in seconds) and log-errors of full/ approximated multi-output BQ
against the number of points given for different number of points evaluated from the latent function.

D.2. Multi-fidelity modelling

In Fig. 6, we give an extended version of Fig. 1 which includes credible intervals for each of the multi-output GP models.
For both functions, the high-fidelity confidence intervals in the uni-output case are overly pessimistic, whereas for the
multi-output cases, the posterior is concentrated on the true functions. One interesting point is that both of the multi-output
BQ methods are over-confident near the kinks in the functions. This is to be expected since the true functions do not like
in the RKHS corresponding to the kernel used for these BQ rules.

As an extension to these experiments, we consider a steady-state version of the Allen-Cahn equation on [0, 10] subject to a
sinusoidal forcing term and with boundary conditions:

ε
∂2u

∂x2
+ u− u3 = sin(x), u(0) = 1, u(10) = −1, (4)

where ε controls the rate of diffusion (Trefethen, 2010). Our target is to approximate the integral of the solution of Eq. 4 for
ε ≈ 0. We take solutions of Eq. 4 on X = [0, 10] with ε = 2 and ε = 0.1 as our low-fidelity model and high-fidelity model
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Figure 6. Multi-fidelity modelling: Plot of the Step function (top) and Forrester function (bottom) in blue. The Gaussian Process 95%
credible intervals are given by dotted red lines in each case.

respectively. Ideally, we would prefer to take ε as small as possible but this complicates the numerical approximation of
the solution.

The functions considered and corresponding posteriors are given in Fig. 7 and 8, while the uni-output and multi-output
BQ estimates for integration of these functions against a uniform measure Π are given in the table in Fig. 9. Integer points
between 0 and 10 are evaluated, with points at 2, 5 and 8 being used to evaluate the high fidelity model and the others used
for the low fidelity model. The choice of kernel hyperparameters is made by maximising the marginal likelihood. Clearly,
the two multi-output BQ algorithm give posteriors on the high-fidelity model which are much more concentrated on the
true function than the uni-output BQ.

D.3. Global illumination problem

In Fig. 10, we plot the evolution of the worst-case integration error as N increases for the uni-output, two-output and five-
output BQ with LMC kernel. As expected from Thm 1, the convergence occurs at the same rate in N but with a smaller
rate constant the more outputs there are.
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Figure 7. Multi-fidelity modelling: Plot of the solutions of Equation 4 for ε = 2 (left) and ε = 0.1 (right). Each plot gives the true
function (blue) and their uni-output (dashed, red), LMC-based multi-output (dashed, yellow) and PC-based multi-output (dotted purple)
approximations.

Figure 8. Multi-fidelity modelling: Plot of the solutions of Equation 4 for ε = 2 (top) and ε = 0.1 (bottom) in blue. The Gaussian
Process 95% credible intervals are given by dotted red lines in each case.

Model BQ LMC-BQ PC-BQ
AC (l) 0.004 (0.197) 0.006 (0.187) 0.007 (0.388)
AC (h) 0.211 (0.27) 0.002 (0.444) 0.037 (0.191)

Figure 9. Multi-fidelity modelling: Performance of uni-output BQ and multi-output BQ (with LMC and PC kernels) on the Allen-Cahn
problem (AC) both for the low fidelity (l) and high fidelity (h) cases.
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Figure 10. Global illumination: Plot of the worst-case integration error for f1, f2 in the case of the red, blue and green channels. Uni-
output BQ is given in red (full line) whilst two-output BQ based on LMC is given in blue (dashed and dotted line) and five-output BQ
based on LMC is given in magenta (dashed line).


