A. Unfold Architecture of Figure 1 in the Main Paper

The unfold architecture of Figure 1 in the main paper is shown in Figure 1 of Appendix A.

Figure 1. The unfold encoder-decoder framework.

 Z_j^Y for any $j \in [T_y]$ is calculated as:

$$Z_j^Y = \sum_{i=1}^{T_x} \alpha_i h_i^X, \ \alpha_i = \exp(v^T \tanh(W_x h_i^X + W_y h_{j-1}^Y)) / \sum_{i=1}^{T_x} \exp(v^T \tanh(W_x h_i^X + W_y h_{j-1}^Y))$$
(1)

where α_i is calculated following (Bahdanau et al., 2015).

 Z_i^X for any $i \in [T_x]$ is calculated as:

$$Z_i^X = \sum_{j=1}^{T_y} \beta_j h_j^Y, \ \beta_j = \exp(v^T \tanh(W_x h_{i-1}^X + W_y h_j^Y)) / \sum_{j=1}^{T_y} \exp(v^T \tanh(W_x h_{i-1}^X + W_y h_j^Y)).$$
(2)

B. Unfold Architectures of X Component and Y Component in Figure 2 of the Main Paper

The unfold architectures of X Component and Y Component in Figure 2 of the main text is shown in Figure 2 of the appendix. Z_j^X and Z_i^Y are computed in the same ways as those in Eqn.(1) and Eqn.(2).

C. How to Build up the Dual Model

(1) *The Encoder.* Set C_Y to the null context, i.e., $C_Y = \{0\}$. At step $j \in [T_y]$ where T_y is the length of y, preprocess C_Y and obtain $Z_j^Y: Z_j^X = \varphi_Y^z(h_{j-1}^Y, C_Y)$. φ_Y^z is a function that sums up the elements in C_Y with adaptive weights. Then, calculate the hidden representation $h_j^Y = \varphi_Y^c(y, h_{j-1}^Y, Z_j^Y)$.¹ Eventually, we obtain a set of hidden representations $h^Y = \{h_j^Y\}_{j=1}^{T_y}$. The module φ_Y^h in component Y is not used while encoding $y \in \mathcal{Y}$.

(2) The Decoder. Set C_X to the hidden representations h^Y obtained in the encoding phase. At step $i \in [T_x]$, where T_x is the length of x, preprocess C_X with the information available at step i and obtain $Z_i^X \colon Z_i^X = \varphi_X^z(h_{i-1}^X, C_X)$. Calculate the

¹Note that in the encoding phase, all words in y are available. At step j, φ_Y^c and φ_Y^z can consider either $y_{<j}$ (Bahdanau et al., 2015) or all the y_j 's (Vaswani et al., 2017).

Figure 2. The unfold flow-chart of X component and Y component

hidden representation $h_i^X = \varphi_X^c(x_{<i}, h_{i-1}^X, Z_i^X)$. Then map h_i^X to x_i by $x_i = \varphi_X^h(h_j^X)$. If x_i is the symbol indicating the end of a sentence, terminate the decoding procedure; otherwise, continue to generate words one by one.

D. Theoretical Analysis

We give a brief theoretical discussion about model-level dual learning. Note that there are a primal model $f : \mathcal{X} \to \mathcal{Y}$ and a dual model $g : \mathcal{Y} \to \mathcal{X}$. The parameters of f and g are denoted as θ_f and θ_g respectively.² We take the symmetric setting as an example and the result for the asymmetric setting is similarly obtained.

We want to minimize the (expected) risk of two models f and g, which is defined as follows:

$$R(f,g) = \mathbb{E}\left[\frac{1}{2}\left(\ell_1(f(x),y) + \ell_2(g(y),x)\right)\right],$$

$$\forall f \in \mathcal{F}, g \in \mathcal{G},$$

(3)

where $\mathcal{F} = \{f(x; \theta_f); \theta_f \in \Theta_{xy}\}, \mathcal{G} = \{g(y; \theta_g); \theta_g \in \Theta_{yx}\}, \Theta_{xy} \text{ and } \Theta_{yx} \text{ are parameter spaces, and the } \mathbb{E} \text{ is taken over the underlying data distribution } P. The <math>\ell_1$ and ℓ_2 in Eqn.(3) are loss functions, both of which are mappings $\mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}$.

As shown in Figure 1 of Section 1 at the main text, if we use two individual models to solve a pair of dual tasks, then for the primal task, we need to use a set of parameters $\varphi_{p,Y}^c, \varphi_{p,Y}^c, \varphi_{p,Y}^c, \varphi_{p,Y}^b, \varphi_{p,Y}^b$, where the subscript $_p$ stands for "primal". The dual task needs another group of parameters $\varphi_{d,Y}^c, \varphi_{d,X}^c, \varphi_{d,X}^h$, where the superscript $_d$ stands for "dual". By using our proposed method, we actually add the following constraints:

$$\varphi_{p,Y}^c = \varphi_{d,Y}^c; \quad \varphi_{p,X}^c = \varphi_{d,X}^c. \tag{4}$$

Let \mathcal{T} denote the product space of the two models satisfying Eqn.(4). As a result, the model space of our proposed model-level dual learning is $(\mathcal{F} \times \mathcal{G}) \cap \mathcal{T}$, and we briefly denote it as \mathcal{H}_1 .

Define the empirical risk on the n sample as follows: for any $f \in \mathcal{F}, g \in \mathcal{G}$,

$$R_n(f,g) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2n} (\ell_1(f(x_i), y_i) + \ell_2(g(y_i), x_i)).$$

²The parameters θ_f and θ_g will be omitted when the context is clear.

Following (Bartlett & Mendelson, 2002), we introduce Rademacher complexity for our proposed method, a measure for the complexity of the hypothesis.

Definition 1 Define the Rademacher complexity of our proposed method, \Re_n^d , as follows:

$$\mathfrak{R}_n^d = \mathbb{E}\Big[\sup_{(f,g)\in\mathcal{H}_1}\frac{1}{2n}\sum_{i=1}^n \sigma_i\big(\ell_1(f(x_i),y_i) + \ell_2(g(y_i),x_i)\big)\Big],$$

where $z = \{z_1, z_2, \dots, z_n\} \sim P^n$, $z_i = (x_i, y_i)$ in which $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$, $\sigma = \{\sigma_1, \dots, \sigma_m\}$ are *i.i.d* sampled with $P(\sigma_i = 1) = P(\sigma_i = -1) = 0.5$.

The following theorem generally holds for our proposed method:

Theorem 1 (Theorem 3.1, (Mohri et al., 2012)) Let $\frac{1}{2}\ell_1(f(x), y) + \frac{1}{2}\ell_2(g(y), x)$ be a mapping from $\mathcal{X} \times \mathcal{Y}$ to [0, 1]. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, the following inequality holds for any $(f, g) \in \mathcal{H}_1$,

$$R(f,g) \le R_n(f,g) + 2\mathfrak{R}_n^d + \sqrt{\frac{1}{2n}\ln(\frac{1}{\delta})}.$$
(5)

Let \Re_n^c denote the Rademacher complexity for the standard supervised learning without our proposed method, i.e., no constraint like Eqn.(4) is applied. It is defined as follows:

Definition 2 Define the Rademacher complexity of conventional learning scheme on the tasks \mathfrak{R}_n^c , as follows:

$$\mathfrak{R}_n^c = \mathbb{E}_{\boldsymbol{z},\sigma} \Big[\sup_{(f,g)\in\mathcal{F}\times\mathcal{G}} \frac{1}{2n} \sum_{i=1}^n \sigma_i \big(\ell_1(f(x_i), y_i) + \ell_2(g(y_i), x_i)\big) \Big],$$

where $\mathbf{z} = \{z_1, z_2, \dots, z_n\} \sim P^n$, $z_i = (x_i, y_i)$ in which $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$, $\boldsymbol{\sigma} = \{\sigma_1, \dots, \sigma_m\}$ are i.i.d sampled with $P(\sigma_i = 1) = P(\sigma_i = -1) = 0.5$.

Considering $\mathcal{H}_1 \in \mathcal{F} \times \mathcal{G}$, by the definition of Rademacher complexity, we have $\mathfrak{R}_n^d \leq \mathfrak{R}_n^c$. Therefore, model-level dual learning has a smaller generation error bound than the conventional supervised learning.

References

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and translate. ICLR, 2015.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of machine learning. MIT press, 2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems, pp. 6000–6010, 2017.