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A. Discussion of Mean Field Theory
Consider an L-layer 1D4 periodic CNN with filter size 2k + 1, channel size c, spatial size n, per-layer weight tensors
! 2 R(2k+1)⇥c⇥c and biases b 2 Rc. Let � : R ! R be the activation function and let hl

j(↵) denote the pre-activation at
layer l, channel j, and spatial location ↵. Suppose the weights !l

ij are drawn i.i.d. from the Gaussian N (0, �2
!/(c(2k + 1)))

and the biases bl
j are drawn i.i.d. from the Gaussian N (0, �2

b ). The forward-propagation dynamics can be described by the
recurrence relation,
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For l � 0, note that (a) {hl+1
j }j are i.i.d. random variables and (b) for each j, hl+1
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where the expectation is taken over all random variables in and before layer (l + 1). Therefore, we have the following
lemma.

Lemma A.1. As c ! 1, for each l � 0, hl+1
j is a mean zero Gaussian with covariance matrix ⌃l+1 satisfying the

recurrence relation,
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where we used the fact that,
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0, otherwise.

Note that ⌃1 can be computed once h0 (or x0) is given. We will proceed by induction. Let l � 1 be fixed and assume {hl
j}j

are i.i.d. mean zero Gaussian with covariance ⌃l. It is not difficult to see that {hl+1
j }j are also i.i.d. mean zero Gaussian as

c ! 1. To compute the covariance, note that for any fixed pair (↵, ↵0
), {xi(↵)xi(↵0

)}i are i.i.d. random variables. Then,
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Thus by eq. (2.5), eq. (S2) can be written as,
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so that,
⌃l+1

⌘ A ? C(⌃l
) . (S6)

4For notational simplicity, as in the main text, we again consider 1D convolutions, but the 2D case proceeds identically.
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The same proof yields the following corollary.
Corollary A.2. Let v = (v�)�2ker be a sequence of non-negative numbers with

P
�2ker v� = 1. Let Av be the cross-

correlation operator induced by v, i.e.,
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Suppose the weights !l
i,j(�) are drawn i.i.d. from the Gaussian N (0, v�

c · �2
!). Then the recurrence relation for the

covariance matrix is given by,
⌃l+1
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) . (S8)

A.1. Back-propagation

Let E denote the loss associated to a CNN and �l
j(↵) denote a backprop signal given by,
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The layer-to-layer recurrence relation is given by,
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We need to make an assumption that the weights used during back-propagation are drawn independently from the weights
used in forward propagation. This implies {�l
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For large l, the second parenthesized term can be approximated by �1 if ↵0
= ↵ and by �c⇤ otherwise.

B. The Jacobian of the C-map
Recall that C : PSDn ! PSDn is given by,

[C(⌃)]↵,↵0 = �2
! Eh⇠N (0,⌃) [�(h↵)�(h↵0)] + �2

b . (S9)

We are interested in the linearized dynamics of C near the fixed point ⌃⇤. Let J : Rn⇥n
! Rn⇥n denote the Jacobian of C

at ⌃⇤. The main result of this section is that J commutes with any diagonal convolution operator.
Theorem B.1. Let J be as above and A be any n ⇥ n diagonal matrix and U be any n ⇥ n symmetric matrix. Then,

A ? J(U) = J(A ? U) . (S10)

Let {V↵,↵0}0↵↵0n�1 be the canonical basis of the space of n ⇥ n symmetric matrices, i.e. [V↵,↵0 ]↵̄,↵̄0 = 1 if (↵, ↵0
) =

(↵̄, ↵̄0
) or (↵̄0, ↵̄) and 0 otherwise. We claim the following:
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Lemma B.2. The Jacobian J has the following representation:

• For the off-diagonal terms (i.e. ↵ 6= ↵0),
JV↵,↵0 = �c⇤V↵,↵0 . (S11)

• For the diagonal terms,
JV↵,↵ = �q⇤V↵,↵ + 

X
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where  is given by,
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00
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We first prove Theorem B.1 assuming Lemma B.2, and afterwards we prove the latter.

Proof of Theorem B.1. It is clear that
Vo.d. = span{V↵,↵0 : ↵ 6= ↵0

}

is an eigenspace of J with eigenvalue �c⇤ . Here span{X} denotes the linear span of X . For �q⇤ 6= �c⇤ , define,

Ṽ↵ = V↵,↵ +
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It is straightforward to verify that
Vd = span{Ṽ↵ : ↵ 2 sp}

is an eigenspace of J with eigenvalue �q⇤ and the direct sum Vd
L

Vo.d. is the whole space of n ⇥ n symmetric matrices.
Note that J acts on Vo.d. in a pointwise fashion and that A maps Vo.d. onto itself (one can form an eigen-decomposition of A
(and J) in Vo.d. using Fourier matrices; see below for details.) Thus A commutes with J in Vo.d.. It remains to verify that
they also commute in Vd.

,A key observation is that {Ṽ↵}↵2sp has a nice group structure,

{Ṽ↵}↵2sp = {V↵,↵ ? Ṽ0}↵2sp ,

which we can use it to form a new basis for Vd,

Vd = span{U↵ : U↵ = F↵ ? Ṽ0, ↵ 2 sp} , (S14)

where F↵ is the diagonal matrix formed by the ↵-th row of the n ⇥ n Fourier matrix, i.e. F↵ = diag((f↵,↵0)↵02sp) with
f↵,↵0 =

1p
n
e2⇡i↵↵0⇡/n. Since each F↵ is an eigen-vector of the 2D convolutional operator A ? · (A is diagonal),

A ? (JU↵) = �q⇤A ? U↵=�q⇤A ? F↵ ? Ṽ0 = �q⇤(A ? F↵) ? Ṽ0 = �q⇤�↵F↵ ? Ṽ0 = �q⇤�↵U↵ = J(A ? U↵)

where �↵ is the eigenvalue of F↵. This finishes our proof.

Proof of Lemma B.2. We first consider perturbing the off-diagonal terms. Let ✏ be a small number and ↵ 6= ↵0. Note that
for (↵̄, ↵̄0

) /2 {(↵, ↵0
), (↵0, ↵)},
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and
[C(⌃⇤

+ ✏V↵,↵0)]↵,↵0 = �2
!E�(h1)�(h2) + �2

b , (S16)

where (h1, h2) ⇠ N (0, Q) with Q11 = Q22 = q⇤ and Q12 = Q21 = c⇤q⇤
+ ✏. Let c = c⇤

+ ✏/q⇤ and choose two
independent random variables u1, u2 ⇠ N (0, 1). Then,
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Taylor expanding the term �(
p

q⇤(cu1 +
p

1 � c2u2)) about the point
p

q⇤(c⇤u1 +
p

1 � (c⇤)2u2), one can show,

[C(⌃⇤
+ ✏V↵,↵0)]↵,↵0 = c⇤q⇤

+ �c⇤✏ + O(|✏|2) , (S18)

which proves the first statement of Lemma B.2.

To prove the second statement, let ↵ be fixed and perturb ⌃⇤ by ✏V↵,↵. Note that all the terms are unchanged except the
ones in the ↵-th row or ↵-th column. It is straightforward to show (see (Poole et al., 2016)) that
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+ �q⇤✏ + O(|✏|2). (S19)

For any ↵0
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where u1 and u2 are the same as in eq.(S17) and,
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p
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We can then Taylor expand q(✏) about
p
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apply one integration by parts to the second variable (namely, apply the identity Eu1f(u1) = Ef 0

(u1)) to find,
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C. Construction of Random Orthogonal Kernels
C.1. Computational Complexity

For simplicity, consider constructing a k ⇥ k ⇥ c ⇥ c orthogonal kernel. The complexity can be roughly determined as
follows:

1. Constructing O(k) c ⇥ c symmetric orthogonal matrices takes O(kc3) steps.

2. For j = 1, . . . , k � 1, convolving a j ⇥ j (each entry is a c ⇥ c matrix) matrix with a 2 ⇥ 2 matrix requires O(j2)
matrix multiplications between two c ⇥ c matrices. Since each matrix multiplication costs O(c3), a total number of
O((kc)3) steps is required for block-wise matrix convolutions.

3. In sum, the computational complexity is about O((kc)3).

C.2. Delta Orthogonal Kernels

Algorithm 2 2D Delta orthogonal kernels for CNNs, available in TensorFlow via the ConvolutionDeltaOrthogonal

initializer.
Input: k kernal size, cin number of input channels, cout number of output channels.
Return: a k⇥ k⇥ cin ⇥ cout tensor K
Step 1. Randomly generate a cin ⇥ cout matrix H with orthonormal rows.
Step 2. Define a k⇥ k⇥ cin ⇥ cout tensor K in the following way: for �, �0 in 0, 1, . . . , k� 1, for i = 0, . . . , cin � 1,
j = 0, . . . , cout � 1, set

K(�, �0, i, j) =

(
H(i, j), if � = �0

= [k/2]

0, otherwise.
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Figure S1. Phase diagram for fully-connected networks
(reproduced from (Pennington et al., 2017)). In our analy-
sis, we find they also apply to CNNs.

Figure S2. Vanishing/exploding gradients in a random
CNN as the weight variance �2

w is swept so as to tran-
sition from the ordered phase (blue curves) to the chaotic
phase (red curves). Mean field theory predicts an expo-
nential decay/growth, which is overlaid (green, dashed).

D. Phase Diagram and Vanishing/Exploding gradients
D.1. Phase Diagram

Figure S1 shows the phase diagram derived from the mean field theory of signal propagation in fully-connected networks,
reproduced from (Pennington et al., 2017). It depicts the ordered and chaotic phases (with vanishing and exploding gradients,
respectively) separated by a transition. The variation in value of q⇤ along the critical line is shown in color. As discussed in
the main text, it also applies to the ordered-to-chaotic phase transition of CNNs.

D.2. Vanishing and Exploding Gradients

Figure S2 depicts the behavior of gradients in an L = 100 layer deep random CNN as �2
w is varied across the phase boundary,

from the ordered to the chaotic phase. In this case, the input size n = 10, kernel size 2k + 1 = 3, and number of channels
c = 2000. The input was synthetic and generated i.i.d from normal distributions with a random spatial covariance matrix.
The y-axis plots the squared norm of the gradient with respect to the weights in layer `, ||rW `hL

||
2
2, with ` = 0, ..., 100,

relative to the last layer gradient, ||rWLhL
||
2
2. The bias variance is fixed, �2

b = 0.05, while the weight variance is swept
from �2

w = 1.0 (blue curves), where gradients vanish exponentially as a function of layer distance L � ` from the output, to
�2

w = 4.25 (red curves), where gradients explode exponentially. The mean field theory prediction (overlaid in dashed green)
gives excellent agreement with the empirical result.

E. Distribution of singular values of weight matrices
The end-to-end Jacobian J depends on the matrix of weights W l, and the singular value distribution of the latter plays a
key role, as discussed in the main text. Figure S3 compares the singular value distribution of weight matrices W l in the
convolutional vs. fully-connected setting. In more detail, W l in the convolutional case can be considered an n⇥ n circulant
tiling of c ⇥ c dense blocks, where each matrix element is generated i.i.d. from N (0, 1/(c(2k + 1))). For fixed n = 26 and
2k + 1 = 5 we compute the singular value distribution, as c increases, for single draws. This is compared to the distribution
for the weight matrix in the fully-connected setting, obtained from a dense nc ⇥ nc matrix W l whose entries are drawn
i.i.d from N (0, 1/(nc)). We empirically find the agreement between the two improves as the channel number increases,
suggesting that the random matrix theory analysis of (Pennington et al., 2017; 2018) carries over to the convolutional setting.

F. Multiple depth scales in signal propagation
Figure S4 empirically demonstrates the existence of multiple depth scales, as discussed in Section 2.1.5. We consider
an ensemble of random CNNs and compute the average covariance matrix ⌃l as a function of depth. We consider
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Figure S3. A comparison of the singular value distribution
of W l for a block-circulant matrix of shape nc⇥ nc with
i.i.d entries (solid) against that of an nc⇥nc dense matrix
(overlaid in dashed green), for fixed spatial width n = 26
and kernel size 2k+1 = 5. While there are discrepancies
for very small c that are not visible on this scale, there is
good agreement as the channel size c increases (blue to
red curves).

Figure S4. The existence of multiple depth scales in ran-
dom CNNs, with a comparison between empirical results
(colored) and theoretical predictions (dashed green). The
depth scales are reflected in the differing slopes of the
curves, with the zero frequency mode decaying most
slowly. See Section F for a detailed description of the
experiment.

networks with erf nonliearities with �w =
3
2 and �b =

1
2 applied to 1D images of size n = 10. The initial data

covariance ⌃0 is chosen so that ✏0 = ⌃⇤
� ⌃0 is small and has an off-diagonal structure. In particular, all entries

of ✏0 except the first cyclic diagonal entries are taken to be zero, and that diagonal has Fourier transform given by
�

1
6 [1, 2

3 , ( 23 )
3, ( 23 )

5, ( 23 )
4, ( 23 )

2, ( 23 )
4, ( 23 )

5, ( 23 )
3, 2

3 ]. We used a spatially non-uniform kernel of size 2k + 1 = 3, with
weights v = [0.025, 0.950, 0.025]. We then averaged ⌃l over this ensemble of networks to construct ✏l. By decomposing
the vector of first cyclic diagonal entries into Fourier modes, we can observe how the signal decays differently along different
modes. Figure S4 plots the absolute value of the coefficient of the Fourier decomposition as a function of depth. Our mean
field theory predictions for the different depth scales are in excellent agreement with the empirical simulations.


