Nonoverlap-Promoting Variable Selection - Supplementary Material

Pengtao Xie ${ }^{{ }^{*}}$, Hongbao Zhang ${ }^{*}$, Yichen Zhu ${ }^{\S}$ and Eric P. Xing ${ }^{\dagger}$
${ }^{\dagger}$ Petuum Inc, USA
*School of Computer Science, Carnegie Mellon University, USA
${ }^{\text {§ School of Mathematical Sciences, Peking University, China }}$

1 Coordinate Descent Algorithm for Learning W

In each iteration of the CD algorithm, one basis vector is chosen for update while the others are fixed. Without loss of generality, we assume it is \mathbf{w}_{1}. The sub-problem defined over \mathbf{w}_{1} is

$$
\begin{equation*}
\min _{\mathbf{w}_{1}} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\sum_{l=2}^{m} a_{i l} \mathbf{w}_{l}-a_{i 1} \mathbf{w}_{1}\right\|_{2}^{2}+\frac{\lambda_{2}+\lambda_{3}}{2}\left\|\mathbf{w}_{1}\right\|_{2}^{2}-\frac{\lambda_{3}}{2} \log \operatorname{det}\left(\mathbf{W}^{\top} \mathbf{W}\right)+\mathbf{u}^{\top} \mathbf{w}_{1}+\frac{\rho}{2}\left\|\mathbf{w}_{1}-\widetilde{\mathbf{w}}_{1}\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

To obtain the optimal solution, we take the derivative of the objective function and set it to zero. First, we discuss how to compute the derivative of $\log \operatorname{det}\left(\mathbf{W}^{\top} \mathbf{W}\right)$ w.r.t \mathbf{w}_{1}. According to the chain rule, we have

$$
\begin{equation*}
\frac{\partial \log \operatorname{det}\left(\mathbf{W}^{\top} \mathbf{W}\right)}{\partial \mathbf{w}_{1}}=2 \mathbf{W}\left(\mathbf{W}^{\top} \mathbf{W}\right)_{;, 1}^{-1} \tag{2}
\end{equation*}
$$

where $\left(\mathbf{W}^{\top} \mathbf{W}\right)_{;, 1}^{-1}$ denotes the first column of $\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1}$. Let $\mathbf{W}_{\neg 1}=\left[\mathbf{w}_{2}, \cdots, \mathbf{w}_{m}\right]$, then

$$
\mathbf{W}^{\top} \mathbf{W}=\left[\begin{array}{cc}
\mathbf{w}_{1}^{\top} \mathbf{w}_{1} & \mathbf{w}_{1}^{\top} \mathbf{W}_{\neg 1} \tag{3}\\
\mathbf{W}_{\neg 1}^{\top} \mathbf{w}_{1} & \mathbf{W}_{\neg 1}^{\top} \mathbf{W}_{\neg 1}
\end{array}\right]
$$

According to the inverse of block matrix

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \tag{4}\\
\mathbf{C} & \mathbf{D}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\widetilde{\mathbf{A}} & \widetilde{\mathbf{B}} \\
\widetilde{\mathbf{C}} & \widetilde{\mathbf{D}}
\end{array}\right]
$$

where $\widetilde{\mathbf{A}}=\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1}, \widetilde{\mathbf{B}}=-\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} \mathbf{B D}^{-1}, \widetilde{\mathbf{C}}=-\mathbf{D}^{-1} \mathbf{C}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1}, \widetilde{\mathbf{D}}=\mathbf{D}^{-1}+$ $\mathbf{D}^{-1} \mathbf{C}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} \mathbf{B D}^{-1}$, we have $\left(\mathbf{W}^{\top} \mathbf{W}\right)_{:, 1}^{-1}$ equals $\left[\begin{array}{ll}\mathbf{a} & \mathbf{b}^{\top}\end{array}\right]^{\top}$ where

$$
\begin{gather*}
\mathbf{a}=\left(\mathbf{w}_{1}^{\top} \mathbf{w}_{1}-\mathbf{w}_{1}^{\top} \mathbf{W}_{\neg 1}\left(\mathbf{W}_{\neg 1}^{\top} \mathbf{W}_{\neg 1}\right)^{-1} \mathbf{W}_{\neg 1}^{\top} \mathbf{w}_{1}\right)^{-1} \tag{5}\\
\mathbf{b}=-\left(\mathbf{W}_{\neg 1}^{\top} \mathbf{W}_{\neg 1}\right)^{-1} \mathbf{W}_{\neg 1}^{\top} \mathbf{w}_{1} \mathbf{a} \tag{6}
\end{gather*}
$$

Then

$$
\mathbf{W}\left(\mathbf{W}^{\top} \mathbf{W}\right)_{:, 1}^{-1}=\left[\begin{array}{ll}
\mathbf{w}_{1} & \mathbf{W}_{\neg 1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{a} \tag{7}\\
\mathbf{b}
\end{array}\right]=\frac{\mathbf{M} \mathbf{w}_{1}}{\mathbf{w}_{1}^{\top} \mathbf{M} \mathbf{w}_{1}} .
$$

where

$$
\begin{equation*}
\mathbf{M}=\mathbf{I}-\mathbf{W}_{\neg 1}\left(\mathbf{W}_{\neg 1}^{\top} \mathbf{W}_{\neg 1}\right)^{-1} \mathbf{W}_{\neg 1}^{\top} . \tag{8}
\end{equation*}
$$

To this end, we obtain the full gradient of the objective function in Eq.(1):

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i 1}\left(a_{i 1} \mathbf{w}_{1}+\sum_{l=2}^{m} a_{i l} \mathbf{w}_{l}-\mathbf{x}_{i}\right)+\left(\lambda_{2}+\lambda_{3}\right) \mathbf{w}_{1}-\lambda_{3} \frac{\mathbf{M} \mathbf{w}_{1}}{\mathbf{w}_{1}^{\top} \mathbf{M} \mathbf{w}_{1}}+\rho\left(\mathbf{w}_{1}-\widetilde{\mathbf{w}}_{1}\right)+\mathbf{u} \tag{9}
\end{equation*}
$$

Setting the gradient to zero, we get

$$
\begin{equation*}
\left(\left(\sum_{i=1}^{n} a_{i 1}^{2}+\lambda_{2}+\lambda_{3}+\rho\right) \mathbf{I}-\lambda_{3} \mathbf{M} /\left(\mathbf{w}_{1}^{\top} \mathbf{M} \mathbf{w}_{1}\right)\right) \mathbf{w}_{1}=\sum_{i=1}^{n} a_{i 1}\left(\mathbf{x}_{i}-\sum_{l=2}^{m} a_{i l} \mathbf{w}_{l}\right)-\mathbf{u}+\rho \widetilde{\mathbf{w}}_{1} \tag{10}
\end{equation*}
$$

Let $\gamma=\mathbf{w}_{1}^{\top} \mathbf{M} \mathbf{w}_{1}, c=\sum_{i=1}^{n} a_{i 1}^{2}+\lambda_{2}+\lambda_{3}+\rho, \mathbf{b}=\sum_{i=1}^{n} a_{i 1}\left(\mathbf{x}_{i}-\sum_{l=2}^{m} a_{i l} \mathbf{w}_{l}\right)-\mathbf{u}+\rho \widetilde{\mathbf{w}}_{j}$, then $\left(c \mathbf{I}-\frac{\lambda_{3}}{\gamma} \mathbf{M}\right) \mathbf{w}_{1}=\mathbf{b}$ and $\mathbf{w}_{1}=\left(c \mathbf{I}-\frac{\lambda_{3}}{\gamma} \mathbf{M}\right)^{-1} \mathbf{b}$. Let $\mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ be the eigen decomposition of \mathbf{M}, we have

$$
\begin{equation*}
\mathbf{w}_{1}=\gamma \mathbf{U}\left(\gamma c \mathbf{I}-\lambda_{3} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{b} \tag{11}
\end{equation*}
$$

Then

$$
\begin{align*}
& \mathbf{w}_{1}^{\top} \mathbf{M} \mathbf{w}_{1} \\
& =\gamma^{2} \mathbf{b}^{\top} \mathbf{U}\left(\gamma c \mathbf{I}-\lambda_{3} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U}\left(\gamma c \mathbf{I}-\lambda_{3} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{b} \\
& =\gamma^{2} \mathbf{b}^{\top} \mathbf{U}\left(\gamma c \mathbf{I}-\lambda_{3} \boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\Sigma}\left(\gamma c \mathbf{I}-\lambda_{3} \boldsymbol{\Sigma}\right)^{-1} \mathbf{U}^{\top} \mathbf{b} \tag{12}\\
& =\gamma^{2} \sum_{s=1}^{d} \frac{\left(\mathbf{U}^{\top} \mathbf{b}\right)_{s}^{2} \Sigma_{s s}}{\left(r c-\lambda_{3} \Sigma_{s s}\right)^{2}}=\gamma
\end{align*}
$$

The matrix $\mathbf{A}=\mathbf{W}_{\neg 1}\left(\mathbf{W}_{\neg 1}^{\top} \mathbf{W}_{\neg 1}\right)^{-1} \mathbf{W}_{\neg 1}^{\top}$ is idempotent, i.e., $\mathbf{A} \mathbf{A}=\mathbf{A}$, and its rank is $m-1$. According to the property of idempotent matrix, the first $m-1$ eigenvalues of \mathbf{A} equal to one and the rest equal to zero. Thereafter, the first $m-1$ eigenvalues of $\mathbf{M}=\mathbf{I}-\mathbf{A}$ equal to zero and the rest equal to one. Based on this property, Eq. 12 can be simplified as

$$
\begin{equation*}
\gamma \sum_{s=m}^{d} \frac{\left(\mathbf{U}^{\top} \mathbf{b}\right)_{s}^{2}}{\left(r c-\lambda_{3}\right)^{2}}=1 \tag{13}
\end{equation*}
$$

After simplification, it is a quadratic function where γ has a closed form solution. Then we plug the solution of γ into Eq. 11) to get the solution of \mathbf{w}_{1}.

2 Proofs

2.1 Proof of Equation (7) in the Main Paper

Proof. Let $\mathbf{V} \boldsymbol{\Pi} \mathbf{V}^{\top}$ be the eigen-decomposition of the Gram matrix $\mathbf{G}=\mathbf{W}^{\top} \mathbf{W}$, where $\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{m}\right]$ are the eigenvectors and π_{1}, \cdots, π_{m} are the eigenvalues. Then $\mathbf{G}-\mathbf{I}=\mathbf{V}(\boldsymbol{\Pi}-\mathbf{I}) \mathbf{V}^{\top}=\sum_{j=1}^{m}\left(\pi_{j}-1\right) \mathbf{v}_{j} \mathbf{v}_{j}^{\top}$. By Cauchy-Schwarz inequality, we have $\left\|\mathbf{v}_{j} \mathbf{v}_{j}^{\top}\right\|_{1} \leq\left(\mathbf{v}_{j}^{\top} \mathbf{v}_{j}\right) \cdot m=m$. Thus,

$$
\|\mathbf{G}-\mathbf{I}\|_{1}=\left\|\sum_{j=1}^{m}\left(\pi_{j}-1\right) \mathbf{v}_{j} \mathbf{v}_{j}^{\top}\right\|_{1} \leq\left\|\sum_{j=1}^{m}\left|\pi_{j}-1\right|\right\| \mathbf{v}_{j} \mathbf{v}_{j}^{\top}\left\|_{1} \leq\right\| \sum_{j=1}^{m}\left|\pi_{j}-1\right| m=m \mathcal{C}(\mathbf{W})
$$

2.2 Proof of Lemma 1 in the Main Paper

Proof. Let $\mathcal{U}=\left\{u:(\mathbf{x}, \mathbf{y}) \rightarrow\|\mathbf{W}(\mathbf{x}-\mathbf{y})\|_{2}^{2}\right\}$ be the set of hypothesis $u(\mathbf{x}, \mathbf{y})=\|\mathbf{W}(\mathbf{x}-\mathbf{y})\|_{2}^{2}$, and $\mathcal{R}(\mathcal{U})$ be the Rademacher complexity (1) of \mathcal{U} which is defined as:

$$
\mathcal{R}(\mathcal{U})=\mathbb{E}_{S_{N}, \sigma} \sup _{u \in \mathcal{U}} \frac{1}{n} \sum_{n=1}^{N} \sigma_{n}\left\|\mathbf{W}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right)\right\|_{2}^{2}
$$

where $S_{N}=\left(\left(\mathbf{x}_{1}, \mathbf{y}_{1}, t_{1}\right),\left(\mathbf{x}_{2}, \mathbf{y}_{2}, t_{2}\right) \cdots\left(\mathbf{x}_{n}, \mathbf{y}_{n}, t_{N}\right)\right)$ are the training examples, $\sigma_{n} \in\{-1,1\}$ are the Rademacher variables, and $\sigma=\left(\sigma_{1}, \sigma_{2}, \cdots \sigma_{N}\right)$.

Lemma 3 shows that the generalization error can be bounded using the Rademacher complexity. Its proof is adapted from (1). Readers only need to notice $x+1$ is an upper bound of $\log (1+\exp (\mathbf{x}))$ for $x>0$.
Lemma 3. With probability at least $1-\delta$, we have

$$
\begin{equation*}
L(u)-\hat{L}(u) \leq 2 \mathcal{R}(\mathcal{U})+\sup _{\mathbf{x}, \mathbf{y}, \mathbf{W}^{\prime} \in \mathcal{W}}\left(\left\|\mathbf{W}^{\prime}(\mathbf{x}-\mathbf{y})\right\|_{2}^{2}+1\right) \sqrt{\frac{2 \log (1 / \delta)}{N}} \tag{14}
\end{equation*}
$$

We then bound $\mathcal{R}(\mathcal{U})$ and $\sup _{\mathbf{x}, \mathbf{y}, \mathbf{W}^{\prime} \in \mathcal{W}}\left\|\mathbf{W}^{\prime}(\mathbf{x}-\mathbf{y})\right\|_{2}^{2}$. The result is in the following lemma.
Lemma 4. Suppose $\sup _{(\mathbf{x}, \mathbf{y})}\|\mathbf{x}-\mathbf{y}\|_{2} \leq B_{0}$, then we have

$$
\mathcal{R}(\mathcal{U}) \leq \frac{2 B_{0}^{2} \sqrt{m}}{\sqrt{N}}(\widetilde{\mathcal{C}}(\mathcal{W})+1)
$$

and

$$
\sup _{\mathbf{x}, \mathbf{y}, \mathbf{W}^{\prime} \in \mathcal{W}}\left\|\mathbf{W}^{\prime}(\mathbf{x}-\mathbf{y})\right\|_{2}^{2} \leq(\widetilde{\mathcal{C}}(\mathcal{W})+m) B_{0}^{2}
$$

Proof. We first give bound on $\mathcal{R}(\mathcal{U})$. Let $\mathcal{R}(\mathcal{S})=\left\{s:(\mathbf{x}, \mathbf{y}) \rightarrow \sum_{j=1}^{m}\left|\left\langle\mathbf{w}_{j}, \mathbf{x}-\mathbf{y}\right\rangle\right|, \mathbf{W} \in \mathcal{W}\right\}$ be the set of hypothesis $s(\mathbf{x}, \mathbf{y})=\sum_{j=1}^{m}\left|\left\langle\mathbf{w}_{j}, \mathbf{x}-\mathbf{y}\right\rangle\right|$. Denote $\left|\left\langle\mathbf{w}_{j}, \mathbf{x}_{n}-\mathbf{y}_{n}\right\rangle\right|=\left\langle\mathbf{w}_{j}, a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right)\right\rangle$, where $a_{n, j} \in\{-1,1\}$. Then

$$
\mathcal{R}(\mathcal{S})=\mathbb{E}_{S_{N}, \sigma} \sup _{\mathbf{w} \in \mathcal{W}} \frac{1}{N} \sum_{n=1}^{N} \sigma_{n} \sum_{j=1}^{m}\left\langle\mathbf{w}_{j}, a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right)\right\rangle
$$

We first bound $\mathcal{R}(\mathcal{S})$.

$$
\begin{align*}
\mathcal{R}(\mathcal{S}) & =\mathbb{E}_{S_{N}, \sigma} \sup _{\mathbf{W} \in \mathcal{W}} \frac{1}{N} \sum_{j=1}^{m}\left\langle\mathbf{w}_{j}, \sum_{n=1}^{N} \sigma_{n} a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right)\right\rangle \\
& =\mathbb{E}_{S_{N}, \sigma} \sup _{\mathbf{W} \in \mathcal{W}} \frac{1}{N}\left\langle\sum_{j=1}^{m} \mathbf{w}_{j}, \sum_{n=1}^{N} \sigma_{n} a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right)\right\rangle \\
& \leq \mathbb{E}_{S_{N}, \sigma} \sup _{\mathbf{W} \in \mathcal{W}} \frac{1}{N}\left\|\sum_{j=1}^{m} \mathbf{w}_{j}\right\|_{2}\left\|\sum_{n=1}^{N} \sigma_{n} a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right)\right\|_{2} \\
& =\mathbb{E}_{S_{N}, \sigma} \sup _{\mathbf{W} \in \mathcal{W}} \frac{1}{N} \sqrt{\left\langle\sum_{j=1}^{m} \mathbf{w}_{j}, \sum_{j=1}^{m} \mathbf{w}_{j}\right\rangle} \sqrt{\left\langle\sum_{n=1}^{N} \sigma_{n} a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right), \sum_{n=1}^{N} \sigma_{n} a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right)\right\rangle} \tag{15}
\end{align*}
$$

Applying Jensen's inequality to Eq. 15), we have

$$
\begin{equation*}
\mathcal{R}(\mathcal{S}) \leq \mathbb{E}_{S_{N}} \sup _{\mathbf{W} \in \mathcal{W}} \frac{1}{N} \sqrt{\sum_{j, k=1}^{m}\left|\left\langle\mathbf{w}_{j}, \mathbf{w}_{k}\right\rangle\right|} \sqrt{\mathbb{E}_{\sigma}\left\langle\sum_{n=1}^{N} \sigma_{n} a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right), \sum_{n=1}^{N} \sigma_{n} a_{n, j}\left(\mathbf{x}_{n}-\mathbf{y}_{n}\right)\right\rangle} \tag{16}
\end{equation*}
$$

Combining Eq. 16) with the inequality $\sum_{j, k=1}^{m}\left|\left\langle\mathbf{w}_{j}, \mathbf{w}_{k}\right\rangle-\delta_{j, k}\right| \leq m \mathcal{C}(\mathbf{W})$, we have

$$
\begin{aligned}
\mathcal{R}(\mathcal{S}) & \leq \mathbb{E}_{S_{N}} \sup _{\mathbf{W} \in \mathcal{W}} \frac{1}{N} \sqrt{m \mathcal{C}(\mathbf{W})+m} \sqrt{\sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\mathbf{y}_{n}\right\|_{2}} \\
& \leq \frac{\sqrt{m}}{\sqrt{N}} \sup _{\mathbf{W} \in \mathcal{W}} \sqrt{(\mathcal{C}(\mathbf{W})+1)} B_{0}
\end{aligned}
$$

Let \mathbf{w} denote any column vector of $\mathbf{W} \in \mathcal{W}$ and \mathbf{x} denote any data example. According to the composition property of Rademacher complexity (Theorem 12 in (1)), we have

$$
\begin{aligned}
\mathcal{R}(\mathcal{U}) & \leq 2 \sup _{\mathbf{w}, \mathbf{x}}\langle\mathbf{w}, \mathbf{x}\rangle \mathcal{R}(\mathcal{S}) \\
& \leq 2 \sup _{\mathbf{w}}\|\mathbf{w}\|_{2} B_{0} \mathcal{R}(\mathcal{S}) \\
& \leq 2 \sup _{\mathbf{w}}\|\mathbf{w}\|_{1} B_{0} \mathcal{R}(\mathcal{S}) \\
& \leq 2 \sup _{\mathbf{w}^{\prime} \in \mathcal{W}}\left\|\mathbf{W}^{\prime}\right\|_{1} B_{0} \mathcal{R}(\mathcal{S}) \\
& \leq \frac{2 B_{0}^{2} \sqrt{m}}{\sqrt{N}} \sup _{\mathbf{w}^{\prime} \in \mathcal{W}}\left\|\mathbf{W}^{\prime}\right\|_{1} \sqrt{\widetilde{\mathcal{C}}(\mathcal{W})+1}
\end{aligned}
$$

Next we give bound on $\sup _{\mathbf{x}, \mathbf{y}, \mathbf{W}^{\prime} \in \mathcal{W}}\left\|\mathbf{W}^{\prime}(\mathbf{x}-\mathbf{y})\right\|_{2}^{2}$.

$$
\begin{aligned}
\sup _{\mathbf{x}, \mathbf{y}, \mathbf{W}^{\prime} \in \mathcal{W}}\left\|\mathbf{W}^{\prime}(\mathbf{x}-\mathbf{y})\right\|_{2}^{2} & \leq \sup _{\mathbf{w}^{\prime} \in \mathcal{W}} \sum_{j=1}^{m}\left\langle\mathbf{w}_{j}^{\prime}, \mathbf{w}_{j}^{\prime}\right\rangle \sup _{(\mathbf{x}, \mathbf{y})}\|\mathbf{x}-\mathbf{y}\|_{2}^{2} \\
& =\sup _{\mathbf{W}^{\prime} \in \mathcal{W}} \operatorname{tr}\left(\mathbf{W}^{\prime \top} \mathbf{W}^{\prime}\right) \sup _{(\mathbf{x}, \mathbf{y})}\|\mathbf{x}-\mathbf{y}\|_{2}^{2} \\
& \leq(\widetilde{\mathcal{C}}(\mathcal{W})+m) B_{0}^{2}
\end{aligned}
$$

Combining Lemma 4 with Lemma 3, we complete the proof of Lemma 1.

2.3 Proof of Lemma 2 in the Main Paper

Proof. The function $g(x)=x-\log (x+1)$ is decreasing on $(-1,0]$, increasing on $[0, \infty), g(0)=0$, and $g(-t)>g(t)$ for $\forall 0 \leq t<1$. We have

$$
\begin{aligned}
\Omega_{l d d}(\mathbf{W}) & =\operatorname{tr}\left(\mathbf{W}^{\top} \mathbf{W}\right)-\log \operatorname{det}\left(\mathbf{W}^{\top} \mathbf{W}\right)-m \\
& =\sum_{j=1}^{m} g\left(\pi_{j}-1\right) \\
& \geq \sum_{j=1}^{m} g\left(\left|\pi_{j}-1\right|\right) \\
& \geq g\left(\frac{1}{m} \sum_{j=1}^{m}\left|\pi_{j}-1\right|\right) m \\
& =g(\mathcal{C}(\mathbf{W}) / m) m
\end{aligned}
$$

The first inequality is due to $g(-t)>g(t)$, and the second inequality can be attained by Jensen's inequality. Finally we have

$$
g(\mathcal{C}(\mathbf{W}) / m) m \leq \Omega_{l d d}(\mathbf{W})
$$

Thus, we have

$$
\mathcal{C}(\mathbf{W}) \leq g^{-1}\left(\Omega_{l d d}(\mathbf{W}) / m\right) m
$$

References

[1] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2003.

