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1 Coordinate Descent Algorithm for Learning W

In each iteration of the CD algorithm, one basis vector is chosen for update while the others are fixed.
Without loss of generality, we assume it is w1. The sub-problem defined over w1 is

minw1

1
2

n∑
i=1

‖xi −
∑m
l=2 ailwl − ai1w1‖22 + λ2+λ3

2 ‖w1‖22 − λ3

2 logdet(W>W) + u>w1 + ρ
2‖w1 − w̃1‖22

(1)
To obtain the optimal solution, we take the derivative of the objective function and set it to zero. First,

we discuss how to compute the derivative of logdet(W>W) w.r.t w1. According to the chain rule, we have

∂logdet(W>W)

∂w1
= 2W(W>W)−1

:,1 (2)

where (W>W)−1
:,1 denotes the first column of (W>W)−1. Let W¬1 = [w2, · · · ,wm], then

W>W =

[
w>1 w1 w>1 W¬1

W>
¬1w1 W>

¬1W¬1

]
(3)

According to the inverse of block matrix[
A B
C D

]−1

=

[
Ã B̃

C̃ D̃

]
(4)

where Ã = (A − BD−1C)−1, B̃ = −(A − BD−1C)−1BD−1, C̃ = −D−1C(A − BD−1C)−1, D̃ = D−1 +
D−1C(A−BD−1C)−1BD−1, we have (W>W)−1

:,1 equals [a b>]> where

a = (w>1 w1 −w>1 W¬1(W>
¬1W¬1)−1W>

¬1w1)−1 (5)

b = −(W>
¬1W¬1)−1W>

¬1w1a (6)

Then
W(W>W)−1

:,1 =
[
w1 W¬1

] [a
b

]
= Mw1

w>
1 Mw1

. (7)

where
M = I−W¬1(W>

¬1W¬1)−1W>
¬1. (8)

To this end, we obtain the full gradient of the objective function in Eq.(1):∑n
i=1 ai1(ai1w1 +

∑m
l=2 ailwl − xi) + (λ2 + λ3)w1 − λ3

Mw1

w>
1 Mw1

+ ρ(w1 − w̃1) + u. (9)
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Setting the gradient to zero, we get

((
∑n
i=1 a

2
i1 + λ2 + λ3 + ρ)I− λ3M/(w>1 Mw1))w1 =

∑n
i=1 ai1(xi −

∑m
l=2 ailwl)− u + ρw̃1. (10)

Let γ = w>1 Mw1, c =
∑n
i=1 a

2
i1+λ2+λ3+ρ, b =

∑n
i=1 ai1(xi−

∑m
l=2 ailwl)−u+ρw̃j , then (cI− λ3

γ M)w1 = b

and w1 = (cI− λ3

γ M)−1b. Let UΣU> be the eigen decomposition of M, we have

w1 = γU(γcI− λ3Σ)−1U>b. (11)

Then
w>1 Mw1

= γ2b>U(γcI− λ3Σ)−1U>UΣU>U(γcI− λ3Σ)−1U>b
= γ2b>U(γcI− λ3Σ)−1Σ(γcI− λ3Σ)−1U>b

= γ2
d∑
s=1

(U>b)2sΣss

(rc−λ3Σss)2 = γ

(12)

The matrix A = W¬1(W>
¬1W¬1)−1W>

¬1 is idempotent, i.e., AA = A, and its rank is m− 1. According
to the property of idempotent matrix, the first m− 1 eigenvalues of A equal to one and the rest equal to
zero. Thereafter, the first m− 1 eigenvalues of M = I−A equal to zero and the rest equal to one. Based on
this property, Eq.(12) can be simplified as

γ

d∑
s=m

(U>b)2
s

(rc− λ3)2
= 1 (13)

After simplification, it is a quadratic function where γ has a closed form solution. Then we plug the solution
of γ into Eq.(11) to get the solution of w1.

2 Proofs

2.1 Proof of Equation (7) in the Main Paper
Proof. Let VΠV> be the eigen-decomposition of the Gram matrix G = W>W, where [v1, · · · ,vm] are the
eigenvectors and π1, · · · , πm are the eigenvalues. Then G − I = V(Π − I)V> =

∑m
j=1(πj − 1)vjv

>
j . By

Cauchy-Schwarz inequality, we have ‖vjv>j ‖1 ≤ (v>j vj) ·m = m. Thus,

‖G− I‖1 = ‖
m∑
j=1

(πj − 1)vjv
>
j ‖1 ≤ ‖

m∑
j=1

|πj − 1|‖vjv>j ‖1 ≤ ‖
m∑
j=1

|πj − 1|m = mC(W)

2.2 Proof of Lemma 1 in the Main Paper
Proof. Let U = {u : (x,y)→ ‖W(x− y)‖22} be the set of hypothesis u(x,y) = ‖W(x− y)‖22, and R(U) be
the Rademacher complexity (1) of U which is defined as:

R(U) = ESN ,σ sup
u∈U

1

n

N∑
n=1

σn‖W(xn − yn)‖22,

where SN = ((x1,y1, t1), (x2,y2, t2) · · · (xn,yn, tN )) are the training examples, σn ∈ {−1, 1} are the
Rademacher variables, and σ = (σ1, σ2, · · ·σN ).

Lemma 3 shows that the generalization error can be bounded using the Rademacher complexity. Its proof
is adapted from (1). Readers only need to notice x+ 1 is an upper bound of log(1 + exp(x)) for x > 0.

Lemma 3. With probability at least 1− δ, we have

L(u)− L̂(u) ≤ 2R(U) + sup
x,y,W′∈W

(‖W′(x− y)‖22 + 1)

√
2 log(1/δ)

N
. (14)
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We then bound R(U) and supx,y,W′∈W ‖W′(x− y)‖22. The result is in the following lemma.

Lemma 4. Suppose sup(x,y)‖x− y‖2 ≤ B0, then we have

R(U) ≤ 2B2
0

√
m√

N
(C̃(W) + 1),

and
sup

x,y,W′∈W
‖W′(x− y)‖22 ≤ (C̃(W) +m)B2

0

Proof. We first give bound on R(U). Let R(S) = {s : (x,y) →
∑m
j=1 |〈wj ,x − y〉|,W ∈ W} be the set of

hypothesis s(x,y) =
∑m
j=1 |〈wj ,x− y〉|. Denote |〈wj ,xn − yn〉| = 〈wj , an,j(xn − yn)〉, where an,j ∈ {−1, 1}.

Then

R(S) = ESN ,σ sup
W∈W

1

N

N∑
n=1

σn

m∑
j=1

〈wj , an,j(xn − yn)〉.

We first bound R(S).

R(S) = ESN ,σ sup
W∈W

1

N

m∑
j=1

〈wj ,
N∑
n=1

σnan,j(xn − yn)〉

= ESN ,σ sup
W∈W

1

N
〈
m∑
j=1

wj ,

N∑
n=1

σnan,j(xn − yn)〉

≤ ESN ,σ sup
W∈W

1

N
‖
m∑
j=1

wj‖2‖
N∑
n=1

σnan,j(xn − yn)‖2

= ESN ,σ sup
W∈W

1

N

√√√√〈 m∑
j=1

wj ,

m∑
j=1

wj〉

√√√√〈 N∑
n=1

σnan,j(xn − yn),

N∑
n=1

σnan,j(xn − yn)〉 (15)

Applying Jensen’s inequality to Eq.(15), we have

R(S) ≤ ESN
sup

W∈W

1

N

√√√√ m∑
j,k=1

|〈wj ,wk〉|

√√√√Eσ〈
N∑
n=1

σnan,j(xn − yn),

N∑
n=1

σnan,j(xn − yn)〉 (16)

Combining Eq.(16) with the inequality
∑m
j,k=1 |〈wj ,wk〉 − δj,k| ≤ mC(W), we have

R(S) ≤ ESN
sup

W∈W

1

N

√
mC(W) +m

√√√√ N∑
n=1

‖xn − yn‖2

≤
√
m√
N

sup
W∈W

√
(C(W) + 1)B0

Let w denote any column vector of W ∈ W and x denote any data example. According to the composition
property of Rademacher complexity (Theorem 12 in (1)), we have

R(U) ≤ 2 sup
w,x
〈w,x〉R(S)

≤ 2 sup
w
‖w‖2B0R(S)

≤ 2 sup
w
‖w‖1B0R(S)

≤ 2 sup
W′∈W

‖W′‖1B0R(S)

≤ 2B2
0

√
m√

N
sup

W′∈W
‖W′‖1

√
C̃(W) + 1
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Next we give bound on supx,y,W′∈W ‖W′(x− y)‖22.

sup
x,y,W′∈W

‖W′(x− y)‖22 ≤ sup
W′∈W

m∑
j=1

〈w′j ,w′j〉 sup
(x,y)

‖x− y‖22

= sup
W′∈W

tr(W
′>W′) sup

(x,y)

‖x− y‖22

≤ (C̃(W) +m)B2
0

Combining Lemma 4 with Lemma 3, we complete the proof of Lemma 1.

2.3 Proof of Lemma 2 in the Main Paper
Proof. The function g(x) = x − log(x + 1) is decreasing on(−1, 0], increasing on [0,∞), g(0) = 0, and
g(−t) > g(t) for ∀0 ≤ t < 1. We have

Ωldd(W) = tr(W>W)− log det(W>W)−m

=

m∑
j=1

g(πj − 1)

≥
m∑
j=1

g(|πj − 1|)

≥ g(
1

m

m∑
j=1

|πj − 1|)m

= g(C(W)/m)m

The first inequality is due to g(−t) > g(t), and the second inequality can be attained by Jensen’s inequality.
Finally we have

g(C(W)/m)m ≤ Ωldd(W).

Thus, we have
C(W) ≤ g−1(Ωldd(W)/m)m.
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