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1 Coordinate Descent Algorithm for Learning W

In each iteration of the CD algorithm, one basis vector is chosen for update while the others are fixed.
Without loss of generality, we assume it is wy. The sub-problem defined over wj is
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To obtain the optimal solution, we take the derivative of the objective function and set it to zero. First,

we discuss how to compute the derivative of logdet(W T W) w.r.t wi. According to the chain rule, we have
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where (W W) denotes the first column of (WTW)~1. Let W_; = [wg, -+, W,,], then
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According to the inverse of block matrix
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where A = (A —BD"!C)"!, B= —(A-BD"!C)"'BD!,C=-D"!C(A-BD!C)"},D=D"! +
D !C(A -BD'C)!BD}, we have (VVTVV):I1 equals [a b']T where
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a=(wiw—w W (W, W_)""Ww)™" (5)
b=—-(WI ,W_)"'W wa (6)
Then
WWTW) ! =[w; W_] m = . (7)
where
M=I-W_ (W, W_))"'WI. (8)

To this end, we obtain the full gradient of the objective function in Eq.:
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Setting the gradient to zero, we get
(Cim1af + A2 + A3+ o)L = MM/ (w] Mw1))wi = 330 an (xi — 2005 aawi) — u+ pwi. (10)

Lety=w{ Mwy,c=Y" a2+ o+A3+p, b =" ai1(x;—> oy ayyW;)—u+pw;, then (cI—%M)wl =b
and wy = (cI — %M)_lb. Let UXUT be the eigen decomposition of M, we have

wi = yU(yel — \3X) U b, (11)
Then
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= 'yZbTU(ch —33) 71 (vl - \3X2)71UTb (12)
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The matrix A = W_1 (W, W_;)"'W, is idempotent, i.e., AA = A, and its rank is m — 1. According
to the property of idempotent matrix, the first m — 1 eigenvalues of A equal to one and the rest equal to
zero. Thereafter, the first m — 1 eigenvalues of M = I — A equal to zero and the rest equal to one. Based on
this property, Eq. can be simplified as
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After simplification, it is a quadratic function where « has a closed form solution. Then we plug the solution
of « into Eq. to get the solution of wy.

2 Proofs

2.1 Proof of Equation (7) in the Main Paper

Proof. Let VIIV " be the eigen-decomposition of the Gram matrix G = W W, where [vy,--- ,Vv,,] are the
eigenvectors and 7y, -+ ,m,, are the eigenvalues. Then G — I = V(II - I)V' = Z;n:l(wj - 1)vjv;'—. By

Cauchy-Schwarz inequality, we have ||vjva||1 <(v]

; vj)-m=m. Thus,
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2.2  Proof of Lemma 1 in the Main Paper

Proof. Let U = {u: (x,y) — |[W(x —y)||3} be the set of hypothesis u(x,y) = [[W(x — y)||3, and R(U) be
the Rademacher complexity (1) of & which is defined as:
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where Sy = ((x1,¥1,t1), (X2,¥2,t2) -+ (Xp,¥n,tn)) are the training examples, o, € {—1,1} are the
Rademacher variables, and o = (01,09, - oN).

Lemma [3] shows that the generalization error can be bounded using the Rademacher complexity. Its proof
is adapted from (I}). Readers only need to notice x + 1 is an upper bound of log(1 + exp(x)) for z > 0.

Lemma 3. With probability at least 1 — §, we have

L(u) = L(u) <2RU) + sup ([W'(x—y)|3+1)
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We then bound R(U) and sup, , wrew [W'(x —y)[|3. The result is in the following lemma.

Lemma 4. Suppose sup y||x — y|l2 < By, then we have
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Proof. We first give bound on R(U). Let R(S) = {s: (x,y) = >_j=, [(w;,x —y)|, W € W} be the set of

hypothesis s(x,y) = ZT:l |[(w;,x —y)|. Denote |(W;,X;, — ¥n)| = (W, an;(Xn —¥n)), where a,, ; € {—1,1}.
Then
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We first bound R(S).
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Applying Jensen’s inequality to Eq.7 we have
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Combining Eq. with the inequality Z;"’kzl [(w;, wg) — 0, x| <mC(W), we have

N
1
R(S) <Eg, sup NVmC(W)—!—m g I%n — yaull2
wew n=1

< @ sup v/ (C(W) +1)Bg

N wew

Let w denote any column vector of W € W and x denote any data example. According to the composition
property of Rademacher complexity (Theorem 12 in (), we have

R(U) < 2sup(w,x)R(S)
< 2sup||w||2BoR(S)
< 2sup||w||1 BoR(S)

<2 Sup [[W'||1 BoR(S)

< Qfgﬁ sup [[W]1/COV



Next we give bound on sup, y, wrew W/ (x —y)|[3.
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Combining Lemma [4 with Lemma [3] we complete the proof of Lemma 1. O

2.3 Proof of Lemma 2 in the Main Paper

Proof. The function g(z) = x — log(x + 1) is decreasing on(—1,0], increasing on [0,00), ¢g(0) = 0, and
g(—t) > g(t) for V0 < t < 1. We have

Vga(W) = tr(W'TW) — log det(W' W) —m
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The first inequality is due to g(—t) > ¢(t), and the second inequality can be attained by Jensen’s inequality.
Finally we have

g(C(W)/m)m < Qga(W).

Thus, we have
C(W) < g_l(Qldd(W)/m)m.
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