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Abstract
A parametric point process model is developed,
with modeling based on the assumption that se-
quential observations often share latent phenom-
ena, while also possessing idiosyncratic effects.
An alternating optimization method is proposed to
learn a “registered” point process that accounts for
shared structure, as well as “warping” functions
that characterize idiosyncratic aspects of each ob-
served sequence. Under reasonable constraints,
in each iteration we update the sample-specific
warping functions by solving a set of constrained
nonlinear programming problems in parallel, and
update the model by maximum likelihood estima-
tion. The justifiability, complexity and robustness
of the proposed method are investigated in de-
tail, and the influence of sequence stitching on
the learning results is discussed empirically. Ex-
periments on both synthetic and real-world data
demonstrate that the method yields explainable
point process models, achieving encouraging re-
sults compared to state-of-the-art methods.

1. Introduction
The behavior of real-world entities often may be recorded
as event sequences; for example, interactions of participants
in a social network, the admissions of patients, and the job-
hopping behavior of employees. In practice, these behaviors
are under the control of complicated mechanisms, which
can be captured approximately by an appropriate parametric
temporal point process model. While the observed event
sequences associated with a given process (e.g., disease)
may share common (“standard”) attributes, there are often
subject-specific factors that may impact the observed data.
For example, the admission records of different patients
are always personalized: even if the patients suffer from
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Figure 1. The illustration of concepts in our work. The dotted
parts (parametric point process model, unwarped realizations and
warping functions) are what we aim to learn.

the same disease, they may spend unequal time on recov-
ery because their medications, history and environmental
conditions may be distinct. Another typical example is the
job-hopping behavior of employees. The employees in the
same company often make very different career plans de-
pending on their age, family situation and unobserved status
of the job market.

The examples above reveal that event sequences that share
an underlying temporal point process linked to a given phe-
nomenon of interest may be personalized by hidden idiosyn-
cratic factors, yielding a subject-specific “warping” along
timeline, as shown in Fig. 1. The characteristics of such
data often have a negative influence on the learning of the
target point process, i.e., increase the uncertainty of the
model. The complexity of models can be increased to fit the
personalized observations well, e.g., the locally-stationary
point processes in (Roueff et al., 2016; Mammen, 2017; Xu
et al., 2017a). However, from the viewpoint of model regis-
tration, it is desirable to separate the essential mechanism
of the model and idiosyncratic aspects of the data, such that
the final model is “registered” and characterizes the shared
phenomena, while also inferring what is sample-specific.

Learning registered point processes from idiosyncratic ob-
servations is a challenging problem, requiring one to jointly
learn a shared point process model and a set of sample-
specific warping functions corresponding to observed event
sequences. To solve this problem, we propose a novel and
effective learning method based on alternating optimization.
Specifically, in each iteration we first apply the inverse of
estimated warping functions (i.e., unwarping functions) to
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unwarp observed event sequences and learn the parameter
of a registered point process by maximum likelihood es-
timation; we then update the warping functions of event
sequences, based on the estimation of registered point pro-
cess. The new functions are applied to update the model for
the next iteration. In particular, we approximate the warp-
ing/unwarping functions of event sequences by piecewise
linear models, and learn their parameters by solving a set of
constrained nonlinear programming problems in parallel.

We analyze the justification and the complexity of our
method in detail. The meaning of the regularizers and
constraints used in our method and their effects are also
investigated. Furthermore, we consider to improve learning
results by stitching warped sequences randomly and learn-
ing from the stitched sequences, and verify the feasibility
of this data processing strategy empirically. Experimen-
tal results show that the proposed method outperforms its
competitors on both synthetic and real-world data.

2. Proposed Model
Denote a temporal point process as N . Its event sequence
consists of multiple events {(ti, ci)}Ii=1 with time stamps
ti ∈ [0, T ] and event types ci ∈ C = {1, ..., C}, which can
be represented as {Nc(t)}Cc=1, where Nc(t) is the number
of type-c events occurring at or before time t. A temporal
point process can be characterized by its intensity functions
{λc(t)}Cc=1, where λc(t) = E[dNc(t)|HCt ]/dt and HCt =
{(ti, ci)|ti < t, ci ∈ C} collects historical events before
time t. Each λc(t) represents the expected instantaneous
rate of the type-c event at time t, which can be parametrized
by a parameter θ. In this work, we assume that:

1. Exponential-like intensity: each λ(t) is an exponential-
like function

∑J
j=1 exptj (fj(t; θ,HCt )), where J ≥ 1, fj’s

are linear functions of time, which are related to θ and
historical observations. exptj (fj(t)) = exp(fj(t)) if t ≥
tj , otherwise, it equals to 0.

Note that many important point processes, e.g., the Hawkes
process (Hawkes & Oakes, 1974) and the self-correcting
process (Isham & Westcott, 1979) satisfy this assumption,
as shown in the Appendix. The sequences of a parametric
point processNθ may be warped in [0, T ] by a set of continu-
ous and invertible warping functions. Denote the sequences
and the corresponding warping functions as {Sm}Mm=1 and
{Wm}Mm=1, respectively. Each Sm = {(tmi , cmi )}Imi=1 con-
tains Im events, whose time stamps are deformed from a
“standard” timeline under the corresponding warping func-
tion Wm : [0, T ] 7→ [0, T ]. Accordingly, the unwarping
functions can be denoted as {W−1

m }Mm=1. We assume that
for m = 1, ...,M

2. Unbiasedness: E[W−1
m (t)] = t on [0, T ].

3. Regularity: W−1
m (t) is monotone increasing on [0, T ].

Taking the warping functions into account, the likelihood
of an (unobserved) unwarped sequence can be formulated
based on the intensity functions (Daley & Vere-Jones, 2007):

L(θ;W−1
m (Sm)) =

∏Im
i=1 λcmi (W−1

m (tmi ))

exp
(∑C

c=1

∫ T
0
λc(W

−1
m (s))ds

) , (1)

where W−1
m (Sm) represents the unwarped event sequence,

i.e., W−1
m (Sm) = {(W−1

m (tmi ), cmi )}Imi=1.

The warped data caused by idiosyncratic effects generally
do harm to the maximum likelihood estimation of the target
point process, except some trivial cases (See Appendix 9.2):

Proposition 2.1. For a temporal point process Nθ satisfy-
ing the assumption 3, θ̂∗ and θ̂ denote its maximum like-
lihood estimation based on original data and that based
on warped data, respectively. Then θ̂∗ = θ̂ if and only if
1) the warping functions are translations; or 2) Nθ is a
homogeneous Poisson process.

The problem is that given the warped observations
{Sm}Mm=1, we seek to learn a “registered” model θ, as well
as sample-specific warping functions {Wm}Mm=1 (or equiv-
alently, the unwarping functions {W−1

m }Mm=1) .

3. Learning Registered Point Processes
3.1. Maximizing the likelihood

We develop a learning method based on maximum likeli-
hood estimation (MLE). Considering the assumptions of
unwarping functions and the likelihood in (1), we can for-
mulate the optimization problem as

min
θ,{Wm}

−
∑

m
logL(θ;W−1

m (Sm)) + γR({W−1
m })

s.t. 1) W−1
m (0) = 0, W−1

m (T ) = T, and

2) W−1
m
′
(t) > 0 for m = 1, ...,M,

(2)

whereW−1
m
′
(t) =

dW ′m
dt is the derivative of unwarping func-

tion. In our objective function, the first term represents
the negative log-likelihood of unwarped event sequences
while the second term represents the regularizer imposed
on unwarping functions. For each unwarping function, the
first constraint corresponds to its range and the second con-
straint makes it obey the regularity assumption. Further-
more, according to the unbiasedness assumption, we apply
the following regularizer:

R({W−1
m }) =

∫ T

0

∣∣∣ 1

M

∑M

m=1
W−1
m (s)− s

∣∣∣2ds. (3)

The optimization problem in (2) is non-convex and has a
large number of unknown variables. Solving it directly is
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intractable. Fortunately, for the parametric point processes
with exponential-like intensity functions, we can design an
effective alternating optimization method to solve the prob-
lem iteratively, after parameterizing the warping functions
as piecewise linear functions. In each iteration, we first
maximize the likelihood of the unwarped sequences based
on the estimation of warping functions, and then optimize
the warping functions based on the estimated model.

Specifically, in the k-th iteration, given the warping func-
tions estimated in the previous iteration, i.e., {W k−1

m }Mm=1,
we learn the target point process by

θk = arg minθ −
∑M

m=1
logL(θ; (W k−1

m )−1(Sm)). (4)

Focusing on different point processes, we can apply various
optimization methods to solve this problem. For example,
learning Hawkes processes can be achieved in the frame-
work of expectation-maximization (EM) (Lewis & Mohler,
2011; Zhou et al., 2013), which is equivalent to a projected-
gradient-ascent algorithm. For other kinds of parametric
point processes, e.g., the self- and mutually-correcting pro-
cesses, we can learn their parameters by gradient descent or
stochastic gradient descent (SGD).

3.2. Learning warping/unwarping functions

Given θk, we need to update the warping/unwarping func-
tions. To simplify the problem and accelerate our learning
method, we take advantage of the warping functions es-
timated in the previous iteration, i.e., {W k−1

m }Mm=1, and
decompose the problem into M independent problems: for
m = 1, ...,M , W k

m is the solution of

minWm − logL(θk;W−1
m (Sm))

+ γ

∫ T

0

∣∣∣W−1
m (s)

M
+

∑
m′ 6=m(W k−1

m′ )−1(s)

M
− s
∣∣∣2ds

s.t. W−1
m (0) = 0, W−1

m (T ) = T, W−1
m
′
(t) > 0.

(5)

Solving these problems is non-trivial, requiring further
parameterization of the warping functions {Wm}Mm=1, or
equivalently, the unwarping functions {W−1

m }Mm=1.

We apply a set of piecewise linear models to fit the un-
warping functions, for the convenience of mathematical
derivation and computation. Specifically, given L land-
marks {t1, ..., tL} in [0, T ], where t1 = 0, tL = T and
tl < tl+1, we model W−1

m for m = 1, ...,M as

W−1
m (t) = aml t+ bml , if t ∈ [tl, tl+1). (6)

Denoting am = {aml }
L−1
l=1 and bm = {bml }

L−1
l=1 as the

parameters of the model, we rewrite the regularizer and the

constraints of W−1
m as∫ T

0

∣∣∣W−1
m (s)

M
+

∑
m′ 6=m(W k−1

m′ )−1(s)

M
− s
∣∣∣2ds

→
∥∥∥ 1

M
am + am̄

∥∥∥2

2
+
∥∥∥ 1

M
bm + bm̄

∥∥∥2

2
,

W−1
m (0) = 0→ bm1 = 0,

W−1
m (T ) = T → amL−1T + bmL−1 = T,

W−1
m
′
(t) > 0→ aml > 0 for l = 1, ..., L− 1,

(7)

where ‖ · ‖2 indicates the `2 norm of a vector, am̄ =∑
m′ 6=m am′,k−1

M − 1 and bm̄ =
∑

m′ 6=m bm′,k−1

M . am
′,k−1

and bm
′,k−1 are estimated in the previous iteration. To guar-

antee continuity of W−1
m , we further impose the following

constraints on am and bm: for l = 1, ..., L− 2,

aml tl+1 + bml = aml+1tl+1 + bml+1. (8)

Based on the piecewise linear model and the exponential-
like intensity assumption, we propose a tight upper bound
for the negative log-likelihood in (5):

− logL(θk;W−1
m (Sm))

=

C∑
c=1

∫ T

0

λc(W
−1
m (s))ds−

Im∑
i=1

log λcmi (W−1
m (tmi ))

≤
∑C

c=1

∫ T

0

λc(s)dWm(s)

−
∑Im

i=1

∑Ji

j=1
qmij log(λcmi (W−1

m (tmi ))/qmij )

=

L−1∑
l=1

[
pml
aml
−

J∑
j=1

∑
tmi ∈[tl,tl+1)

qmij fj(a
m
l t

m
i + bml )

]
+ C

=Q(am, bm).

(9)

Here, λcmi (W−1
m (tmi )) =

∑J
j=1 exp(fj(W

−1
m (tmi ); θk)),

the coefficients pml =
∑
c

∫W−1
m (tl+1)

W−1
m (tl)

λc(s)ds, qmij =

exp(fj(W−1
m (tmj )))

λcm
i

(W−1
m (tmi ))

and C is the constant independent toW−1
m .

The inequality is based on Jensen’s inequality and the
{pml , qmij } are calculated based on the parameters estimated
in the previous iteration. The detailed derivation and the im-
plementation for Hawkes process are given in Appendix 9.3
and 9.4. Considering (7, 8, 9) together, we propose the
surrogate problem of (5):

min
am,bm

Q(am, bm) + γ
∥∥∥am
M

+ am̄
∥∥∥2

2
+ γ
∥∥∥bm
M

+ bm̄
∥∥∥2

2

s.t. 1) bm1 = 0, amL−1T + bmL−1 = T,

2) for l = 1, ..., L− 1, aml > 0, and
3) aml tl+1 + bml = aml+1tl+1 + bml+1.

(10)
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(10) is a typical constrained nonlinear programming prob-
lem. Many optimization methods can be applied here, e.g.,
sequential quadratic programming and an interior-point
method. Note that after getting optimal am and bm, we
need to re-calculate the {pml , qmij } in Q and solve (10) itera-
tively until the objective function converges.

Repeating the two steps above, we estimate the model and
the warping/unwarping functions effectively.

3.3. Justifiability Analysis

The reasons for applying piecewise linear models to warping
functions are twofold. First, our learning method involves
the computation of unwarping function W−1

m and the deriva-
tive of warping functionW

′

m. Applying our piecewise linear
model, both warping and unwarping functions can be rep-
resented explicitly. If we use other basis functions, e.g.,
Gaussian basis, to represent Wm (or W−1

m ), the W−1
m (or

W
′

m) may be hard to be represented in closed-form. Second,
compared to the finite element analysis used in functional
optimization and differential equations, which discretizes
functions into many grids, our piecewise linear model re-
quires much fewer parameters, which reduces the risk of
over-fitting and the computational complexity.

Complexity Consider a C-dimensional Hawkes process as
an example. We implement the MLE step and the updating
of unwarping functions via an EM-based framework (Zhou
et al., 2013) and an interior-point method (Potra & Wright,
2000), respectively. Given M sequences with I events in
each, the computational complexity of our method per it-
eration in the worst case is O(MI2 + C2 + ML3). The
O(MI2) and O(C2) correspond to the computational com-
plexity of the E-step and the M-step, and the O(ML3) cor-
responds to the computational complexity of solving M
nonlinear programming with 2L variables per each in the
worst case. Because we update unwarping functions by solv-
ing M independent optimization problems in parallel, the
time complexity of our method can beO(MI2 +C2 +L3).

Convergence Our learning method converges in each step.
For parametric point processes like Hawkes processes, their
likelihood functions are convex and the convergence of the
MLE-step is guaranteed. Further, the objective function in
(10) is convex, as shown in Appendix 9.5, thus updating of
the unwarping functions also converges well.

Compared with existing point process registration methods,
e.g., the Wasserstein learning-based registration method
(WLR) (Bigot et al., 2012; Panaretos & Zemel, 2016;
Zemel & Panaretos, 2017) and the multi-task learning-based
method (MTL) (Luo et al., 2015), our RPP method has sev-
eral advantages. First, both the WLR and the MTL require
learning a specific model for each event sequence. For com-
plicated multi-dimensional point processes, they require a
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large amount of events per sequence to learn reliable mod-
els independently, which might be unavailable in practice.
Our method has much fewer parameters, and thus has much
lower computational complexity and lower risk of over-
fitting. Second, both the WLR and the MTL decompose
the learning of model and warping functions into two inde-
pendent steps. The estimation error caused in the previous
step will propagate to the following one. On the contrary,
our method optimizes model and warping functions alterna-
tively with guaranteed convergence, so the estimation error
will be suppressed iteratively.

4. Potential Improvement Based on Stitching
Empirically, the influence of warped data on learning re-
sults is correlated with the distortion of warping function
compared to identity function. The distortion should be a
measurement not only dependent with the difference be-
tween warping function and identity function but also re-
lated to the scale of time window because the distortion
on a certain scale becomes ignorable when we observe and
analyze it on a larger scale. In particular, we propose a defi-
nition the distortion as D = ‖W (t)−t‖∞

T in this work. Here,
‖W (t)− t‖∞ = max{|W (t)− t|, ∀t ∈ [0, T ]}, which rep-
resents the most serious warping achieved by the warping
function, and T is the length of time window. In Fig. 2, we
show that the distortion based on this definition is highly
correlated with the relative estimation error (i.e., ‖θ

∗−θ‖2
‖θ‖2 ,

where θ is the ground truth and θ∗ is the estimation result).

This relationship ‖θ
∗−θ‖2
‖θ‖2 ∝ D implies a potential strat-

egy to further improve our learning results. Suppose that
we have two warped sequences S1 = {(t1i , c1i )}

I1
i=1 and

S2 = {(t2i , c2i )}
I2
i=1 observed in the time window [0, T ],

whose distortions are D1 and D2, respectively. If we
stitch these two sequences together, i.e., S = S1 ∪ §2 =
{(t11, c11), ..., (t21 + T, c21), ...}, the distortion of the new se-
quence in [0, 2T ] will be D = 1

2 max{D1, D2}. Accord-
ing to the relationship above, learning from the stitched
sequence may help us obtain lower estimation error than
learning from the separated two sequences.

Note that for memoryless point processes like Poisson pro-
cesses, such a stitching-based learning strategy will not
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cause model misspecification because the stitched sequence
obeys the same model with the original short sequences.
However, for more complicated model like Hawkes pro-
cesses or self-correcting processes, the stitching operation
may introduce nonexistent triggering patterns. In such a
situation, our stitching-based learning strategy suppresses
the influence of warping function while rises the risk of
model misspecification as an exchange. Fortunately, as dis-
cussed in (Xu et al., 2017a), when the intensity function is
exponential-like function, the model misspecification prob-
lem is ignorable with a small number of stitching operations.
The experiments in the experimental section further verifies
the feasibility of our method.

5. Related Work
5.1. Temporal point processes

Point processes have been proven to be useful in many
applications, e.g., financial analysis (Bacry et al., 2012),
social network analysis (Zhou et al., 2013; Zhao et al., 2015),
information system analysis (Xu et al., 2016) and clinical
data analysis (Xu et al., 2017b). However, most existing
work does not consider registering warped parametric point
processes. The methods in (Lewis & Mohler, 2011; Yan
et al., 2015) try to estimate time scaling parameters for
their point processes, but they are only available for the
Hawkes processes whose event sequences share the same
linear transformation of time. The work in (Luo et al., 2015)
is able to jointly learn different Hawkes processes by multi-
task learning, but it does not register its learning results or
learn sample-specific warping functions.

5.2. Data registration and model registration

As aforementioned, the idiosyncratic aspects of sequential
data may be viewed in terms of a sample-specific “warping”
of a common latent phenomena, which can be registered
based on learned or predefined transformations. Typical
methods include the dynamic time warping (DTW) (Berndt
& Clifford, 1994; Moeckel & Murray, 1997) and its vari-
ants (Wang et al., 2016; Cuturi & Blondel, 2017; Ram-
say & Li, 1998), the self-modeling registration method
(SMR) (Gervini & Gasser, 2004), the moment-based method
(MBM) (James, 2007), the pairwise curve synchronization
method (PACE) (Tang & Müller, 2008), and the functional
convex averaging (FCA) method (Liu & Müller, 2004).
These methods can be categorized in the same framework –
the registered curves and the corresponding warping func-
tions are learned alternatively based on a nonlinear least-
squares criterion. Instead of using the Euclidean metric, the
recent work in (Srivastava et al., 2011) obtains better data
registration results by using the Fisher-Rao metric (FRM).
For those nonparametric models like Gaussian processes,
warping data is beneficial to improve the robustness of learn-

ing methods (Snelson et al., 2004; Cunningham et al., 2012;
Snoek et al., 2014; Herlands et al., 2016).

The work in (Panaretos & Zemel, 2016; Zemel & Panaretos,
2017) proposes a model-registration method. Specifically,
the unregistered distributions of warped observations are
first estimated by nonparametric models, and then the reg-
istered point process are estimated as the barycenter of the
distributions in Wasserstein space (Muskulus & Verduyn-
Lunel, 2011). Finally, the warping function between any
unregistered distribution and the registered one is learned
as an optimal transport (Anderes et al., 2016). However,
all the methods above focus on warping/unwarping con-
tinuous curves in a nonparametric way, which are hard to
register parametric point processes from idiosyncratic event
sequences. The recent combination of Wasserstein learning
and neural networks (Arjovsky et al., 2017; Xiao et al., 2017)
achieves encouraging improvements on learning robust gen-
erative models from imperfect observations. However, the
neural network-based model requires many time-consuming
simulation steps in the learning phase, and cannot in general
learn explicit warping functions.

6. Experiments
Denote our point process registering method and its variant
assisted with stitching operation as RPP and RPP-stitch,
respectively To demonstrate the feasibility and effective-
ness of the proposed methods, we compare them to existing
point process learning and registration methods on both
synthetic and real-world datasets. In particular, we com-
pare to the following methods: purely maximum likelihood
estimation based on warped observations (Warped); the
multi-task learning-based method (MTL) (Luo et al., 2015);
and the Wasserstein learning-based registration method
(WLR) (Panaretos & Zemel, 2016). Specifically, the MTL
method learns specific parametric point processes jointly
from warped event sequences with low-rank and sparse
regularizers, and averages the learned parameters over all
event sequences in the Euclidean space. The WLR is the
state-of-the-art model registration method focusing on point
processes and their warped event sequences. To apply the
WLR method to learn parametric point process models, we
first follow the work in (Panaretos & Zemel, 2016), learning
the densities of observed events by kernel density estimation
(KDE) (Sheather & Jones, 1991), and learning the warping
functions by finding the optimal transport between the den-
sities and their barycenter in the Wasserstein space. Finally,
we apply the reversed warping functions to unwarp the ob-
servations and learn a parametric point process.

6.1. Synthetic data

We simulate an 1D inhomogeneous Poisson process and
a 4-dimensional Hawkes process, respectively. For each
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Figure 3. Comparisons for various methods on synthetic data.

synthetic data set, we generate 200 event sequences in the
time window [0, 100] using Ogata’s thinning method (Ogata,
1981) and divide them equally into a training set and a test-
ing set. The intensity function of the Poisson process is
represented as

∑5
j=1 exptj (−(t − tj)), where tj is uni-

formly sampled from [0, 100], while the intensity function
of the Hawkes process is defined as the model in (Zhou
et al., 2013). Each sequence in the training set is modified
by a specific warping function. The warping functions are
visualized in Fig. 3(a), in which each color curve represents
a warping function and the black bold curve represents the
average of all the functions. The generation method of the
warping functions is given in Appendix 9.6. It ensures that
both the warping and the unwarping functions are mono-
tone increasing and the averaged warping and unwarping
functions are close to an identity function.

Given the training data, we can learn registered point process
models by different methods and evaluate their performance
on 1) the relative estimation error; and 2) the log-likelihood
of testing set. For each method, we test it in 5 trials on the
two data sets, respectively, and visualize its averaged results
in Figs. 3(b) and 3(c). The black bold curves correspond to
the MLE based on unwarped data, which achieves the best
performance (i.e., the lowest estimation error and the high-
est log-likelihood), while the black dot curves correspond to
the MLE based on warped data. The performance of a good
registration method should be much better than the black
dot curves and approach to the block bold curves. Our RPP
method achieves superior performance to MTL and WLR.
The performance of MTL is even worse than that of apply-
ing MLE to warped data directly, especially in the case with
few training data. This result implies that 1) the sparse and
low-rank structure imposed in the multi-task learning phase
cannot reflect the actual influence of warped data on the dis-
tribution of parameters; and 2) the average of the parameters
in the Euclidean space does not converge well to the ground
truth. The performance of WLR is comparable to that of
applying MLE to warped data directly, which verifies our
claim that the WLR is unsuitable for learning complicated
point processes when observations are not sufficient enough.
Both MTL and WLR reply on a strategy of learning a spe-
cific model for each event sequence, and then averaging the

models in a predefined space. This strategy ignores a fact
that the number of events in a single event sequence is often
insufficient to learn a reliable model in practice. Our RPP
method, by contrast, learns a single registered model and all
warping functions jointly in an iterative manner, rather than
in independent steps. As a result, our method suppresses
the risk of over-fitting and achieves much better results. Fur-
thermore, we illustrate the learning process of a warping
function in Fig. 3(d) and verify the convergence of our RPP
method. The black bold curve corresponds to the ground
truth and the blue line is the initialization of our estimation.
Applying our RPP method, the learning result converges
after 7 iterations and the final estimation of the warping
function approaches the ground truth.

The usefulness of the stitching strategy is tested as well. In
particular, the “RPP-Stitch K” means that for each event
sequence we randomly stitch it with K other event se-
quences and then apply our RPP method to the 200 stitched
sequences in the time window [0, 100(K + 1)]. We can
find that for both Poisson processes and Hawkes processes,
“RPP-Stitch 1” obtains better results than original RPP
method, which verifies the improvements caused by the
stitching strategy. Another advantage of the stitching strat-
egy is improving the stability of our learning results, espe-
cially in the cases with small training sets. Given 20 training
sequences, the standard deviation of the estimation errors
in 5 trial is 0.053 for original RPP, 0.037 for “RPP-Stitch
1” and 0.033 for “RPP-Stitch 2”. However, for Poisson
processes the improvements can be further enhanced by
applying stitching operations multiple times (i.e., K = 2),
while for Hawkes processes the improvements are almost un-
changed. As we discussed in Section 4, applying too many
stitching operations to the historically-dependent point pro-
cesses may cause model misspecification and counteract the
benefits from suppressing distortions.

6.2. Real-world data

We test our methods and compare it with the WLR on two
real-world datasets: the MIMIC III dataset (Johnson et al.,
2016) and the Linkedin dataset (Xu et al., 2017a). The
MIMIC III dataset contains over ten thousand patient ad-
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mission records over ten years. Each admission record is
a sequence, with admission time stamps and the ICD-9
codes of diseases. Following (Xu et al., 2017a), we assume
that there are triggering patterns between different diseases,
which can be modeled by a Hawkes process. We focus on
modeling the triggering patterns between the diseases of the
circulatory system, which are grouped into 8 categories. We
extract 1, 129 admission records related to the 8 categories
as the training set. Each record can be viewed as an event
sequence warped from a “standard” record because of the
idiosyncratic nature of different patients. For the Linkedin
dataset, we extract 709 users having working experience in
7 IT companies. Similarly, the timeline of different users
can be different, because they have different working ex-
perience and personal conditions, and the status of the job
market when they jump is different as well. We want to learn
a “standard” Hawkes process to measure the relationships
among the companies and exclude these uncertain factors.

We apply different model registration methods to learn reg-
istered Hawkes processes from the two real-world datasets.
The evaluation is challenging because both the ground truth
of the model and that of the warping functions are unknown.
Fortunately, we can use learning results to evaluate the risks
of under- and over-registration for different methods in an
empirical way. Given unwarped event sequences estimated
by different methods, we learn the parameter of model θ∗

and estimate its variance var(θ∗) by parametric bootstrap-
ping (Wassermann, 2006). For the method with a lower risk
of under-registration, its learning result should be more sta-
ble and the estimated variance should be smaller. Therefore,
we can use the estimated variance as a metric for the risk
of under-registration, i.e., riskunder = var(θ∗). We define
the following metric to evaluate the risk of over-registration:

riskover =
∫ T
0
|s−W (s)|2ds

1
M

∑M
m=1

∫ T
0
|Wm(s)−W (s)|2ds , where W (s) =

1
M

∑
mWm(s). The numerator is the distance between the

mean of warping functions and an identity function, and the
denominator is the variance of warping functions. When
the estimated warping functions have a small variance (i.e.,
the warping functions are similar to each other) but are very
distinct from identity function (i.e., the bias of the warping
functions is large), it means that the corresponding method
causes over-registration.

The side information of the dataset is also helpful to evaluate
the appropriateness of the learning result. In Fig. 4(a), most
of the admission records in the MIMIC III dataset are from
relatively old patients. The incidence of circulatory system
diseases is mainly correlated with patient age. Learning a
“standard” patient model from a dataset dominated by old
patients, we can imagine that the admission record of an
old patient should be more similar to that of the “standard”
patient, and the corresponding warping function should be
closer to the identity function. Therefore, given the devi-

Table 1. Comparison for various methods.
Data Method riskunder riskover Rank Corr.

MIMIC-III
WLR 0.018 0.055 0.025
RPP 0.011 0.009 0.053

RPP-Stitch1 0.003 0.002 0.053

LinkedIn
WLR 0.029 0.657 0.344
RPP 0.025 0.010 0.375

RPP-Stitch1 0.005 0.006 0.387

ations between learned warping functions and the identity
function, we can calculate the Kendall’s rank correlation
between the warping deviations and the ages of the patients.
Similarly, in Fig. 4(b), most of samples in the Linkedin
dataset are from young users with 4 or fewer working years,
so these young users’ behaviors should likely be close to
that of the “standard” job-hopping model learned from the
data, and the warping deviations should be correlated with
the working years.

Table 1 shows the comparison between our methods (RPP
and RPP-Stitch1) and the WLR method on these two
datasets. We find that our RPP method outperforms WLR
consistently on different metrics and different datasets,
obtaining lower risks of under- and over-registration and
higher rank correlation. In particular, the low risk of under-
registration means that the parameter θ∗ learned by our
method is stable. The low risk of over-registration means
that the warping/unwarping functions we learned have good
diversity and low bias. The high rank correlation verifies
the justifiability of our method – the warping deviations
of dominant samples (i.e., the old patients in MIMIC III
and young employees in Linkedin data) are smaller than
those of minor samples (i.e., the young patients and the old
employees). Similar to the case of synthetic data, applying
stitching strategy once, we can further improve the learning
results.

Figures 4(c) and 4(d) compare the infectivity matrices1 of
the registered Hawkes processes and the warping functions
learned by WLR and our RPP-Stitch1 for the two datasets.
These results further verify the superiority of our method.
First, the warping/unwarping functions we learned have
good diversity and the bias of the functions is lower than
than that of the functions learned by WLR. Second, the infec-
tivity matrices learned by our RPP-Stitch1 are more dense
and informative, which reflect some reasonable phenomena
that are not found by WLR. For the MIMIC III data, the
infectivity matrix of WLR only reflects the self-triggering
patterns of the disease categories, while ours is more infor-
mative: the 5-th row of our matrix (the bottom-left subfigure
in Fig. 4(c)) corresponds to the category “other forms of
heart disease” (ICD-9 code 420-429), which contains many

1Infectivity matrix is denoted as Ψ = [ψcc′ ]. Its element is the
integral of impact function over time, i.e., ψcc′ =

∫ T

0
φcc′(s)ds.
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Figure 4. Experimental results of our method on real-world datasets. In (c) and (d), the first row corresponds to the infectivity matrix and
the warping functions learned by WLR, and the second row corresponds to those learned by our RPP-Stitch1. The black bold curves are
the average of warping functions.
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Figure 5. Illustration of robustness.

miscellaneous heart diseases and has complicated relation-
ships with other categories. Our learning result reflects this
fact – the 5-th row of our infectivity matrix contains many
non-zero elements. For the Linkedin data, the infectivity
matrix of our method reveals more information besides the
self-triggering patterns: 1) The values of “Facebook-Google”
and “Google-Facebook” imply that job-hopping behaviors
happen frequently between Facebook and Google, which
reflects fierce competition between these companies. 2) The
values of “Facebook-Nvidia” and “Google-Nvidia” reflect
the fact that recent years many Nvidia’s employees jump to
Google and Facebook to develop the hardware of AI. More
detailed analysis are given in Appendix 9.7.

6.3. Robustness analysis

We investigate the robustness of our method to variations
in its parameters, including the weight of regularizer γ and
the number of landmarks L. In particular, we learn models
from the synthetic data by our method with different config-
urations, and visualize the estimation errors with respect to
these two parameters in Fig. 5. The weight γ controls the
importance of the regularizer, which is correlated with the

strictness of the unbiasedness assumption. The larger γ, the
more similarity we have between unwarping function and
identity function. In Fig. 5(a) we find that our method is
robust to the change of γ in a wide range (i.e., from 10−3 to
1). When γ is too small (i.e., γ = 10−3), however, the esti-
mation error increases because the regularizer is too weak
to prevent over-registration. The number of landmarks L
has an effect on the representation power of our method.
In Fig. 5(b), we find that the lowest estimation error is
achieved when the number of landmarks L = 20. When L
is too small, our piecewise linear model is over-simplified
and cannot fit complicated warping functions well. When L
is too large, (10) has too many variables and the updating of
warping function suffers to the problem of over-fitting.

7. Conclusions and Future work
We have proposed an alternating optimization method to
learn parametric point processes from idiosyncratic observa-
tions. We demonstrate its justifiability and advantages rela-
tive to existing methods. Additionally, we also consider the
influence of the stitching operation on the learning results
and show the potential benefits empirically. Our method has
potentials to many applications, including admission data
analysis and job-hopping behavior analysis. In the future,
we plan to extend our method to more complicated point
process models and analyze the influence of the stitching
operation theoretically.

8. Acknowledgment
This work was supported in part by DARPA, DOE, NIH,
ONR, NSF, IIS-1717916 and CMMI-1745382. We thank
Yoav Zemel for discussions and comments about this work.



Learning Registered Point Processes from Idiosyncratic Observations

References
Anderes, E., Borgwardt, S., and Miller, J. Discrete Wasser-

stein barycenters: optimal transport for discrete data.
Mathematical Methods of Operations Research, 84(2):
389–409, 2016.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein
GAN. arXiv preprint arXiv:1701.07875, 2017.

Bacry, E., Dayri, K., and Muzy, J.-F. Non-parametric kernel
estimation for symmetric Hawkes processes. application
to high frequency financial data. The European Physical
Journal B, 85(5):1–12, 2012.

Berndt, D. J. and Clifford, J. Using dynamic time warping
to find patterns in time series. In KDD workshop, 1994.

Bigot, J., Klein, T., et al. Consistent estimation of a popula-
tion barycenter in the Wasserstein space. ArXiv e-prints,
2012.

Cunningham, J., Ghahramani, Z., and Rasmussen, C. E.
Gaussian processes for time-marked time-series data. In
AISTATS, 2012.

Cuturi, M. and Blondel, M. Soft-dtw: a differen-
tiable loss function for time-series. arXiv preprint
arXiv:1703.01541, 2017.

Daley, D. J. and Vere-Jones, D. An introduction to the
theory of point processes: volume II: general theory and
structure, volume 2. Springer Science & Business Media,
2007.

Gervini, D. and Gasser, T. Self-modelling warping func-
tions. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 66(4):959–971, 2004.

Hawkes, A. G. and Oakes, D. A cluster process repre-
sentation of a self-exciting process. Journal of Applied
Probability, 11(3):493–503, 1974.

Herlands, W., Wilson, A., Nickisch, H., Flaxman, S., Neill,
D., Van Panhuis, W., and Xing, E. Scalable gaussian
processes for characterizing multidimensional change
surfaces. In AISTATS, 2016.

Isham, V. and Westcott, M. A self-correcting point process.
Stochastic Processes and Their Applications, 8(3):335–
347, 1979.

James, G. M. Curve alignment by moments. The Annals of
Applied Statistics, pp. 480–501, 2007.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H.,
Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi,
L. A., and Mark, R. G. MIMIC-III, a freely accessible
critical care database. Scientific data, 3, 2016.

Lewis, E. and Mohler, G. A nonparametric EM algorithm for
multiscale Hawkes processes. Journal of Nonparametric
Statistics, 1(1):1–20, 2011.

Liu, X. and Müller, H.-G. Functional convex averaging and
synchronization for time-warped random curves. Journal
of the American Statistical Association, 99(467):687–699,
2004.

Luo, D., Xu, H., Zhen, Y., Ning, X., Zha, H., Yang, X.,
and Zhang, W. Multi-task multi-dimensional Hawkes
processes for modeling event sequences. In IJCAI, 2015.

Mammen, E. Nonparametric estimation of locally station-
ary hawkes processe. arXiv preprint arXiv:1707.04469,
2017.

Moeckel, R. and Murray, B. Measuring the distance between
time series. Physica D: Nonlinear Phenomena, 102(3-4):
187–194, 1997.

Muskulus, M. and Verduyn-Lunel, S. Wasserstein distances
in the analysis of time series and dynamical systems.
Physica D: Nonlinear Phenomena, 240(1):45–58, 2011.

Ogata, Y. On Lewis’ simulation method for point processes.
IEEE Transactions on Information Theory, 27(1):23–31,
1981.

Panaretos, V. M. and Zemel, Y. Amplitude and phase varia-
tion of point processes. The Annals of Statistics, 44(2):
771–812, 2016.

Potra, F. A. and Wright, S. J. Interior-point methods. Jour-
nal of Computational and Applied Mathematics, 124(1):
281–302, 2000.

Ramsay, J. O. and Li, X. Curve registration. Journal of the
Royal Statistical Society: Series B (Statistical Methodol-
ogy), 60(2):351–363, 1998.

Roueff, F., Von Sachs, R., and Sansonnet, L. Locally sta-
tionary hawkes processes. Stochastic Processes and their
Applications, 126(6):1710–1743, 2016.

Sheather, S. J. and Jones, M. C. A reliable data-based
bandwidth selection method for kernel density estima-
tion. Journal of the Royal Statistical Society. Series B
(Methodological), pp. 683–690, 1991.

Snelson, E., Ghahramani, Z., and Rasmussen, C. E. Warped
gaussian processes. In NIPS, 2004.

Snoek, J., Swersky, K., Zemel, R., and Adams, R. Input
warping for bayesian optimization of non-stationary func-
tions. In ICML, 2014.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E., and Marron,
J. Registration of functional data using Fisher-Rao metric.
arXiv preprint arXiv:1103.3817, 2011.



Learning Registered Point Processes from Idiosyncratic Observations

Tang, R. and Müller, H.-G. Pairwise curve synchronization
for functional data. Biometrika, 95(4):875–889, 2008.

Wang, Y., Miller, D. J., Poskanzer, K., Wang, Y., Tian, L.,
and Yu, G. Graphical time warping for joint alignment of
multiple curves. In NIPS, 2016.

Wassermann, L. All of nonparametric statistics. Springer
Science+ Business Media, New York, 2006.

Xiao, S., Farajtabar, M., Ye, X., Yan, J., Song, L., and Zha,
H. Wasserstein learning of deep generative point process
models. arXiv preprint arXiv:1705.08051, 2017.

Xu, H., Zhen, Y., and Zha, H. Trailer generation via a
point process-based visual attractiveness model. In IJCAI,
2015.

Xu, H., Farajtabar, M., and Zha, H. Learning Granger
causality for Hawkes processes. In ICML, 2016.

Xu, H., Luo, D., and Zha, H. Learning Hawkes processes
from short doubly-censored event sequences. In ICML,
2017a.

Xu, H., Wu, W., Nemati, S., and Zha, H. Patient flow pre-
diction via discriminative learning of mutually-correcting
processes. IEEE transactions on Knowledge and Data
Engineering, 29(1):157–171, 2017b.

Yan, J., Zhang, C., Zha, H., Gong, M., Sun, C., Huang,
J., Chu, S., and Yang, X. On machine learning towards
predictive sales pipeline analytics. In AAAI, 2015.

Zemel, Y. and Panaretos, V. M. Fréchet means and Pro-
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9. Appendix
9.1. Exponential-like intensity functions

We given some typical and important point processes
with exponential-like intensity functions, i.e., λ(t) =∑

j exptj (f(t; θ,HCt )). More specifically, for Hawkes pro-
cesses and self-correcting processes, this formulation can be
further rewritten as λ(t) =

∑
j αj exp(βjt). For the conve-

nience of expression, we only consider 1-D point processes,
i.e., the number of event types C = 1, but these examples
can be easily extended to multi-dimensional cases.

Hawkes processes. The intensity function of a 1-D Hawkes
process is

λ(t) = µ+
∑

ti<t
φ(t− ti), (11)

A typical implementation of the impact function φ(t) is
exponential function, i.e., ρ exp(−wt) in (Hawkes & Oakes,
1974; Lewis & Mohler, 2011; Zhou et al., 2013; Yan et al.,
2015). Therefore, we can rewrite (11) as

λ(t) = µ+
∑

ti<t
φ(t− ti)

= µ exp(0t) +
∑

ti<t
ρ exp(wti) exp(−wt))

=
∑J

j=1
αj exp(−βjt),

(12)

where J = 1 + |{ti : ti < t}|. We can find that for
j = 1, βj = 0 and αj = µ; for j = 2, .., J , βj = w and
αj = ρ exp(wti).

Self-correcting processes. The intensity function of a 1-D
self-correcting process (Isham & Westcott, 1979; Xu et al.,
2015) is

λ(t) = exp(µt−
∑

ti<t
φ(ti)). (13)

Generally, φ(t) can be 1) a linear function of time, i.e.,
φ(t) = ρt; or 2) a constant, i.e., φ(t) = ρ. In this case,
we can simply represent λ(t) as an exponential function
α exp(−βt), where α = exp(−

∑
ti<t

φ(ti)) and β = −µ.

9.2. The proof of Theorem 2.1

Proof. Denote an original (unwarped) event sequence as
D. The negative log-likelihood function of the target point
process Nθ can be written as

− logL(θ;D) =

∫ T

0

λ(s)ds−
∑
i

log λ(ti), (14)

where ti is the i-th event of the sequence D. When the
training sequence D is warped by a warping function
W : [0, T ] 7→ [0, T ] and the warping function is continuous

and differentiable (almost everywhere), we have

− logL(θ;S)

=

∫ T

0

λ(W (s))ds−
∑
i

log λ(W (ti))

=

∫ T

0

λ(s)dW−1(s)−
∑
i

log λ(W (ti)),

(15)

where S is the warped data.

Sufficiency. When the target point process is a homoge-
neous Poisson process, i.e., λ(t) = µ, we can find that

− logL(θ;S) = − logL(θ;D) = Tµ− I logµ, (16)

where I is the number of events. Therefore, both θ̂∗ and θ̂
are equal to I

T .

When we relax the range of W (t) but assume that it is a
translation, i.e., W (t) = t+τ , the relative distance between
arbitrary two events, i.e., ti − tj = W (ti) − W (tj), is
unchanged. Based on the stationarity of the target point
process, the learning result is unchanged as well.

Necessity. When the target point process has exponential-
like intensity function, the negative log-likelihood is a con-
vex function of θ. The warping function does not change the
convexity of the negative log-likelihood. Therefore, when
θ̂∗ = θ̂, we have

∂ − logL(θ;S)

∂θ

∣∣∣
θ̂∗

= 0, (17)

for the target point process.

Even in the simplest case, i.e., the intensity is a single ex-
ponential function λ(t) = αθ exp(−βt) and only αθ is a
single coefficient related to the parameter θ, we have

− logL(θ;S)

=− logL(θ;D) +

∫ T

0

(1− (W−1)′(s))λ(s)ds

−
∑
i

log
λ(W (ti))

λ(ti)

=− logL(θ;D) + αθ

∫ T

0

(1− (W−1)′(s)) exp(−βs)ds

−
∑
i

log
exp(−βW (ti))

exp(−βti)
.

Here, we have

∂ − logL(θ;D)

∂θ

∣∣∣
θ̂∗

= 0, (18)

and the last term −
∑
i log exp(−βW (ti))

exp(−βti) is a constant with

respect to θ, therefore, ∂−logL(θ;S)
∂θ |θ̂∗ = 0 is equivalent
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to
∫ T

0
(1 − (W−1)′(s)) exp(−βs)ds ≡ 0 for all kinds of

event sequences. This condition satisfies in two situations:
1) (W−1)′(s) ≡ 1, which corresponds to a translation func-
tion; 2) β = 0, such that λ(t) = αθ is a constant, which
corresponds to a homogeneous Poisson process.

9.3. The derivation of (9)

Based on the assumption 3 of the target point process, the
negative log-likelihood in (5) can be rewrite as

− logL(θk;W−1
m (Sm))

=

C∑
c=1

∫ T

0

λc(W
−1
m (s))ds−

Im∑
i=1

log λcmi (W−1
m (tmi ))

=
∑C

c=1

∫ W−1
m (T )

W−1
m (0)

λc(s)dWm(s)

−
∑Im

i=1
log

(∑Ji

j=1
αj exp(−βjW−1

m (tmi ))

)

=
∑C

c=1

∫ T

0

λc(s)dWm(s)

−
∑Im

i=1
log

(∑Ji

j=1
αj exp(−βjW−1

m (tmi ))

)
=A+ B.

(19)

On one hand, based on the piecewise linear model of W−1
m ,

the term A can be further rewritten as

A =
∑C

c=1

∫ W−1
m (T )

W−1
m (0)

λc(s)dWm(s)

=
∑C

c=1

∑L−1

l=1

∫ W−1
m (tl+1)

W−1
m (tl)

λc(s)
dWm(s)

ds
ds

=
∑L−1

l=1

1

aml︸︷︷︸
W ′m

∑C

c=1

∫ W−1
m (tl+1)

W−1
m (tl)

λc(s)ds︸ ︷︷ ︸
pml

.

(20)

On the other hand, given current estimated parameters, we
can calculate

qmij =
αj exp(−βjW−1

m (tmj ))∑
j′ α

Ji
j′=1 exp(−βj′W−1

m (tmj′ ))

=
αj exp(−βjW−1

m (tmj ))

λcmi (W−1
m (tmi ))

,

(21)

and then apply Jensen’s inequality to the term B:

B =−
∑Im

i=1
log

(∑Ji

j=1
αj exp(−βjW−1

m (tmi ))

)

≤
∑Im

i=1

∑Ji

j=1
qmij log

qmij

αj exp(−βjW−1
m (tmi ))

=
∑Im

i=1

∑Ji

j=1
qmij

(
log

qmij
αj

+ βjW
−1
m (tmi )

)
=

L−1∑
l=1

∑
tmi ∈[tl,tl+1)

Ji∑
j=1

qmij βj(a
m
l t

m
i + bml ))) + C

(22)

9.4. Practical implementations

Taking a multi-dimensional Hawkes process as an exam-
ple, we give the implementation details of our learning
method. Specifically, the intensity function of the type-c
event at time t is

λc(t) = µc +
∑
ti<t

φcicj exp(−w(t− ti)), (23)

where the parameter set θ consists of the background inten-
sity vector µ = [µc] and the infectivity matrix Φ = [φcc′ ].

Maximum likelihood. Given unwarped sequences
{W−1

m (Sm)}Mm=1, we can maximize the likelihood of the
sequences by an EM-based method (Lewis & Mohler, 2011;
Zhou et al., 2013). Specifically, the negative likelihood
function and its tight upper bound can be written as

−
M∑
m=1

logL(θ;W−1
m (Sm))

=

M∑
m=1

[ C∑
c=1

∫ T

0

λc(W
−1
m (s))ds

−
Im∑
i=1

log λcmi (W−1
m (tmi ))

]
=

M∑
m=1

[ C∑
c=1

(
Tµc +

Im∑
i=1

φccmi

∫ T−tmi

0

exp(−wW−1
m (s))ds

)
−

Im∑
i=1

log
(
µcmi +

i−1∑
j=1

φcmi cmj exp(−wτij)
)]

≤
M∑
m=1

[ C∑
c=1

(
Tµc +

Im∑
i=1

φccmi

∫ T−tmi

0

exp(−wW−1
m (s))ds

)
−

Im∑
i=1

(
pi log

µcmi
pi

+

i−1∑
j=1

pij log
φcmi cmj exp(−wτij)

pij

)]
=L(θ|θ̂).

Here, τij = W−1
m (tmi ) −W−1

m (tmj ) and θ̂ is current esti-
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mated parameters used to calculate {pi, pij} as

pi =
µ̂

λ̂cmi (W−1
m (tmi ))

,

pij =
φ̂cmi cmj exp(−wτij)

λ̂cmi (W−1
m (tmi ))

.

(24)

As a result, we can update θ by minimizing L(θ|θ̂), which
has the following closed-form solution:

µc =

∑
m

∑
cmi =c pi

MT
,

φcc′ =

∑
m

∑
cmi =c

∑
cmj =c′ pij∑

m

∑
cmi =c′

∫ T−tmi
0

exp(−wW−1
m (s))ds

.

(25)

According to the updated parameters, we can go back to cal-
culate {pi, pij}. Repeating the steps above till the objective
function (i.e., the negative log-likelihood) converges, we
can obtain the optimum model given current {Wm}Mm=1.

Learning unwarping functions. The key of this step is
calculating the {pml , qmij } mentioned in (20, 22). For pml ,
we have

pml =

C∑
c=1

∫ W−1
m (tl+1)

W−1
m (tl)

λc(s)ds

=
∑

c=1,...,C
tmi ∈[tl,tl+1)

(
φccmi

∫ W−1
m (tl+1)−W−1

m (tmi )

0

e−wsds

+ µc(W
−1
m (tl+1)−W−1

m (tl))
)

=
∑

c=1,...,C
tmi ∈[tl,tl+1)

(
φccmi

1− e−waml (tl+1−tmi )

w

+ µca
m
l (tl+1 − tl)

)
.

(26)

For qmij , because

λcmi (W−1
m (tmi ))

=µcmi +

i−1∑
j=1

φcmi cmj exp(−w(W−1
m (tmi )−W−1

m (tmj )))

=

i−1∑
j=0

αj exp(−βjW−1
m (tmi )),

(27)

where for j = 0, αj = µcmi and βj = 0; and for j > 0,
αj = φcmi cmj exp(wW−1

m (tmj )) and βj = w, we have

qmij =
αj exp(−βjW−1

m (tmi ))

λcmi (W−1
m (tmi ))

for j = 0, ..., i− 1. (28)

In our experiments, we configure our learning algorithm as
follows. The number of landmarks L = 20. The weight
of regularizer γ = 0.01. The maximum number of outer
iteration is 7. The maximum number of inner iteration for
learning the Hawkes process model is 15. The maximum
number of inner iteration for updating warping functions is
5. The interior-point method is applied.

9.5. The convexity of (10)

Ignoring constraints, (10) can be decomposed into 2(L− 1)
problems with respect to each aml and bml . The objective
function in (10) that is related to aml can be formulated as

f(x) =
α

x
+ βx+ (x+ τ)2, (29)

where the unknown variable x > 0, the coefficients α and β
are nonnegative, and τ is arbitrary. Because when x > 0, αx ,
βx and (x+ τ)2 are convex functions, their sum, i.e., f(x),
is also a convex function as well. Similarly, the objective
function in (10) that is related to bml can be formulated as

f(x) = βx+ (x+ τ)2, (30)

which is also a convex function.

9.6. Generating warping/unwarping functions

For the synthetic data used in our experiments, each warping
function in [0, T ] is represented by a set of local cosine basis
as

Wm(t) =
∑N

n=1
wmn fn(t),

fn(t) =

{
cos2( π

2∆ (t− tn)), |t− tn| <= ∆

0, otherwise.

(31)

The time window [0, T ] is segmented by N landmarks
{tn}Nn=1, where t1 = 0 and tN = T . For each fn(t),
the landmark tn is its center and ∆ is the distance between
adjacent landmarks. The first N − 1 coefficients {wmn }N−1

n=1

is sampled from [0, T ] uniformly and sorted by ascending
order. The last coefficient wmN is set to be T . Using this
method, we can ensure that all warping functions (and the
corresponding unwarping functions) are monotone increas-
ing maps from [0, T ] to [0, T ] and their average is close to
an identity function.

9.7. Details of experiments

For the MIMIC data set, each admission is associated with
a set of diagnose. Based on the priority assigned to the
diagnose, we only keep the ICD-9 code with the highest
priority as the event type of the admission. In our work, we
assume that the admission behaviors of all patients happen
from 2001 to 2012 or their death date. In this case, the length
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Figure 6. Experimental result of WLR (top) and our method (bottom) on MIMIC III data.

of time window T is different for each patient. Our learning
method can be extended to adjust this situation. In particular,
we can use specific T ’s for different event sequences, i.e.,
replacing T to Tm in our model and learning algorithm. For
our piecewise linear model, the distance between adjacent
landmarks can be adjusted as well according to Tm. For
each patient in the MIMIC data set, we can set the time
stamp of its last admission event as Tm.

The categories of the diseases of circulatory system are
shown below:

1. Chronic rheumatic heart disease (ICD-9: 393 - 398)

2. Hypertensive disease (ICD-9: 401 - 405)

3. Ischemic heart disease (ICD-9: 410 - 414)

4. Diseases of pulmonary circulation (ICD-9: 415 - 417)

5. Other forms of heart disease (ICD-9: 420 - 429)

6. Cerebrovascular disease (ICD-9: 430 - 438)

7. Diseases of arteries, arterioles, and capillaries (ICD-9:
440 - 449)

8. Diseases of veins and lymphatics, and other diseases
of circulatory system (451 - 459)

Using our RPP method, we learn a 8-dimensional Hawkes
process from 1, 129 patient’s admission records. Compared
to synthetic data, the MIMIC III dataset is sparse (i.e., most
of the patients have just 2 - 5 admission events), so we use a
larger weight for regularizer (i.e., γ = 10) and fewer land-
marks (i.e., L = 5). Similarly, we can learn a 7-dimensional
Hawkes process from 709 users’ job hopping records, in
which we also set γ = 10 and L = 5.

These infectivity matrices further verify the justifiability of
our learning method because they reflect some reasonable
phenomena. In Fig. 6, we can find that:
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Figure 7. Experimental result of WLR (top) and our method (bottom) on LinkedIn data.

1. All disease categories have strong self-triggering pat-
terns. The “hypertension disease” (ICD-9 code 404-
405), which is one of the most common disease in
modern society, has the strongest self-triggering pat-
tern — the value of the second diagonal element is
over 0.5 It means that for a patient suffering to a cer-
tain disease of circulatory system, he or she is likely
to re-admit to hospital in next 10 years for the same
disease.

2. The 5-th row in Fig. 6 corresponds to the category
“other forms of heart disease” (ICD-9 code 420-429).
According to its name we can know that this category
contains many miscellaneous heart diseases and should
have complicated relationships with other categories.
Our learning result reflects this fact — the 5-th row
of our infectivity matrix contains many non-zero ele-
ments, which means that this disease category can be
triggered by other disease categories.

In Fig. 7, we can find that:

1. All IT companies have strong self-triggering patterns,
which means that most of employees are satisfied to
their companies. Especially for Amazon and Microsoft,
their diagonal elements are over 0.3. It means that the
expected happening rate of internal promotion for their
employees is about 0.3 event per year.

2. The elements of “Facebook-Google” and “Google-
Facebook” pairs are with high values, which means that
job hopping happens frequently between Facebook and
Google. This result reflects their fierce competition.

3. The elements of “Facebook-Nvidia” and “Google-
Nvidia” are with high values, which reflects the fact
that recent years many Nvidia’s employees jump to
Google and Facebook to develop hardware and sys-
tems of AI.
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In our opinion, there are three reasons for the increased
performance. Firstly, our parametric model is more robust
to data insufficiency, which can capture complicated mecha-
nism of event sequences from relatively fewer observations.
Secondly, we learn the registered model and the warping
functions in an alterative, rather than independent way, to
avoid serious model misspecification, and such a method
has a good convergence. Thirdly, the proposed piecewise
linear model has a good capability to describe warping func-
tion approximately, which achieves a trade-off between the
complexity of the model and the performance.


