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A. Proof for Theorem 1
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By chain rule, we get
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Here, Ψ is the total number of paths vkpv
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length k + 1 from node x to node y. For any path p, vkp is
node x, v0

p is node y and for l = 1..k − 1, vl−1
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directed acyclic computation graph, where the input neurons
are the same as the entries of W1, and at a layer l. We can
express an entry of the derivative as[
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Here, Φ is the number of paths q from the input neurons
to the output neuron (i, j), in the computation graph of[
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. For each layer l, wlq is the entry ofWl that is used

in the q-th path. Finally, Zq ∈ {0, 1} represents whether the
q-th path is active (Zq = 1) or not (Zq = 0) as a result of
the ReLU activation of the entries of f (l)

vlp
’s on the q-th path.

Under the assumption that the Z’s are Bernoulli random
variables with the same probability of success, for all

q, Pr(Zq = 1) = ρ, we have E
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. We know that the k-step random

walk probability at y can be computed by summing up the
probability of all paths of length k from x to y, which is
exactly
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. Moreover, the random walk

probability starting at x to other nodes sum up to 1. We
know that the influence score I(x, z) for any z in expecta-
tion is thus the random walk probability of being at z from
x at the k-th step, multiplied by a term that is the same for
all z. Normalizing the influence scores ends the proof.

Comment: ReLU is not differentiable at 0. For simplicity,
we assume the (sub)gradient to be 0 at 0.

B. Proof for Proposition 1
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. By Theorem 1, we have
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where Ix(y) is the l-step random walk probability at y, zl is
a normalization factor and clx is the fraction of entries of h(l)
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being chosen by max-pooling. By Theorem 1, E
[
Ix(y)(l)

]
is equivalent to the l-step random walk probability at y
starting at x.

C. Visualization Results
We describe the details of the heat maps and present more
visualization results. The colors of the nodes in the heat
maps correspond to their probability masses of either the
influence distribution or random walk distribution as shown
in Figure 6. As we see, the shallower the color is, the
smaller the probability mass. We use the same color for
probabilities over 0.2 for better visual effects because there
are few nodes with influence probability masses over 0.2.
Nodes with probability mass less than 0.001 are not shown
in the heat maps.

In Table 6, we present more visualization results to compare
the 1) influence distributions under GCNs and the random
walk distributions, 2) influence distributions under GCNs
with residual connections and lazy random walk distribu-
tions. The nodes being influenced and the random walk
starting node are labeled square. The influence distributions
for the nodes in Figure 6 are computed according to Defi-
nition 3.1, under the same trained GCN (Res) models with
2, 4, 6 layers respectively. We use the hyper-parameters as
described in Kipf & Welling (2017) for training the mod-
els. The graph (dataset) is taken from the Cora citation
network as described in section 6. We compute the random
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2 layers / steps 4 layers / steps 6 layers / steps
GCN / r.w. Res / lazy r.w. GCN / r.w. Res / lazy r.w. GCN / r.w. Res / lazy r.w.

Table 6. Influence distributions for (more) nodes under GCN, GCN-Res, and random walk distributions

Figure 6. Color and probability correpondency for the heat maps

walk distributions according to Definition 3.2 on the graph
G̃. The lazy ranndom walks all share the same lazy factor
0.4, i.e. there’s an extra 0.4 probability of staying at the
current node at each step. This probability is chosen for
visual comparison with the GCN-ResNet. Note that the
GCN and random walk colors may differ for nodes that
have particularly large degrees because the models we are
running follow Equation 2, which assigns less weight to
nodes that have larger degrees, rather than Equation 3. The
visualization in Figure 5 has the same setting as mentioned
above. It is trained for the Cora dataset with a 6-layer JK
Net with maxpooling layer aggregation.

Next, we demonstrate subgraph structures where GCN mod-
els with 2 layers tend to make misclassification, whereas
models with 3 or 4 layers are able to make the correct pre-
diction and vice versa, with real dataset. These visualization
results further complement and support the theory illustrated
in Figure 1 and Theorem 1. As we see in Figure 7, a model
with pre-fixed effective range priors, which looks at 2-hop
neighbors, tends to make incorrect prediction if the local
subgraph structure is tree-like (bounded treewidth). Thus, it
would be desirable to look beyond the direct neighbors and

draw information from nodes that are 3 or 4 hops away so as
to learn a better representation of the local community. On
the other hand, as we see in Figure 8, a model with pre-xied
effective range priors, which looks at 3 or 4-hop neighbors,
may happen to draw much information from less relevant
neighbors and thus cannot learn the right representations,
which are necessary for the correct prediction. In the sub-
graph structures where the random walk expansion explodes
rapidly, models with 3 or 4 prefixed layers are essentially
taking into account every node. Such global representations
might not be ideal for the prediction for the node. In another
scenario, despite possessing the locally bounded treewidth
structure, because of the ”bridge-like” structures, looking at
distant nodes might imply drawing information from a com-
pletely different community, which would act like noises
and influence the prediction results.
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(a) 2-layer (b) 3-layer (c) 4-layer

(d) 2-layer (e) 3-layer (f) 4-layer

(g) 2-layer (h) 3-layer (i) 4-layer

(j) 2-layer (k) 3-layer (l) 4-layer

Figure 7. Subgraph structures where 2-layer GCNs make misclassification, whereas 3 and 4-layer GCNs make the correct prediction.
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(a) 2-layer (b) 3-layer (c) 4-layer

(d) 2-layer (e) 3-layer (f) 4-layer

(g) 2-layer (h) 3-layer (i) 4-layer

(j) 2-layer (k) 3-layer (l) 4-layer

Figure 8. Subgraph structures where 3, 4-layer GCNs make misclassification, whereas 2-layer GCNs make the correct prediction.


