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Abstract

The performance of off-policy learning, includ-
ing deep Q-learning and deep deterministic policy
gradient (DDPG), critically depends on the choice
of the exploration strategy. Existing exploration
methods are mostly based on adding noises to the
on-going actor policy and therefore only explore
locally close to what the actor policy dictates. In
this work, we develop a simple meta-policy gra-
dient algorithm that allows us to adaptively learn
the exploration policy in DDPG. Our algorithm
allows us to train flexible exploration behaviors
that are independent of the actor policy, yield-
ing a more global exploration that significantly
accelerates Q-learning. With an extensive study,
we show that our method significantly improves
the sample-efficiency of DDPG on a variety of
reinforcement learning continuous control tasks.

1. Introduction

Recent advances in deep reinforcement learning (RL) have
demonstrated significant applicability and strong perfor-
mance in games (Mnih et al., 2015; Silver et al., 2017), con-
tinuous control (Lillicrap et al., 2016), and robotics (Levine
et al., 2016). Among them, deep neural networks, such as
convolutional neural networks, are widely used as powerful
functional approximators for extracting useful features and
enabling complex decision making. For instance, in contin-
uous control tasks, a policy that selects actions under certain
state observation can be parameterized with a deep neural
network that takes the current state observation as input and
gives an action or a distribution of action as output. In order
to optimize such policies, various policy gradient methods
(Heess et al., 2017; Mnih et al., 2016; Schulman et al., 2015;
2017), including both off-policy and on-policy approaches,
have been proposed. In particular, deterministic policy gra-
dient method (DPG), which extends the discrete Q-learning
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algorithm to the continuous action spaces, exploits previous
experience or off-policy data from a replay buffer and often
achieves more desirable sample efficiency compared to most
existing on-policy policy gradient algorithms. In the recent
NIPS 2017 learning to run challenge, the deep deterministic
policy gradient algorithm (DDPG) (Lillicrap et al., 2016), a
variant of DPG, has been applied by almost all top-ranked
teams and achieved a very compelling success in a high-
dimensional continuous control problem, while on-policy
algorithms, including TRPO (Schulman et al., 2015) and
PPO (Schulman et al., 2017), performed much worse with
the same amount of data collected.

In contrast to deep Q-learning (DQN) (Mnih et al., 2015)
which only learns a value function on a set of discrete ac-
tions, DDPG also parameterizes a deterministic policy to
select a continuous action, thus avoiding the optimization in
or the discretization of the continuous action space. As an
off-policy actor-critic method, DDPG utilizes the Bellman
equation updates for optimizing the value function and the
policy gradient method to optimize the actor policy. Unlike
DQN which often applies epsilon-greedy exploration on a
set of discrete actions, more sophisticated continuous ex-
ploration in the high-dimensional continuous action space
is required for DDPG. A common practice of exploration
in DDPG is to add a uncorrelated Gaussian or a correlated
Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Ornstein,
1993) to the action selected by the deterministic policy. The
data collected by this exploration method is then added to a
replay buffer used for DDPG training. However, in practice,
Gaussian noises may be sub-optimal or misspecified, and
hyper-parameters in the noise process are hard to tune.

In this work, we introduce a meta-learning algorithm to di-
rectly learn an exploration policy to collect better experience
data for DDPG training. Instead of using additive noises on
actions, we parameterize a stochastic policy to generate data
to construct the replay buffer for training the deterministic
policy in the DDPG algorithm. This stochastic policy can
be seen as an exploration policy or a teacher policy that
gathers high-quality trajectories that enable better training
of the current deterministic policy and the value function.
To learn the exploration policy, we develop an on-policy pol-
icy gradient algorithm based on the training improvement
of the deterministic policy. First, we obtain a collection of
exploration data from the stochastic policy and then apply
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DDPG on this data-set to make updates of the value function
and the deterministic policy. We then evaluate the updated
deterministic policy and compute the improvement of these
updates based on the data just collected by comparing to
the previous policy. Therefore, the policy gradient of the
stochastic policy can be computed using the deterministic
policy improvement as the reward signal. This algorithm
adaptively adjusts the exploration policy to generate effec-
tive training data for training the deterministic policy. We
have performed extensive experiments on several classic
control and Mujoco (Todorov et al., 2012) tasks, includ-
ing Hopper, Reacher, Half-Cheetah, Inverted Pendulum,
Inverted Double Pendulum and Pendulum. Compared to the
default DDPG in OpenAlT’s baseline (Plappert et al., 2017),
our algorithm demonstrated substantial improvements in
terms of sample efficiency. We also compared the default
Gaussian exploration and the learned exploration policy
and found that the exploration policy tends to visit novel
states that are potentially beneficial for training the target
deterministic policy.

2. Related Work

The idea of meta learning (Andrychowicz et al., 2016; Ben-
gio et al., 1991; Schmidhuber, 1987) has been widely ex-
plored in different areas of machine learning, under different
names, such as meta reinforcement learning, life-long learn-
ing, learning to learn, and continual learning. Some of the
recent work in the setting of reinforcement learning includes
(Duan et al., 2016; Finn et al., 2017; Wang et al., 2016), to
name a few. Our work is related to the idea of learning
to learn but instead of learning to optimize hyperparame-
ters (Maclaurin et al., 2015), neureal network (Chen et al.,
2017) or loss functions (Houthooft et al., 2018), we hope
to generate high quality data to better train reinforcement
agents.

Intrinsic rewards such as prediction gain (Bellemare et al.,
2016), learning progress (Oudeyer & Kaplan, 2007), com-
pression progress (Schmidhuber, 2010), variational infor-
mation maximization (Houthooft et al., 2016; Todd & Peter,
2017), have been employed to augment the environment’s
reward signal for encouraging to discover novel behavior
patterns. One of limitations of these methods is that the in-
trinsic reward weighting relative to the environment reward
must be chosen manually, rather than learned on the fly from
interaction with the environment. Another limitation is that
the reshaped reward might not guarantee the learned policy
to be the same optimal one as that learned from environment
rewards only (Ng et al., 1999).

The problem of exploration has been widely used in the
literature. Beyond the traditional studies based on epsilon-
greedy and Boltzmann exploration (Sutton & Barto, 1998),
there are several recent advances in the setting of deep rein-

forcement learning. For example, (Tang et al., 2017) studied
count-based exploration for deep reinforcement learning;
(Stadie et al., 2015) proposed a new exploration method
based on assigning exploration bonuses from a concur-
rently learned transition model; (Hester et al., 2013) studied
a bandit-based algorithm for learning simple exploration
strategies in model-based settings; (Osband et al., 2016a)
used a bootstrapped approach for exploration in DQN, a
simple algorithm in a computationally and statistically effi-
cient manner through the use of randomized value functions
(Osband et al., 2016Db).

3. Reinforcement learning

In this section, we introduce the background of reinforce-
ment learning. We start with introducing Q-learning in
Section 3.1, and then deep deterministic policy gradient
(DDPG) which works for continuous action spaces in Sec-
tion 3.2.

3.1. Q-learning

Considering the standard reinforcement learning setting,
an agent takes a sequence of actions in an environment
in discrete time and collects a scalar reward per timestep.
The objective of reinforcement learning is to learn a pol-
icy of the agent to optimize the cumulative reward over
future time. More precisely, we consider an agent act over
time ¢t € {1,...,T}. At time ¢, the agent observes an en-
vironment state s; and selects an action a; € A to take
according to a policy. The policy can be either a determin-
istic function @ = p(s), or more generally a conditional
probability 7(a|s). The agent will then observe a new state
s¢+1 and receive a scalar reward value r; € R. The set A
of possible actions can be discrete, continuous or mixed in
different tasks. Given a trajectory {s;, as, rt}thl, the over-
all reward is defined as a discounted sum of incremental
rewards, R = Zthl ytry, where v € [0, 1) is a discount fac-
tor. The goal of RL is to find the optimal policy to maximize
the expected reward.

Q-learning (Watkins, 1989; Watkins & Dayan, 1992) is a
well-established method that has been widely used. Gener-
ally, Q-learning algorithms compute an action-value func-
tion, often also referred to as Q-function, Q*(s, a), which
is the expected reward of taking a given action a in a given
state s, and following an optimal policy thereafter. The
estimated future reward is computed based on the current
state s or a series of past states if available.

The core idea of Q-learning is the use of the Bellman equa-
tion as a characterization of the optimal future reward func-
tion Q* via a state-action-value function

Q" (st;a) = Blre + ymax Q" (sp41,a), (D
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where the expectation is taken w.r.t the distribution of state
s¢+1 and reward 7, obtained after taking action a. Given the
optimal Q-function, the optimal policy greedily selects the
actions with the best Q-function values. Deep Q-learning
(DQN), a recent variant of Q-learning, uses deep neural
networks as Q-function to automatically extract interme-
diate features from the state observations and shows good
performance on various complex high-dimensional tasks.

Since Q-learning is off-policy, a particular technique called
“experience replay” (Lin, 1992; Wawrzyski, 2009) that stores
past observations from previous trajectories for training
has become a standard step in deep Q-learning. Experi-
ence replays are stored as a dataset, also known as replay
buffer, B = {(s;j,a;,7;j,s;4+1)} which contains a set of
previously observed state-action-reward-future state-tuples
(sj,aj,7,85+1). Such experience replays are often con-
structed by pooling such tuples generated by recent policies.

With the replay buffer B, Deep Q learning follows the fol-
lowing iterative procedure (Mnih et al., 2013; 2015): start
an episode in the initial state sg; sample a mini-batch of
tuples M = {(s;,a;,7j,5j+1)} € B; compute and fix the
targets y; = r; +7 max, Q- (s;+1, a) for each tuple using
a recent estimate (Qg- (the maximization is only considered
if s; is not a terminal state); update the Q-function by op-
timizing the following program the parameters 6 typically
via stochastic gradient descent:

min g
0

(sj,a5,75,8j+1)EM

(Qolssa;) —y)*. (@

Besides updating the parameters of the Q-function, each
step of Q-learning needs to gather additional data to aug-
ment the replay buffer. This is done by performing an
action simulation either by choosing an action at random
with a small probability € or by following the strategy
arg max, Qs (s¢, a) which is currently estimated. This strat-
egy is also called the e-greedy policy which is applied to
encourage visiting unseen states for better exploration and
avoid the training stuck at some local minima. We subse-
quently obtain the reward r;. Subsequently we augment the
replay buffer B with the new tuple (s, at, ¢, s¢+1) and con-
tinue until this episode terminates or reaches an upper bound
of timesteps, and then we restart a new episode. When op-
timizing the parameter 6, a recent Q-network is used to
compute the target y; = ; + ymax, Qy- (sj+1,a).

3.2. Deep Deterministic Policy Gradient

For continuous action spaces, it is practically impossible
to directly apply Q-learning, because the max operator in
the Bellman equation, which find the optimal a, is usually
infeasible, unless discretization is used or some special
forms of Q-function are used. Deep deterministic policy
gradient (DDPG) (Lillicrap et al. (2016)) addresses this

issue by training a parametric policy network together with
the Q-function using policy gradient descent.

Specifically, DDPG maintains a deterministic actor policy
m = d(a — p(s,0™)) where u(s,07™) is a parametric func-
tion, such as a neural network, that maps the state to actor.
We want to iteratively update 67, such that a = pu(s,0™)
gives the optimal action that maximizes the Q-function
Q(s,a). so that a = u(s,d™) can be viewed as an ap-
proximate action-argmax operator of the Q-function, and
we do not have to perform the action maximization in the
high-dimensional continuous space. In training, the critic
Qo(s,a) is updated using the Bellman equation as in Q-
learning that we introduced above, and the actor is updated
to maximize the expected reward w.r.t. Qg (s, a),

I%%X {J(eﬂ) = ESNB[QQ(Sv M(S? 971'))]}7

where s ~ B denotes sampling s from the replay buffer B.
This is achieved in DDPG using the gradient update:

0" < 0" + Vo= J(07),
where,

Vor J(07) = EsnB[VaQo(s, pu(s,07)) Ve u(s)]

In DDPG, the actor p(s,0™) and the critic Qy(s,a) are
updated alternatively until convergence.

As in Q-learning, the performance of DDPG critically de-
pends on a proper choice of exploration policy 7., which
controls what data to add at each iteration. However, in high-
dimensional continuous action space, exploration is highly
nontrivial. In the current practice of DDPG, the exploration
policy 7, is often constructed heuristically by adding cer-
tain type of noise to the actor policy to encourage stochastic
exploration. A common practice is to add an uncorrelated
Gaussian or a correlated Ornstein-Uhlenbeck (OU) process
(Uhlenbeck & Ornstein, 1993) to the action selected by the
deterministic actor policy. Since DDPG is off-policy, the
exploration can be independently addressed from the learn-
ing. It is still unclear whether these exploration strategies
can always lead to desirable learning of the deterministic
actor policy.

4. Learning to Explore

We expect to construct better exploration strategies that are
potentially better than the default Gaussian or OU explo-
ration. In practice, e.g., in the Mujuco control tasks, the
action spaces are bounded by a high-dimensional contin-
uous cube [—1, 1]¢. Therefore, it is very possible that the
Gaussian assumption of the exploration noises is not suit-
able when the action selected by the actor policy is close
to the corner or boundaries of this cube. Furthermore it is



Learning to Explore via Meta-Policy Gradient

Algorithm 1 Teacher: Learn to Explore

1: Initialize 7. and .

2: Draw D, from 7 to estimate the reward Rﬂ of .

3: Initialize the Replay Buffer B = D;.

4: for iteration ¢ do

5:  Generate Dy by executing teacher’s policy 7.

6:  Update actor policy 7 to 7' using DDPG based on
Dy: ©’ + DDPG(m, Dy).

7:  Generate D; from 7’ and estimate the reward of 7.
Calculate the meta reward: R(7, Do) = Ry — R

8:  Update Teacher’s Policy 7. with meta policy gradient

0™ 6™ + V. log P(Do|me)R(m, Do)

9:  Add both Dy and D; into the Replay Buffer B «
B Do D;.

10:  Update 7w using DDPG based on Replay Buffer, that
is, 7 <~ DDPG(w, B). Compute the new R;.

11: end for

also possible that the actor policy gets stuck in a local basin
in the state space and thus cannot escape even with random
Gaussian noises added.

All existing exploration strategies seem to be based on the
implicit assumption that the exploration policy 7. should
stay close to the actor policy 7, but with some more stochas-
tic noise. However, this assumption may not be true. Instead,
it may be beneficial to make 7. significantly different from
the actor 7 in order to explore the space that has not been
explored previously. Even in the case of using Gaussian
noise for exploration, the magnitude of the Gaussian noise is
also a critical parameter that may influence the performance
significantly. Therefore, it is of great importance to develop
a systematic approach to adaptively learn the exploration
strategy, instead of using simple heuristics.

Since DDPG is an off-policy learning algorithm and the
exploration is independent from the learning, we can decou-
ple the exploration policy with the actor policy. We hope
to construct an exploration policy which generates novel
experience replays that are more beneficial for training the
actor policy. To do so, we introduce a meta-reinforcement
learning approach to learn an exploration policy so that it
most efficiently improves the training of the actor policy.

4.1. Learning Exploration Policy with Policy Gradient

Our framework can be best viewed as a teacher-student
learning framework, where the feacher’s exploration policy
e, generates a set of data Dy at each iteration, and feeds it
into a student agent with an actor (or exploitation) policy 7,

who learns from the data and improves itself. Our goal is
to adaptively improve the teacher 7. so that it generates the
most informative data to make the DDPG learner improve
as fast as possible.

In this meta framework, the generation of data Dy can be
viewed as the “action” taken by the teacher (with policy 7.),
and its related reward should be defined as the improvement
of the student with DDPG learner using data D,

J () = Epyr. [R(m. Do)} (3)
= EDONﬂ'e [Rﬂ" - Rﬂ']a
where 7' = DDPG(w, D) denotes a new policy obtained
from one or a few steps of DDPG updates from 7 based
on data Dg; R, and R, are the actual cumulative reward
of rollouts generated by policies 7’ and 7, respectively, in
the original RL problem. Here the meta-reward R (7, Dy)
denotes how much the teacher helps the progress of student’s
learning.

Similar to the actor policy, we can parameterize this explo-
ration policy 7. by §™<. Using the REINFORCE trick, we
can calculate the gradient of 7 () w.r.t. 67:

Vem»,j = EDDNTFe [R(ﬂ', DO)V@"\'Q log P(D0|Tl'e)] s (4)

where P (Dy|r.) is the probability of generating transition
tuples Do := {s;, as, ¢}, given 7. This distribution can
be factorized as

P(Dg|me) = Te(ae|se)p(St41|5t, ar),

||::]~3

where p(st11|st, a:) is the transition probability and p(s;)
the initial distribution. The dependency of the reward is
omitted here. Because p(s¢41]|s¢, at) is not involved with
the exploration parameter 0™, by taking the gradient w.r.t.
07, we have

T
= Vore log me(ay|sy).

t=1

Vor. log P(Do|me)

This can be estimated easily on the rollout data. We can
also approximate this gradient with sub-sampling for the
efficiency purpose.

To estimate the meta-reward R (m, Dy), we perform an “ex-
ercise move” by running DDPG ahead for one or a small
number of steps: we first calculate a new actor policy
7' = DDPG(m, Dy) by running DDPG based on data Dy;
we then simulate from the new policy 7’ to get data D1, and
use D; to get an estimation R,T/ of the reward of 7’. This
allows us to estimate the meta reward by

R(w, D) = Ry — R,
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Figure 1. Illustrative screenshots of environments we experiment with Meta and DDPG

where ]A%ﬂ is the estimated reward of 7, which we should
have obtained from the previous iteration.

Once we estimate the meta-reward R(m, Dy), we can up-
date the exploration policy 7. by following the meta policy
gradient in (4). This yields the following update rule:

T
0™ < 0™ + nR(m, Do) Z Vore log me(at|st).  (5)
t=1

After updating the exploration policy, we add both D, and

D, into a replay buffer B that we maintain across the whole

process, that is, B <— B U Dy U Dy; we then update the

actor policy m based on B, that is, 7 <~ DDPG(m, B). Our
main algorithm is summarized in Algorithm 1.

It may appear that our meta update adds significant com-
putation demand, especially in requiring to generate D;
for the purpose of evaluation. However, D; is used highly
efficiently since it is also added into the replay buffer and
is subsequently used for updating 7. This design helps
improve, instead of decrease, the sample efficiency.

Our framework allows us to explore different exploration
policy 7. in term of parametric forms, architectures and
features. We tested three design choices:

i) Meta (variance): Similar to and motivated by the
traditional exploration strategy, we can set 7. to equal the
actor policy adding a zero-mean Gaussian noise whose vari-
ance is trained adaptively, that is, 7, = N (u(s, 07), o2I),
where o is viewed as the parameter of 7. and is trained with
meta policy gradient (5).

i) Meta: We can also take 7, to be another Gaussian
policy that is completely independent of 7, that is, m, =
N(f(s,67),02I), where f is a neural network with param-
eter 7, and ™ := [#7, o] is updated by the meta policy
gradient (5).

iii) Meta (state) : In addition to the basic MDP states
in Meta, we argument with “algorithmic states” such as the

normalized @) function and the Bellman residual error of the
@ function between the current and last policies.

5. Experiments

In this section, we conduct comprehensive experiments to
understand our proposed meta-exploration-policy learning

algorithm and to demonstrate its performance in various
continuous control tasks. Videos' are included to illustrate
the running results of Pendulum and Inverted Double Pen-
dulum.

5.1. Experimental Setting

Our implementation is based on the OpenAI’'s DDPG base-
line (Plappert et al., 2017) GitHub”. Our experiments were
performed on a server with 8 Tesla-M40-24GB GPU and 40
Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz processors.
The deterministic actor (or student) policy network and Q-
networks have the same architectures as implemented in the
default DDPG baseline, which are multi-layer perceptrons
with two hidden layers (64-64). For the meta-exploration
policy (Meta m.), we implemented a stochastic Gaussian
policy with a mean network represented with a MLP with
two hidden layers (64-64), and a log-standard-deviation
variance variable.

In order to make a fair comparison with baseline, we try
to set the similar hyper-parameters as DDPG in most of
the common parameters. The parameter settings are: explo-
ration rollout steps (typically 100) for generating exploration
trajectories Dy, number of evaluation steps (typically 200,
same as DDPG’s rollout steps) for generating exploitation
trajectories D; used to evaluate student’s performance, num-
ber of training steps (typically 50, aligning with DDPG’s
training steps) to update student policy 7, and number of
exploration training steps (typically 1) to update the Meta
policy 7. In most experiments, we set the number of cycles
to be 20 in an epoch to align with DDPG’s corresponding
setting. Tasks such as Half-Cheetah, Inverted Pendulum,
need more explore rollout steps (1000) to finish the task, and
ended up with 2000 evaluation steps, 500 number of training
steps to update students and 100 exploration training steps to
update teacher. In OpenAl’s DDPG baseline (Plappert et al.,
2017), the total number of steps of interactions is 1 million.
Here, the number of steps to achieve convergence is 1.5
million for Half-Cheetah, Inverted Pendulum and Inverted
Double Pendulum, 1 million for Hopper, 0.7 million for
Reacher, and 0.9 million for Pendulum. Similar to DDPG,
the optimizer we use to update the network parameter is

"https://bit.ly/2ICsuyU
Zhttps://github.com/openai/baselines/tree/master/baselines/ddpg
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Figure 2. Comparison between meta exploration policies and
DDPG

Adam (Kingma & Ba, 2015) with the same actor learning
rate 0.0001, critic learning rate 0.001, and additional learn-
ing rate 0.0001 for our meta policy. Similar to DDPG, we
adopt Layer-Normalization (Ba et al., 2016) for our two
policy networks and one Q-network.

5.2. Meta Exploration Policy Explores Efficiently

To investigate and evaluate different teacher’s behaviors,
we tested in Inverted Double Pendulum the three possible
choices of policy designs of 7. listed in Section 4.

In Figure 2, Meta denotes that we learn an exploration pol-
icy that is a Gaussian MLP policy with a network architec-
ture independent of student’s policy. Meta runs consistently
better than DDPG baseline with relatively higher return
and sample-efficiency. Usually, Meta policy learns in the
same pace as student policy, it updates every time both from
student’s success (performance improvement) and failure
(negative performance). For a further more robust policy
updates, we may need to take consideration of the trade-off
between sample efficiency and sample quality.

A second exploration policy denoted as Meta
(variance) in Figure 2 is by taking advantage
of student’s learning, combined with a variance as

Table 1. Performance results on six continuous control tasks

Task Ours DDPG
InvertedDoublePendulum | 7718 + 277 2795 £+ 1325
InvertedPendulum 745 + 27 499 + 23
Hopper 205+ 41 135+ 42
Pendulum -123 £ 10 -206 + 31
HalfCheetah 2011 + 339 1594 + 298
Reacher -12.16 £ 1.19 | -11.67 £+ 3.39

7e = m+ N(0,021I). Essentially, we are learning adaptive
variance for exploration. Based on the student’s perfor-
mance, teacher is able to learn to provide training transitions
with appropriate noise. This teacher’s demonstrations help
student to explore different regions of state space in an
adaptive way.

For Figure 2 (Meta), we can see that the fully independent
exploration policy performs better than the more restric-
tive policy that only adds noise to the action policy. As
we show in Figure 4, the independent exploration policy
tends to explore regions that are not covered by the actor
policy, suggesting that it is beneficial to perform non-local
exploration.

Furthermore, in Figure 2 (Meta (state) ), we find that
explicitly adding the “algorithmic state” features can further
improve the results, though not very significant in this case.
This may be because the algorithm itself already has the
ability of adjusting the exploration policy adaptively accord-
ing to the “algorithmic states” via meta-reward (depending
on exploitation policy 7 and ‘action’ Dy).

5.3. Sample Efficiency in Continuous Control Tasks

We show the learning curves in Figure 3 for six continuous
control tasks, each running three times with different ran-
dom seeds to produce reliable comparison. The x-axis is
the number of thousand steps of interactions, the y-axis is
the average return. In the most experiments, we maintain a
ratio (1:2) of exploration and evaluation trajectories, which
ends up with 1.5 times of interactions per epoch compared
to that of DDPG baseline. However, due to Meta’s effective
learning with adaptive and informative exploration trajec-
tories, we are able to achieve better returns with much less
number of epochs. Overall, our meta-learning algorithm is
able to achieve sample-efficiency with better returns in most
of the following continuous control tasks. Significantly, in
Inverted Pendulum and Inverted Double Pendulum, on aver-
age, in about 250 thousands out of 1500 thousands steps, we
are able to achieve the similar return as the best of DDPG.
That is about 1/6 number of baseline’s samples. Finally,
our average return of Inverted Double Pendulum is about
7718 compared to DDPG’s 2795 (see Table 1). In Pendu-
lum, we performed clearly better with higher average return,
and converge faster than DDPG in less than 200 thousand
steps. In Half-Cheetah and Hopper, on average, our meta-
learning algorithm is pretty robust with higher returns and
better sample-efficiency. In Reacher, we have very similar
return as DDPG baseline with lower variance. The possible
intuition that we are able to improve the sample-efficiency
and returns in most of tasks is that teacher is able to learn
to help student to improve their performance, which is the
student’s ultimate goal.
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Figure 3. Performance Comparison of Meta and DDPG for Six Continuous Control Tasks. The x-axis is the number of thousand steps of
interactions, the y-axis is the average return.

Table 2. Comparing with non-adaptive exploration policies. “Adap-
tive” indicates our adaptive meta policy gradient method. “Final”
means the trained final exploration policy. “Mixture” means a

mixture of exploration polices trained in the last 100 iterations.

Task Setting Return
InvertedDoublePendulum | Adaptive | 7718 + 277
InvertedDoublePendulum | Final 182 £ 28
InvertedDoublePendulum | Mixture | 124 £ 16
Pendulum Adaptive | -123 + 10
Pendulum Final -184 + 22
Pendulum Mixture | -202 £+ 1.2
5.4. Guided Exploration with Diverse and Adaptive

Meta Policies

To study the importance of adaptiveness of our meta-policy,
in comparison, we run DDPG with two fixed and non-
adaptive exploration policies: (a) the fixed final exploration
policy trained by Meta policy gradient, and (b) a mixture of
exploration polices in the last 100 iterations of Meta policy
gradient in two environments. We find that both of these
cases fail to learn well (see Table 2). This suggests that our
meta-exploration does more than finding a best fixed policy
as it is able to adaptively adjust the exploration policy more
efficiently.

To further understand the behaviors of teacher and student
policies and how teacher interacts with student during the
learning process, we plot the density contours of state visita-
tion probabilities in Figure 4. The probabilities are learned
with Kernel Density Estimation based on the samples in 2D
embedding space. In Inverted Double Pendulum task, we
collect about 500 thousands observation states for teacher
policy and 1 million states for student policy. As compar-
ison, we get 1 million states from DDPG policy. Then we
project these data-sets jointly into 2D embedding space by
t-SNE (Maaten & Hinton, 2008). We may be able to find
interesting insights, although it is possible that the t-SNE
projection might introduce artifacts in the visualization.

As shown in Figure 4, we have two groups of comparison
studies for the evolution of teacher and student learning
processes in different stages. In each row, the first column
is Meta-Teacher, the second one is Meta-Student policy and
the third one is the DDPG baseline. The first row (Figure 4(a,
b, ¢)) visualizes state distributions from the first 50 roll-
outs by executing the random teacher and student policies
where the policies are far from becoming stationary. The
bottom row (Figure 4(d,e,f)) demonstrates that the state
distribution landscape visited by teacher, student and DDPG,
respectively, from the last 50 roll-outs to the end of learning.

The teacher is exploring the state space in a global way,
which visits different regions of state space compared to



Learning to Explore via Meta-Policy Gradient

5.0 ~ 5.0
25 25

-10

-10

o o
-100 -75 50 -25 00 2.5 5.0 75 -100 -75

x

10.0

(a) Meta-Teacher (early)

(b) Meta-Student (early)

(c) DDPG (early)

-10

0
-100 -75 50 -25 00 2.5 5.0 75

x

(d) Meta-Teacher (late)

(e) Meta-Student (late)

(f) DDPG (late)

Figure 4. State Visitation Density Contours of Meta and DDPG in Early and Late Training Stages. In each row, the first column is
Meta-Teacher, the second one is Meta-Student policy and the third one is the DDPG baseline.

that of student’s state space. In the two learning stages, the
Meta-Teacher (Figure 4(a, d)) has diversified state visita-
tion distributions ranging from different modes in separate
regions. We can see that Meta-Teacher policy has high
entropy, which implies that Meta-Teacher provides more
diverse samples for student. Guided by teacher’s wide ex-
ploration, student policy is able to learn from a large range
of state distribution regions.

Interestingly, compared to teacher’s behavior, the student
visits almost complementary different states in distribution
space consistently in both the early (Figure 4(a,b)), and late
(Figure 4(d,e)) stages. We can see that the teacher interacts
with the student and is able to learn to explore different
regions based on student’s performance. Meanwhile, the
student is learning from teacher’s provided demonstrations
and is focusing on different regions systematically. This
allows the student to improve its performance consistently
and continuously. It indicates that our global exploration
strategy is quite different from noise-based random walk
local exploration in principle.

From the early (Figure 4(b)) to the late stage (Figure 4(e)),
we find that the student is growing to be able to learn sta-
tionary and robust policies, guided by teacher’s interactive
exploration. Finally, compared to DDPG (Figure 4(f)), we
achieve better best return (8530 vs 2830) for this compari-
son, which indicates that our Meta policy is able to provide
a better exploration strategy to help improve the baseline.

6. Conclusion and Future Work

We introduce a meta-learning algorithm to adaptively learn
exploration polices to collect better experience data for
DDPG training. Using a simple meta policy gradient, we
are able to efficiently improve the exploration policy and
achieve significantly higher sample efficiency than the tra-
ditional DDPG training. Our empirical study demonstrates
the significant practical advantages of our approach.

Although most traditional exploration techniques are based
on local exploration around the actor policy, we show that it
is possible and more efficient to perform global exploration,
by training an independent exploration policy that allows
us to explore spaces that are far away from the current
state distribution. This finding has a substantial implication
to our understanding on exploration strategies, showing
that more adaptive, non-local methods should be used in
order to learn more efficiently. Finally, this meta-policy
algorithm is general and could be applied to other off-policy
reinforcement learning problems.

Our work has limitations and future research is needed. Our
meta-exploration is learned with policy gradient and works
well on tasks in continuous control benchmark. However, it
is still heuristic in the sense of lacking a systematic theoretic
analysis. Moreover, it is important to investigate the explo-
ration efficiency of our meta-exploration method on the
challenging reinforcement learning tasks in more complex
environments with longer time dependencies.
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