Optimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Data

Ganggang Xu ${ }^{1}$ Zuofeng Shang ${ }^{2}$ Guang Cheng ${ }^{3}$

1. Technical Proofs

From now on, we suppress the dependence of $\mathbf{A}_{k l}(\lambda)$'s and $\overline{\mathbf{A}}(\lambda)$ on λ for ease of presentation and simply use $\mathbf{A}_{k l}$'s and $\overline{\mathbf{A}}$ whenever there is no ambiguity.

Lemma S.1. Under the condition C1, we have that $\lambda_{\max }\left(\overline{\mathbf{A}}_{m} \overline{\mathbf{A}}_{m}^{T}\right)=O_{\mathbb{P}_{X}}(1)$.

Proof. Define the following matrix

$$
\overline{\mathbf{K}}_{m}=\frac{1}{m}\left(\begin{array}{cccc}
\mathbf{K}_{11} & \mathbf{K}_{12} & \cdots & \mathbf{K}_{1 m} \\
\mathbf{K}_{21} & \mathbf{K}_{22} & \cdots & \mathbf{K}_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{K}_{m 1} & \mathbf{K}_{m 2} & \cdots & \mathbf{K}_{m m}
\end{array}\right)
$$

Then it is straightforward to see that

$$
\overline{\mathbf{A}}_{m} \overline{\mathbf{A}}_{m}^{T}=\overline{\mathbf{K}} \mathbf{D}_{1} \overline{\mathbf{K}}^{T}
$$

where $\mathbf{D}_{1}=\operatorname{diag}\left\{\mathbf{B}_{11}, \ldots, \mathbf{B}_{m m}\right\}$ with $\mathbf{B}_{l l}=\left(\mathbf{K}_{l l}+\right.$ $\left.n_{l} \lambda \mathbf{I}_{l}\right)^{-2}$, for $l=1, \ldots, m$. Then

$$
\begin{aligned}
\overline{\mathbf{K}} \mathbf{D}_{1} \overline{\mathbf{K}}^{T}= & \frac{1}{m^{2}}\left(\begin{array}{c}
\mathbf{K}_{11} \\
\mathbf{K}_{21} \\
\vdots \\
\mathbf{K}_{m 1}
\end{array}\right) \mathbf{B}_{11}\left(\mathbf{K}_{11}^{T}, \ldots, \mathbf{K}_{m 1}^{T}\right)+\cdots \\
& +\frac{1}{m^{2}}\left(\begin{array}{c}
\mathbf{K}_{1 m} \\
\mathbf{K}_{2 m} \\
\vdots \\
\mathbf{K}_{m m}
\end{array}\right) \mathbf{B}_{m m}\left(\mathbf{K}_{1 m}^{T}, \ldots, \mathbf{K}_{m m}^{T}\right)
\end{aligned}
$$

[^0]which implies that
\[

$$
\begin{aligned}
\lambda_{\max } & \left(\overline{\mathbf{A}}_{m} \overline{\mathbf{A}}_{m}^{T}\right) \leq \frac{1}{m^{2}} \sum_{l=1}^{m} \lambda_{\max }\left\{\left(\begin{array}{c}
\mathbf{K}_{1 l} \\
\mathbf{K}_{2 l} \\
\vdots \\
\mathbf{K}_{m l}
\end{array}\right) \mathbf{B}_{l l}\left(\mathbf{K}_{1 l}^{T}, \ldots, \mathbf{K}_{m l}^{T}\right)\right\} \\
& =\frac{1}{m^{2}} \sum_{l=1}^{m} \lambda_{\max }\left(\mathbf{B}_{l l} \sum_{k=1}^{m} \mathbf{K}_{k l}^{T} \mathbf{K}_{k l}\right) \\
& =\frac{1}{m} \sum_{l=1}^{m} \lambda_{\max }\left\{\left(\mathbf{K}_{l l}+n_{l} \lambda \mathbf{I}_{l}\right)^{-2}\left(\frac{1}{m} \sum_{k=1}^{m} \mathbf{K}_{k l}^{T} \mathbf{K}_{k l}\right)\right\} \\
& =O_{\mathbb{P}_{X}}(1) .
\end{aligned}
$$
\]

The last inequality follows from condition C 1 .

Lemma S.2. Under the conditions C1-C2, for a fixed λ, we have that

$$
\begin{equation*}
\bar{L}(\lambda \mid \boldsymbol{X})-\bar{R}(\lambda \mid \boldsymbol{X})=o_{\mathbb{P}_{\varepsilon, X}}\{\bar{R}(\lambda \mid \boldsymbol{X})\} \tag{S.1}
\end{equation*}
$$

Proof. Using similar notations in equation (12), it is straightforward to show that

$$
\begin{equation*}
\bar{L}(\lambda \mid \boldsymbol{X})=\frac{1}{N}\left(\overline{\mathbf{A}}_{m} \boldsymbol{Y}-\boldsymbol{F}\right)^{T} \mathbf{W}\left(\overline{\mathbf{A}}_{m} \boldsymbol{Y}-\boldsymbol{F}\right) \tag{S.2}
\end{equation*}
$$

where $\boldsymbol{Y}=\boldsymbol{F}+\varepsilon$. Using (12), we have that

$$
\begin{aligned}
\bar{L}(\lambda \mid \boldsymbol{X})-\bar{R}(\lambda \mid \boldsymbol{X}) & =-\frac{2}{N} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W} \overline{\mathbf{A}}_{m} \varepsilon \\
& +\frac{1}{N} \varepsilon^{T} \overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m} \varepsilon-\frac{\sigma^{2}}{N} \operatorname{tr}\left(\overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m}\right)
\end{aligned}
$$

Since the random error ε and the covariate X are independent in model (1), to show (S.1), it suffices to show the following two equations

$$
\begin{align*}
\operatorname{Var}_{\varepsilon}\left\{\frac{1}{N} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W} \overline{\mathbf{A}}_{m} \varepsilon\right\} & =o_{\mathbb{P}_{X}}\left\{\bar{R}^{2}(\lambda \mid \boldsymbol{X})\right\} \tag{S.3}\\
\operatorname{Var}_{\varepsilon}\left\{\frac{1}{N} \varepsilon^{T} \overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m} \varepsilon\right\} & =o_{\mathbb{P}_{X}}\left\{\bar{R}^{2}(\lambda \mid \boldsymbol{X})\right\} . \tag{S.4}
\end{align*}
$$

We first show (S.3). Straightforward algebra yields that

$$
\begin{aligned}
\operatorname{Var}_{\varepsilon} & \left\{\frac{1}{N} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W} \overline{\mathbf{A}}_{m} \boldsymbol{\varepsilon}\right\} \\
& =\frac{\sigma^{2}}{N^{2}} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W}\left(\overline{\mathbf{A}}_{m} \overline{\mathbf{A}}_{m}^{T}\right) \mathbf{W}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right) \boldsymbol{F} \\
& \leq \frac{\sigma^{2} \lambda_{\max }\left(\overline{\mathbf{A}}_{m} \overline{\mathbf{A}}_{m}^{T} \mathbf{W}\right)}{N} \frac{1}{N} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right) \boldsymbol{I} \\
& \leq \frac{\sigma^{2} \lambda_{\max }\left(\overline{\mathbf{A}}_{m} \overline{\mathbf{A}}_{m}^{T}\right) \lambda_{\max }(\mathbf{W})}{N \bar{R}(\lambda \mid \boldsymbol{X})} \bar{R}^{2}(\lambda \mid \boldsymbol{X}) \\
& =o_{\mathbb{P}_{X}}(1) \bar{R}^{2}(\lambda \mid \boldsymbol{X})=o_{\mathbb{P}_{X}}\left\{\bar{R}^{2}(\lambda \mid \boldsymbol{X})\right\},
\end{aligned}
$$

where the second last equation follows from conditions C2C3 and Lemma (S.1) part (a).
Now we show (S.4). Straightforward algebra yields that

$$
\begin{align*}
& \operatorname{Var}_{\varepsilon}\left\{\frac{1}{N} \varepsilon^{T} \overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m} \varepsilon\right\} \\
&=\frac{\mathbb{E}_{\varepsilon} \varepsilon^{4}-\sigma^{4}}{N^{2}} \sum_{i=1}^{N} \bar{b}_{i i}^{2}+2 \sigma^{4} \sum_{i} \sum_{j}^{i \neq j} b_{i j}^{2} \\
& \leq \frac{K_{1}}{N^{2}} \operatorname{tr}\left\{\left(\overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m}\right)^{2}\right\} \\
& \leq \frac{K_{1} \lambda_{\max }\left(\overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m}\right)}{N^{2}} \operatorname{tr}\left(\overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m}\right) \tag{S.5}\\
& \leq \frac{K_{1} \lambda_{\max }\left(\overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m}\right)}{N \sigma^{2}} \bar{R}(\lambda \mid \boldsymbol{X}) \\
& \leq \frac{K_{1} \lambda_{\max }\left(\overline{\mathbf{A}}_{m}^{T} \overline{\mathbf{A}}_{m}\right) \lambda_{\max }(\mathbf{W})}{\sigma^{2} N \bar{R}(\lambda \mid \boldsymbol{X})} \bar{R}^{2}(\lambda \mid \boldsymbol{X}) \\
&=o_{\mathbb{P}_{X}}(1) \bar{R}^{2}(\lambda \mid \boldsymbol{X})
\end{align*}
$$

where $\bar{b}_{i j}$ is the (i, j) th element of matrix $\overline{\mathbf{A}}_{m}^{T} \mathbf{W} \overline{\mathbf{A}}_{m}$ and $K_{1}=\mathbb{E}_{\varepsilon} \varepsilon^{4}+\sigma^{4}$. The last equality follows from conditions C2-C3 and Lemma S.1. Using (S.3)-(S.4), the equation (S.1) follows from a simple application of the Cauchy-Schwartz inequality and the Markov's inequality. The proof is complete.

Proof of Lemma 1. Using (S.2) and (13), we have that

$$
\begin{align*}
\bar{U}(\lambda \mid \boldsymbol{X})- & \bar{L}(\lambda \mid \boldsymbol{X})-\frac{1}{N} \varepsilon^{T} \mathbf{W} \boldsymbol{\varepsilon} \\
= & \frac{2}{N} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W} \boldsymbol{\varepsilon} \tag{S.6}\\
& -\frac{2}{N}\left\{\varepsilon^{T} \overline{\mathbf{A}}_{m} \mathbf{W} \boldsymbol{\varepsilon}-\sigma^{2} \operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)\right\} .
\end{align*}
$$

Notice that the random error ε and the covariate X are independent in model (1). We will show (16) using equation (S.1) in Lemma S.2, for which it suffices to show the
following two equations

$$
\begin{align*}
\operatorname{Var}_{\varepsilon}\left\{\frac{1}{N} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W} \boldsymbol{\varepsilon}\right\} & =o_{\mathbb{P}_{X}}\left\{\bar{R}^{2}(\lambda \mid \boldsymbol{X})\right\} \tag{S.7}\\
\operatorname{Var}_{\varepsilon}\left\{\frac{1}{N} \varepsilon^{T} \overline{\mathbf{A}}_{m} \mathbf{W} \boldsymbol{\varepsilon}\right\} & =o_{\mathbb{P}_{X}}\left\{\bar{R}^{2}(\lambda \mid \boldsymbol{X})\right\} \tag{S.8}
\end{align*}
$$

$\boldsymbol{F}^{\text {We first show (S.7). Straightforward algebra yields that }}$

$$
\begin{aligned}
\operatorname{Var}_{\varepsilon} & \left\{\frac{1}{N} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W} \boldsymbol{\varepsilon}\right\} \\
& =\frac{\sigma^{2}}{N^{2}} \boldsymbol{F}^{T}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right)^{T} \mathbf{W}^{2}\left(\mathbf{I}-\overline{\mathbf{A}}_{m}\right) \boldsymbol{F} \\
& \leq \frac{\sigma^{2} \lambda_{\max }(\mathbf{W})}{N \bar{R}(\lambda \mid \boldsymbol{X})} \bar{R}^{2}(\lambda \mid \boldsymbol{X}) \\
& =o_{\mathbb{P}_{X}}(1) \bar{R}^{2}(\lambda \mid \boldsymbol{X})=o_{\mathbb{P}_{X}}\left\{\bar{R}^{2}(\lambda \mid \boldsymbol{X})\right\}
\end{aligned}
$$

where the second last equation follows from conditions C2C3. Next, we show (S.8). Using condition C 2 , similar to the inequality (S.5), it is straightforward to show that

$$
\begin{aligned}
\operatorname{Var}_{\varepsilon}\left\{\frac{1}{N} \varepsilon^{T} \overline{\mathbf{A}}_{m} \mathbf{W} \varepsilon\right\} & \leq \frac{K_{1}}{N^{2}} \operatorname{tr}\left(\overline{\mathbf{A}}_{m}^{T} \mathbf{W}^{2} \overline{\mathbf{A}}_{m}\right) \\
& \leq \frac{K_{1} \lambda_{\max }(\mathbf{W})}{N \sigma^{2}} \bar{R}(\lambda \mid \boldsymbol{X}) \\
& =\frac{K_{1} \lambda_{\max }(\mathbf{W})}{\sigma^{2} N \bar{R}(\lambda \mid \boldsymbol{X})} \bar{R}^{2}(\lambda \mid \boldsymbol{X}) \\
& =o_{\mathbb{P}_{X}}(1) \bar{R}^{2}(\lambda \mid \boldsymbol{X})
\end{aligned}
$$

where $K_{1}=\mathbb{E}_{\varepsilon} \varepsilon^{4}+\sigma^{4}$ is bounded. Hence, (S.8) is proved using, again, condition C2-C3. Using (S.7)-(S.8) and (S.1), the equation (16) follows from a simple application of the Cauchy-Schwartz inequality and the Markov's inequality. The proof is complete.

Proof of Theorem 1. Using Lemma 1 and Lemma S.2, it suffices to show that

$$
\begin{equation*}
\operatorname{dGCV}_{D C}(\lambda \mid \boldsymbol{X})-\bar{U}(\lambda \mid \boldsymbol{X})=o_{\mathbb{P}_{\varepsilon, X}}\{\bar{R}(\lambda \mid \boldsymbol{X})\} \tag{S.9}
\end{equation*}
$$

Using the first order Taylor expansion of $(1-x)^{-2}$ around $x=0$, we have that $(1-x)^{-2}=1+2 x+3\left(1-x^{*}\right)^{-4} x^{2}$ for some $x^{*} \in(0, x)$. Under condition C3, we have that $\frac{\operatorname{tr}\left(\overline{\mathbf{A}}_{m}\right)}{N}=o_{\mathbb{P}_{X}}(1)$ and thus we can consider the following decomposition

$$
\begin{aligned}
& \operatorname{dGCV}(\lambda \mid \boldsymbol{X})-\bar{U}(\lambda \mid \boldsymbol{X})= \\
& \underbrace{\left\{\frac{1}{N} \boldsymbol{Y}^{T}\left\{\mathbf{I}-\overline{\mathbf{A}}_{m}(\lambda)\right\}^{T} \mathbf{W}\left\{\mathbf{I}-\overline{\mathbf{A}}_{m}(\lambda)\right\} \boldsymbol{Y}-\sigma^{2}\right\} \frac{2 \operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)}{N}}_{I} \\
& +\underbrace{\frac{1}{N} \boldsymbol{Y}^{T}\left\{\mathbf{I}-\overline{\mathbf{A}}_{m}(\lambda)\right\}^{T} \mathbf{W}\left\{\mathbf{I}-\overline{\mathbf{A}}_{m}(\lambda)\right\} \boldsymbol{Y} O_{\mathbb{P}_{X}}\left(\frac{\left\{\operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)\right\}^{2}}{N^{2}}\right)}_{I I}
\end{aligned}
$$

Using condition C 4 , we have that

$$
\begin{equation*}
\frac{\operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)}{N}=o_{\mathbb{P}_{X}}\left\{\bar{R}^{1 / 2}(\lambda \mid \boldsymbol{X})\right\} \tag{S.10}
\end{equation*}
$$

which implies that $I I=o_{\mathbb{P}_{X}}(\bar{R}(\lambda \mid \boldsymbol{X}))$ since $\frac{1}{N} \boldsymbol{Y}^{T}\{\mathbf{I}-$ $\left.\overline{\mathbf{A}}_{m}(\lambda)\right\}^{T} \mathbf{W}\left\{\mathbf{I}-\overline{\mathbf{A}}_{m}(\lambda)\right\} \boldsymbol{Y}$ is bounded. For part I, we can write

$$
\begin{aligned}
I= & \left\{\frac{1}{N} \boldsymbol{Y}^{T}\left\{\mathbf{I}-\overline{\mathbf{A}}_{m}(\lambda)\right\}^{T} \mathbf{W}\left\{\mathbf{I}-\overline{\mathbf{A}}_{m}(\lambda)\right\} \boldsymbol{Y}-\sigma^{2}\right\} \frac{2 \operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)}{N} \\
= & \left\{\bar{U}(\lambda \mid \boldsymbol{X})-\frac{1}{N} \varepsilon^{T} \mathbf{W} \boldsymbol{\varepsilon}\right\} \frac{2 \operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)}{N} \\
& +\left(\frac{1}{N} \varepsilon^{T} \mathbf{W} \varepsilon-\sigma^{2}\right) \frac{2 \operatorname{tr}\left(\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)\right.}{N}-\frac{4\left\{\operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)\right\}^{2} \sigma^{2}}{N^{2}}
\end{aligned}
$$

By Lemma 1, we have that $\bar{U}(\lambda \mid \boldsymbol{X})-\frac{1}{N} \varepsilon^{T} \mathbf{W} \varepsilon=$ $\bar{R}(\lambda \mid \boldsymbol{X})+o_{\mathbb{P}_{\varepsilon, X}}\{\bar{R}(\lambda \mid \boldsymbol{X})\}$. Under condition C 3 , one has that $\frac{\operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)}{N}=o_{\mathbb{P}_{X}}(1)$, and thus
$\left\{\bar{U}(\lambda \mid \boldsymbol{X})-\frac{1}{N} \varepsilon^{T} \mathbf{W} \varepsilon\right\} \frac{2 \operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)}{N}=o_{\mathbb{P}_{\varepsilon, X}}\{\bar{R}(\lambda \mid \boldsymbol{X})\}$.
Furthermore, since $\frac{1}{N} \varepsilon^{T} \mathbf{W} \varepsilon-\sigma^{2}=O_{\mathbb{P}_{\varepsilon}}\left(N^{-1 / 2}\right)$ (condition C3 (a)) and $N \bar{R}(\lambda \mid \boldsymbol{X}) \xrightarrow{\mathbb{P}_{X}} \infty$ (condition C2), we have that $\frac{1}{N} \varepsilon^{T} \mathbf{W} \varepsilon-\sigma^{2}=o_{\mathbb{P}_{\varepsilon}, X}\left\{\bar{R}^{1 / 2}(\lambda \mid \boldsymbol{X})\right\}$. Using this and equation (S.10), we have that

$$
\left(\frac{1}{N} \varepsilon^{T} \mathbf{W} \varepsilon-\sigma^{2}\right) \frac{2 \operatorname{tr}\left(\overline{\mathbf{A}}_{m} \mathbf{W}\right)}{N}=o_{\mathbb{P}_{\varepsilon, X}}\{\bar{R}(\lambda \mid \boldsymbol{X})\}
$$

The third part of I is $o_{\mathbb{P}_{X}}\{\bar{R}(\lambda \mid \boldsymbol{X})\}$ due to equation (S.10). Therefore, we have shown that

$$
\operatorname{dGCV}(\lambda \mid \boldsymbol{X})-\bar{U}(\lambda \mid \boldsymbol{X})=o_{\mathbb{P}_{\varepsilon, x}}\{\bar{R}(\lambda \mid \boldsymbol{X})\}
$$

which completes the proof.

[^0]: *Equal contribution ${ }^{1}$ Department of Mathematical Sciences, Binghamton University, the State University of New York, Binghamton, NY, USA ${ }^{2}$ Department of Mathematical Sciences, Indiana UniversityPurdue University Indianapolis, IN, USA ${ }^{3}$ Department of Statistics, Purdue University, West Lafayette, IN, USA . Correspondence to: Ganggang Xu $<$ gang @math.binghamton.edu $>$.

 Proceedings of the $35^{\text {th }}$ International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

