
Supplementary Material of Binary Classification with Karmic,
Threshold-Quasi-Concave Metrics

In this document, we include some supplementary materials for Binary Classification with Karmic,
Threshold-Quasi-Concave Metrics. Throughout the document, we follow the notations in the main paper. We
will use bolded C as the confusion matrix and C as absolute constants where the exact value might change
from line to line.

A Proofs in Section 3
Proof of Theorem 3.1. We consider a continuous extension for the space of classifiers: F = {f : X 7→ [−1, 1]}.
Let µ(X) be the marginal distribution of X with respect to P. For any classifier f ∈ F and µ(X), the
confusion matrix is given by its entries: true positives (TP), false positives (FP), false negatives (FN) and
true negatives (TN). These quantities can be represented in terms of expectation as:

TP(f,P) = P(Y = +1, f = +1) =

∫
η(x)

[
1 + f(x)

2

]
dµ

FP(f,P) = P(Y = −1, f = +1) =

∫
(1− η(x))

[
1 + f(x)

2

]
dµ

FN(f,P) = P(Y = +1, f = −1) =

∫
η(x)

[
1− f(x)

2

]
dµ

TN(f,P) = P(Y = −1, f = −1) =

∫
(1− η(x))

[
1− f(x)

2

]
dµ

(A.1)

Let π = P(Y = 1) =
∫
η(x)dµ denote the marginal distribution of Y .

The confusion matrix is continuous and Frechét differentiable with respect to classifiers f ∈ F with the
derivatives given pointwise by:

[∇fC(f,P)]x =
1

2
(η(x), 1− η(x),−η(x),−(1− η(x)))dµ(x)

Recall that for any U given by some function G : [0, 1]4 7→ R:

U(f,P) ≡ G(C(f,P)).

Let ∇G = (g1, g2, g3, g4)T , and note that gi depend on the classifier f via the confusion matrix. Applying
the chain rule, the Frechét derivative may be computed as:

[∇U(f,P)]x = ∇G(C(f))T · [∇C(f)]x

=
1

2
(g1(C(f))η(x) + g2(C(f))(1− η(x))− g3(C(f))η(x)− g4(C(f))(1− η(x)))dµ

=
1

2

(
∇G(C(f))T (1,−1,−1, 1)T η(x)−∇G(C(f))T (0,−1, 0, 1)T

)
dµ
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By Assumption 1, we know that ∇G(C(f))T (1,−1,−1, 1)T > 0. The first order optimality condition holds
for any optimal point f∗: 〈∇U(f∗), f∗ − f〉 ≥ 0, ∀f ∈ F , which is equivalent to:∫

X
[∇U(f∗)]x(f∗(x)− f(x)) ≥ 0, ∀f ∈ F . (A.2)

For any f ∈ F , define the “critical set of G(f, P )” where the utility has zero derivative:

A3(f) =

{
x : η(x) =

∇G(C(f))T (0,−1, 0, 1)T

∇G(C(f))T (1,−1,−1, 1)T

}
.

We will refer to A∗3 := A3(f∗F ) as the Bayes critical set. Similarly, define

A1(f) = {x ∈ X : [∇U(f)]x > 0}

=

{
x ∈ X : η(x) >

∇G(C(f))T (0,−1, 0, 1)T

∇G(C(f))T (1,−1,−1, 1)T

}
,

and

A2(f) = {x ∈ X : [∇U(f)]x < 0}

=

{
x ∈ X : η(x) <

∇G(C(f))T (0,−1, 0, 1)T

∇G(C(f))T (1,−1,−1, 1)T

}
.

It is easily seen that A1(f) ∪A2(f) ∪A3(f) = X . Hence Eq. (A.2) is equivalent to∫
A1

[∇U(f∗)]x(f∗(x)− f(x)) +

∫
A2

[∇U(f∗)]x(f∗(x)− f(x)) ≥ 0, ∀f ∈ F . (A.3)

We now claim f∗(x) = 1 on A1 and f∗(x) = −1 on A2. To see this, note that for any optimal point f∗, if
there exists a subset U ⊂ X on which it fails to satisfy the claim, without loss of generality, assume U ⊂ A∗1,
we are going to show µ(U) = 0. By assumption, f∗(x) < 1 on U. Let f(x) = IU (x) + f∗IUc , and plug it into
(A.3), we have ∫

U

[∇U(f∗)]x(f∗(x)− 1) ≥ 0

The integrand is strictly negative so µ(U) = 0. Thus, f∗(x) =

{
1 x ∈ A∗1
−1 x ∈ A∗2

holds almost everywhere. In

this paper we focus on distributions where the critical set of U(f,P) satisfies P (A3(f)) = 0. For instance,
this occurs when the the conditional distribution η(·) is injective and the marginal instance distribution µ is
continuous.

Proof of Theorem 3.2. The proof follows directly from the definition of Vη(δ,P) and strictly quasi-concave.

We proceed to the proof of Corollary 3.1. Before that, we introduce the following lemma to characterize
the derivative of V for any given η.

Lemma A.1. When η(X) is fixed, Vη(δ) is differentiable w.r.t. δ, and

V ′η(δ,P) =
(
∇G(C)T (−1, 1, 1,−1)T δ +∇G(C)T (0,−1, 0, 1)T

)
pη(δ). (A.4)

where pη is the density associated with random variable η(X).
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Proof of Lemma A.1. By Assumption 2, η(X) is absolutely continuous with respect to µ, hence has a density,
denoted as pη(x). When f(x) = sign (η(x)− δ), we could conduct the change of variable u = η(x) and have

TP(f,P) =

∫
{x:η(x)>δ}

η(x)pX(x)dx =

∫ ∞
u=δ

u
pη(u)

η′(x)
η′(x)dx =

∫ ∞
δ

upη(u)du (A.5)

By Leibniz integral rule, we take the partial derivative with respect to δ and have,

∂TP(f)

∂δ
= −δpη(δ) (A.6)

Similarly for the other confusion matrix elements we have

∂FP(f)

∂δ
= −(1− δ)pη(δ),

∂FN(f)

∂δ
= δpη(δ),

∂TN(f)

∂δ
= (1− δ)pη(δ)

By chain rule,
V ′η(δ,P) =

(
∇G(C)T (−1, 1, 1,−1)T δ +∇G(C)T (0,−1, 0, 1)T

)
pη(δ). (A.7)

Now we are in position to prove Proposition 3.1.

Proof of Proposition 3.1. For some η(x) and threshold δ, define f(x) = sign (η(x)− δ). Recall that we define
v(δ) = (−δ,−(1− δ), δ, 1− δ)T . For convenience of the analysis, we also define Hη(δ,P) = ∇G(C(f,P))T v(δ).
We drop the dependency of P when there is no confusion.

If G is ratio of linear Let G = aTC
bTC

for two vectors a, b ∈ R4. Taking derivative of G we have

∇G(C) =
(bTC)a− (aTC)b

(bTC)2
(A.8)

where the denominator is always positive by assumption. Now for the function H, with Eq. (A.8) plugged in,
we have

Hη(δ) =
(bTC)(aT v(δ))− (aTC)(bT v(δ))

(bTC)2

Since all we care about is the sign ofH, so we focus on the numerator of it and denote H̃η(δ) = (bTC)(aT v(δ))−
(aTC)(bT v(δ)). Taking derivative of H̃ we have

H̃ ′η(δ) =(bTC)(aT (−1, 1, 1,−1)T )− (aTC)(bT (−1, 1, 1,−1)T )

=∇G(C(f))T (−1, 1, 1,−1)T (bTC)2 ≤ −CB(bTC)2 (A.9)

By Assumption 1 and the assumption (b) in the statement of the proposition, we have H̃ ′η(δ) < 0,∀δ ∈ [0, 1].
It is also easy to check that H̃(0) > 0 and H̃(1) < 0. Hence H̃η(δ,P) = 0 has a unique solution, which implies
equation Hη(δ,P) = 0 has a unique solution δ∗. Also by the monotonicity of H̃, we have sign (Hη(δ)) =

sign
(
H̃η(δ)

)
= 1,∀δ < δ∗ and sign (Hη(δ)) = sign

(
H̃η(δ)

)
= −1,∀δ > δ∗. Hence δ∗ is the maximizer of

Vη(δ).
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If G is concave Taking derivative of H, we have

H ′(δ) =v(δ)∇2G(C(f))v(δ)T +∇G(C(f))T (−1, 1, 1,−1)T

By Assumption 1, we know that

H ′(δ) ≤ ∇G(C(f))T (−1, 1, 1,−1)T ≤ −CB (A.10)

Also note that Hη(0) > 0 and Hη(1) < 0, by strict monotonicity of H, we know that Hη(δ) = 0
has one unique solution δ∗ ∈ (0, 1). By continuity, there exists ρ0 such that δ ∈ [ρ0, 1 − ρ0]. Let δ∗ be
the solution of Equation (4), then ∀t < δ∗, V ′η(δ) < 0, and ∀t > δ∗, V ′η(δ) > 0. Hence for all t < δ∗,
H(t) > H(δ∗) = 0, which implies V ′(t) > 0. Similarly, V ′(t) < 0 when t > δ∗. Note pη is non-zero everywhere,
so sign (V ′(δ)) = sign (H(δ)).

Now we can show that V(δ) is quasi-concave by definition. Note V(δ) is increasing before δ∗ and decreasing
afterwards. For x, y ∈ [0, 1], if V(y) ≥ V(x), and x ≤ δ∗, then y ≥ x, and V ′(x)(y − x) ≥ 0. If V(y) ≥ V(x),
and x ≥ δ∗, then y ≤ x, and we still have V ′(x)(y − x) ≥ 0. For the strictness, by Assumption 2, V(δ) = 0 if
and only if H(δ) = 0, which is only achieved at δ∗.

B Proofs in Section 4
Proof of Lemma C.7. By the update rule of Algorithm 2 and condition 2, we have δ̂ ∈ (δ∗−γ− ε0

2 , δ
∗+γ+ ε0

2 ).
Now the difference in utility can be bounded as follows.

|U(sign (η̂(X)− δ∗) ,P)− U(sign
(
η̂(X)− δ̂

)
,P)|

≤

∣∣∣∣∣
∫ δ∗−γ

δ∗−γ− ε02
V ′η̂(δ,P)dδ

∣∣∣∣∣+

∣∣∣∣∣
∫ δ∗+γ+

ε0
2

δ∗+γ

V ′η̂(δ,P)dδ

∣∣∣∣∣︸ ︷︷ ︸
I

+

∣∣∣∣∣
∫ δ∗+γ

δ∗−γ
V ′η̂(δ,P)dδ

∣∣∣∣∣︸ ︷︷ ︸
II

. (B.1)

By condition 1, I ≤ Lvε0. Eq. (B.1) can be bounded by the flatness of Vη̂(δ). By condition 3, we have,∣∣∣∣∣
∫ δ∗+γ

δ∗−γ
V ′η̂(δ,P)dδ

∣∣∣∣∣ ≤
∫ δ∗+γ

δ∗−γ
|V ′η̂(δ,P)|dδ ≤ 2γ · c1γ = 2c1γ

2. (B.2)

Taking ε0 = c1
Lv
γ2 and combining Eqs. (B.1) and (B.2), we have

U(sign (η̂(X)− δ∗) ,P)− U(sign
(
η̂(X)− δ̂

)
,P) ≤ 3c1γ

2.

C Proofs for the rates of convergence
In this section we present the proofs of result in Section 5.

The following lemma transforms the convergence in probability as stated in Assumption 4 into the
convergence in expectation, resulting in the following lemma.

Lemma C.1. If Assumption 4 holds, then

E
∫
|ηn − η|dµ(X) ≤ c3√

an
.
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Proof of Lemma C.1. Let S be the sample set. By Fubini’s theorem,

E
∫
|ηn − η|dµ =ESEX |ηn(X)− η(X)|

=EXES |ηn(X)− η(X)|

=

∫ ∞
0

PX(ES |ηn(X)− η(X)| ≥ t)dt (C.1)

Now for each t > 0, define T (t) = {x ∈ X : supP (|ηn(x)− η(x)|) ≥ t) ≤ C1 exp(−C2ant
2)}. By assumption

P (T (t)c) = 0.

PX(ES |ηn(X)− η(X)| ≥ t) ≤P (T (t)c) + P (X ∈ T (t),ES |ηn(X)− η(X)| ≥ t)
≤P (sup

S
|ηn(X)− η(X)| ≥ t)

≤C1 exp(−C2ant
2)

Plugging back to Eq. (C.1), we have

E
∫
|ηn − η|dµ ≤

∫ ∞
0

C1 exp(−C2ant
2)dt ≤ C3√

an

Lemma C.2. Assume Assumption 4 is satisfied, and fn = sign (η̂n − δ∗). Then

E [|η − δ∗|1(fn 6= f∗)] ≤ C3a
− 1+α

2
n .

Proof. For some ε > 0, define events

A0 = {x ∈ X : 0 ≤ |η − δ∗| ≤ ε}, Aj = {x ∈ X : 2j−1ε < |η − δ∗| ≤ 2jε},∀j ≥ 1.

Note that fn 6= f∗ implies |η̂n − η| > |η − δ∗|, we have

E|η − δ∗|1(fn 6= f∗) =

∞∑
j=0

E|η − δ∗|1(fn 6= f∗)1(X ∈ Aj)

≤εP (0 ≤ |η − δ∗| ≤ ε) +

∞∑
j=1

E|η − δ∗|1(|η̂n − η| > |η − δ∗|)1(X ∈ Aj)

≤εP (0 ≤ |η − δ∗| ≤ ε) +

∞∑
j=1

E2jε1(|η̂n − η| > |η − δ∗|)1(X ∈ Aj)

≤εP (0 ≤ |η − δ∗| ≤ ε) +

∞∑
j=1

2jεC1 exp(−C2an(2j−1ε)2)P (X ∈ Aj)

≤C0ε
1+α + C0C1

∞∑
j=1

2jε exp(−C2an(2j−1ε)2)(2jε)α

Take ε = 1√
an

, we have

E|η − δ∗|1(fn 6= f∗) ≤a−
1+α
2

n C0

1 + C1

∞∑
j=1

(2j)1+α exp(−C222j−2)


≤C3a

− 1+α
2

n .

5



Proof of Lemma 5.1. Denote CG = ∇G(C∗)T (1,−1,−1, 1)T . By Assumption 1, CG > 0. Also denote
CH = maxf ‖∇2G(C(f))‖op > 0. CH is a constant because of Assumption 1 and the fact that [0, 1]4 is
compact.

By the Taylor expansion around C∗, there exists C̃ = αC∗ + (1− α)Cn for some α ∈ [0, 1], such that

G(C∗)− G(Cn) = ∇G(C∗)T (C∗ −Cn) + (C∗ −Cn)T∇2G(C̃)(C∗ −Cn)

Expanding the first term, we have

∇G(C∗)T (C∗ −Cn)

=g1(C∗)(TP(f∗)− TP(fn)) + g2(C∗)(FP(f∗)− FP(fn))

+ g3(C∗)(FN(f∗)− FN(fn)) + g4(C∗)(TN(f∗)− TN(fn))

=(g1(C∗)− g3(C∗))(P (Y = 1, f∗ = 1, fn = −1)− P (Y = 1, f∗ = −1, fn = 1))

+ (g4(C∗)− g2(C∗))(P (Y = −1, f∗ = −1, fn = 1)− P (Y = −1, f∗ = −1, fn = 1)) (C.2)

Recall by Theorem 3.2, g4(C
∗)−g2(C∗)

g4(C∗)−g2(C∗)+g1(C∗)−g3(C∗) = δ∗, and f∗(x) = sign (η(x)− δ∗). Hence Eq. (C.2)
further equals to

(g1(C∗)− g3(C∗) + g4(C∗)− g2(C∗))[(1− δ∗)(Eη1(f∗ = 1, fn = −1)− Eη1(f∗ = −1, fn = 1))

+ δ∗(E(1− η)1(f∗ = −1, fn = 1)− E(1− η)1(f∗ = −1, fn = 1))]

=(g1(C∗)− g3(C∗) + g4(C∗)− g2(C∗))[E(η − δ∗)1(η > δ∗, fn = −1) + E(−η + δ∗)1(η < δ∗, fn = 1)]

=CGE|η − δ∗|1(fn 6= f∗) (C.3)

For the second order term, note TP(f∗)−TP(fn) = FN(fn)−FN(f∗) and TN(f∗)−TN(fn) = FP(fn)−FP(f∗),
we have

|(C∗ −Cn)T∇2G(C̃)(C∗ −Cn)| ≤‖∇2G(C̃)‖op · ‖C∗ −Cn‖2

≤4‖∇2G(C̃)‖op · ((TP(f∗)− TP(fn))2 + (TN(f∗)− TN(fn))2)

≤ 4CH
min{δ∗, 1− δ∗}

· ((1− δ∗)2(TP(f∗)− TP(fn))2 + δ∗2(TN(f∗)− TN(fn))2)

≤ 4CH
min{δ∗, 1− δ∗}

(E|η − δ∗|1(fn 6= f∗))2 (C.4)

By Lemma C.2, when an ≥
(

8CH
C3CGmin{δ∗,1−δ∗}

)2
, we have

E|η − δ∗|1(fn 6= f∗) ≤ CG min{δ∗, 1− δ∗}
8CH

(C.5)

Combining Eq. (C.5) with Eqs. (C.3) and (C.4) completes the proof.

Proof of Lemma 5.2. The proof of Lemma 5.2 can be obtained by combining Lemma 5.1 and Lemma C.2.

C.1 Convergence of confusion matrix with fixed threshold
In this section we prove the following lemma, which bounds the norm of difference of confusion matrices when
two classifiers share the same threshold.

Lemma C.3. Let η̂(·) be an estimator of η(·). For any δ ∈ (0, 1), define f̂ = sign (η̂ − δ) and f = sign (η − δ).
Then with constant c8 > 0,

‖C(f,P)−C(f̂ ,P)‖ ≤ c8
∫
|η − η̂|dµ.
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When comparing two threshold-form classifiers with same threshold and different conditional probability
estimators, we observe that, the difference in the confusion matrix is bounded by the distance between the
conditional probability used in the classifier. We start with several lemmas and the main proof is to be found
at the end of this section. To bridge the two classifier, we define the following auxiliary variable, thresholding
at which makes the probability of being predicted positive by η̂ equals to the true probability of being positive.
Define δpart as

P({X : η̂(X) < δpart}) = P({X : η(X) < δ}). (C.6)

Then the thresholding classifier defined by η̂ and δpart has the following relationship with the ground truth
true positive.

Lemma C.4. For any δ ∈ (0, 1), conditional probability η and its estimator η̂, let δpart defined by Eq. (C.6).
Then

∣∣∣∫η̂>δpart η̂dµ− ∫η>δ η(x)dµ
∣∣∣ ≤ ∫X |η − η̂|dµ.

Proof. Define a partition based on Eq. (C.6).

B1 = {X : η̂(X) < δpart, η(X) > δ}, B2 = {X : η̂(X) > δpart, η(X) < δ}
B3 = {X : η̂(X) > δpart, η(X) > δ}, B4 = {X : η̂(X) < δpart, η(X) < δ}

(C.7)

By definition of δpart, P (B1 ∪ B3) = P (η > δ) = P (η̂ > δpart) = P (B2 ∪ B3), hence P (A1) = P (A2). Now
the left hand side can be represented as∫

B2∪B3

η̂dµ−
∫
B1∪B3

ηdµ =

∫
B2

η̂(x)dµ−
∫
B1

ηdµ+

∫
B3

(η̂ − η)dµ

≤
∫
B2

η̂(x)dµ−
∫
B2

ηdµ+

∫
B3

(η̂ − η)dµ

≤
∫
B2∪B3

|η̂ − η|dµ

The first inequality is due to the fact that
∫
B1
ηdµ ≥ δP (B1) = δP (B2) ≥

∫
B2
ηdµ. On the other hand, if we

notice
∫
B1
η̂dµ ≤ δpartP (B1) = δpartP (B2) ≤

∫
B2
η̂dµ, we have∫

B2∪B3

η̂dµ−
∫
B1∪B3

ηdµ ≥
∫
B1

η̂(x)dµ−
∫
B1

ηdµ+

∫
B3

(η̂ − η)dµ

≥−
∫
B1∪B3

|η̂ − η|dµ

Combining both sides proves the lemma.

Another key insight comes from the fact that when the estimation of the conditional probability is good
enough, then the probability of thresholding at the same point will be sufficiently close. Formally speaking, let
us define two random variables Z1 = η(X) and Z2 = η̂(X). By definition of δpart, |P(η̂ < δ)− P(η̂ < δpart)| =
|P(η̂(X) < δ)− P(η(X) < δ)|. The right hand side can be considered as the cumulative distribution function
of Z1 and Z2 evaluated at the same point δ, which can be upper bounded by the Kolmogorov-Smirnov
distance between the distributions of Z1 and Z2. We recall the definition below, let F1, F2 be the cumulative
density function of Z1, Z2 respectively.

KS(F1, F2) = sup
x∈R
|F1(x)− F2(x)|

The KS distance has close connection to the distances between characteristic functions. To be explicit, we
cite the following lemma.
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Lemma C.5 (Ushakov (1999) Theorem 2.9.3). Let F1(x) and F2(x) be two distribution functions with
characteristic functions φ1(t) and φ2(t). Then for any positive T , the following inequality is true.

KS(F1, F2) ≤ 1

π

∫ T

−T

∣∣∣∣φ1(t)− φ2(t)

t

∣∣∣∣ dt+
1

2T

∫ T

−T
(|φ1(t)|+ |φ2(t)|)dt

Equipped with Lemma C.5, we get the following.

Lemma C.6. Consider two conditional probability functions Z1 = η(X) and Z2 = η̂(X) of random variable
X, and δ ∈ [0, 1]. If the characteristic functions of Z1, Z2 are φ1(t) and φ2(t) respectively, and φ1, φ2 are
both absolutely integrable, then ∀δ ∈ [0, 1],

|P(η(X) > δ)− P(η̂(X) > δ)| ≤ C
∫
|η − η̂|dµ.

Proof. When φ1(t), φ2(t) are absolutely integrable, limT→∞
∫ T
−T (|φ1(t)|+ |φ2(t)|)dt <∞. So by Lemma C.5

as T →∞,

KS(F1, F2) ≤ lim
T→∞

1

π

∫ T

−T

∣∣∣∣φ1(t)− φ2(t)

t

∣∣∣∣ dt
≤ lim
T→∞

1

π

∫ T

−T

∣∣∣∣E(eitη(X))− E(eitη̂(X))

t

∣∣∣∣ dt
≤ lim
T→∞

1

π

∫ T

−T
E
[
| cos(tη)− cos(tη̂) + i sin(tη)− sin(tη̂)|

t

]
dt

≤E 1

π

∫ ∞
−∞

| cos(tη)− cos(tη̂)|+ | sin(tη)− sin(tη̂)|
t

dt

=
1

π
E
∫ ∞
−∞

|2 sin(t(η − η̂)/2) sin(t(η + η̂)/2) + 2| sin(t(η − η̂)/2) cos(t(η + η̂)/2)|
t

dt

≤ 4

π
E
∫ ∞
−∞

| sin(t(η − η̂)/2)|
t

dt

≤C
∫
|η − η̂|dµ

The equality is built on the trigonometric identities. The inequality before that is due to the fact that
characteristic function and KS distance are both finite, so we can change the order of integration and
expectation.

Now we are in position to prove Lemma C.3.

Proof of Lemma C.3. It suffices to show that |TP(sign (η(x)− δ))−TP(sign (η̂(x)− δ))| ≤ C
∫
|η̂−η|dµ, the

upper bound for other entries can be shown similarly. Note here that in calculating TP(sign (η̂(x)− δ)) with
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the estimated η̂, the integrand is still with respect to the true η. Expanding both TP as integrals we have,

|TP(sign (η(x)− δ))− TP(sign (η̂(x)− δ))|

=

∣∣∣∣∫
η̂>δ

η(x)dµ−
∫
η>δ

η(x)dµ

∣∣∣∣
≤

∣∣∣∣∣
∫
η̂>δpart

η(x)dµ−
∫
η>δ

η(x)dµ

∣∣∣∣∣+

∣∣∣∣∣
∫
min(δ,δpart)<η̂<max(δ,δpart)

η(x)dµ

∣∣∣∣∣
≤

∣∣∣∣∣
∫
η̂>δpart

η(x)dµ−
∫
η>δ

η(x)dµ

∣∣∣∣∣+ |P(η̂ < δ)− P(η̂ < δpart)|

≤

∣∣∣∣∣
∫
η̂>δpart

η̂dµ−
∫
η>δ

η(x)dµ

∣∣∣∣∣+

∫
η̂>δpart

|η̂ − η|dµ+ |P(η̂ < δ)− P(η̂ < δpart)|

(C.8)

The first quantity in the last line is bounded by Lemma C.4, the second term is immediately upper bounded
by
∫
|η − η̂|dµ, and the third term is bounded by Lemma C.6. Hence we have

‖C(sign (η(x)− δ∗) ,P)−C(sign (η̂(x)− δ∗) ,P)‖ ≤ C
∫
|η − η̂|dµ

C.2 Convergence rate of binary search
The proof of Lemma 5.3 relies on the following general lemma.

Lemma C.7. If Vη(δ,P) has a unique maximizer δ∗. Let δ̂ be the output of Algorithm 2 with input conditional
probability function η̂. If there exists constants Lv, c1, γ such that

1. Vη̂(δ,P) is Lv-Lipschitz continuous for any η̂ satisfying Assumption 2;

2. If |δ − δ∗| ≥ γ, then sign
(
V ′η(δ,P)

)
= sign

(
V ′η̂(δ,Pn)

)
.

3. If |δ − δ∗| < γ, then |V ′η(δ,Pn)| ≤ c1γ.

Then with the tuning parameter ε0 in Algorithm 2 set as ε0 = c1γ
2/Lv, we have

U(sign (η̂(x)− δ∗) ,P)− U(sign
(
η̂(x)− δ̂

)
,P) ≤ 3c1γ

2

The intuition for the conditions is straightforward. We hope the empirical evaluated sign to be equal to
the population value of the sign when the threshold is far from the optimum, hence the update has the correct
direction. And the objective function is also smooth enough around the optimum, so that the cumulative
difference can be bounded.

Proof of Lemma 5.3. It suffices to check the three conditions in Lemma C.7. Recall v(δ) = (−δ,−(1 −
δ), δ, 1− δ).

1. Vη(δ,P) is Lipschitz continuous First by Assumption 2, pη(·) is bounded everywhere. If G(C) = aTC
bTC

,

then V ′η̂(δ,P) = (bTC)(aT v(δ))−(aTC)(bT v(δ))
(bTC)2

· pη(δ). Note |bTC| > 0, and C is on a compact set, hence there
exists constant c such that |bTC| ≥ c. Therefore, |V ′η̂(δ,P)| is bounded by some constant Lv.

If G is concave and twice continuously differentiable, V ′η̂(δ,P) = ∇G(C)T v(δ)pη(δ). Due to the fact that
∇G(C) is continuous, we know it has an upper bound on confusion matrix domain [0, 1]4. Hence there exists
constant Lv such that Vη̂(δ,P) is Lv-Lipschitz continuous.
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2. Φη(δ,P) = Φη̂(δ,Pn) when |δ − δ∗| ≥ γ Recall the function H defined in the proof of Corollary 3.1.
Φη(δ,P) = sign

(
V ′η(δ,P)

)
= sign (Hη(δ,P)). Hence it suffices to show that |Hη(δ,P)| ≥ |Hη(δ,P)−Hη̂(δ,Pn)|.

Given η̂ and δ fixed, we have EX1(η̂(X) > δ)η(X) = TP(sign (η̂(X)− δ) ,P). Note that 1(η̂(X) >
δ)η(X)− E1(η̂(X) > δ)η(X) is mean zero and absolutely bounded by 2. Hence by Bernstein’s inequality, for
ε > 0,

P (|TP(sign (η̂(x)− δ∗) ,Pn)− TP(sign (η̂(x)− δ∗) ,P)| > ε) ≤ C1 exp(−C2nε
2) (C.9)

Similarly we get that for the entire confusion matrix, with probability greater than 1− n−c1 ,

‖C(sign (η̂(X)− δ) ,P)−C(sign (η̂(X)− δ) ,Pn)‖ ≤ c2

√
log n

n

By similar reasoning as the above paragraph, there exists a constant c3 such that

|Hη̂(δ,P)−Hη̂(δ,Pn)| ≤ c3‖C(sign (η̂ − δ) ,P)−C(sign (η̂ − δ) ,Pn)‖ (C.10)

for both linear fractional functions and concave functions. Hence, there exists c4 ∈ R such that

P

(
|Hη̂(δ,P)−Hη̂(δ,Pn)| ≥ c4

√
log n

n

)
≤ n−1 (C.11)

On the other hand, by Lemma C.3, we have

‖C(sign (η̂(X)− δ) ,P)−C(sign (η(X)− δ) ,P)‖ ≤ c5EX |η̂ − η|

Hence by Lipschitzness of H and Assumption 4, we have with probability greater than 1− a−1n ,

|Hη̂(δ)−Hη(δ)| ≤ c5
√

log an
an

(C.12)

For concave functions, by Eq. (A.10), |H ′η(δ,P)| ≥ CB. For linear fractional functions, by working out the
derivative of H, we know it is bounded from below. There exists c6 > 0, such that ∀|δ−δ∗| ≥ γ, |Hη(δ)| ≥ c6γ.
For γ ≥ c4

c6

√
logn
n + c5

c6

√
log an
an

), by Eqs. (C.11) and (C.12),

|Hη(δ,P)| ≥ |Hη(δ,P)−Hη̂(δ,Pn)|

This implies all the empirically evaluated signs for |δ − δ∗| ≥ γ are correct, i.e., Φη(δ,P) = Φη̂(δ,Pn).

3. Smoothness around the optimum

|V ′η̂(δ,P)| ≤ |Hη̂(δ,P)| ·max
δ
pη̂(δ)

The gradient of H is a continuous function defined on a compact domain, and is bounded. Hence Hη(δ,P) is
`0-Lipschitz continuous. We know that Hη(δ∗,P) = 0. So by Eq. (C.12),

Hη̂(δ,P) ≤|Hη̂(δ,P)−Hη(δ,P)|+ |Hη(δ,P)|

≤c5
√

log an
an

+ `0γ

Meanwhile, maxδ pη̂(δ) is bounded by Assumption 2. Take γ = c7
log ñ
ñ with large enough constant c7, all

three conditions in Lemma C.7 are satisfied.
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C.3 Rate of convergence for the two-step plug-in classifier with binary search
Proof of Theorem 5.1. Assume the classifier returned is f̂(x) = sign (η̂(x)− δ), where η̂ is learned with the
first n1 samples {X(1)

i , Y
(1)
i }, and δ is returned by Algorithm 2 with n2 samples. By Lemma 5.2,

|U(f∗,P)− U(η̂ − δ∗,P)| ≤ C1a
− 1+α

2
n1

By Assumption 6 and Lemma 5.3, with probability at least 1−min{an2
, n2}−c,

|U(η̂ − δ∗,P)− U(η̂ − δ̂,P)| ≤ C2
log(min{an2 , n2})

min{an2
, n2}

Taking n1 = n2 = n
2 , we have with probability at least 1−min{an, n}−c,

U(f∗,P)− U(f̂ ,P) ≤|U(sign (η − δ∗) ,P)− U(η̂ − δ∗,P)|+ |U(η̂ − δ∗,P)− U(η̂ − δ̂,P)|

≤C1a
− 1+α

2
n1 + C2 max

{
log an2

an2

,
log n2
n2

}
≤C3 max

{
log n

n
,

log an
an

, a
− 1+α

2
n

}

D Examples
In this section we present the proofs in Section 6.

D.1 Gaussian generative model
The following Lemma shows the asymmetric Gaussian generative model can be fitted via a logistic regression
with coefficient µ and intercept log

(
κ

1−κ

)
.

Lemma D.1. Let Pµ,κ be defined in Eq. (5). Denote γ = log
(

κ
1−κ

)
. Then η(X) = exp(XTµ+γ)

1+exp(XTµ+γ)
.

Proof. By Bayes rule,

η(X) =P (Y = 1|X)

=
κφ(X − µ

2 )

κφ(X − µ
2 ) + (1− κ)φ(X + µ

2 )

=
κ exp(X

Tµ
2 )

κ exp( 1
2X

Tµ) + (1− κ) exp(− 1
2X

Tµ)

=
exp(XTµ+ γ)

1 + exp(XTµ+ γ)

Lemma D.2. Let Pµ,κ as defined in Eq. (5) and `(x) = ex

1+ex . If ‖µ‖ = 2w, then for any θ, θ′ ∈ Rd, we have

EX |`(Xθ)− `(Xθ′)| ≤ w‖θ − θ′‖.
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Proof of Lemma D.2. We know that `(x) is Lipschitz continuous, since `′(x) = ex

(1+ex)2 ≤ 1. Hence, for any
x ∈ X and θ, θ′ we have

|`(Xθ)− `(Xθ′)| ≤ ‖X‖ · ‖θ − θ′‖

By the assumption of the lemma we have E‖X‖ ≤ ‖µ‖2 <∞, hence

EX |`(Xθ)− `(Xθ′)| ≤w‖θ − θ′‖

The claim is proved.

Lemma D.2 states that in this generalized linear model, the convergence rate of the conditional probability
is the same as convergence rate for parameter estimation.

Proof of Lemma 6.1. The consistency and asymptotic normality of the maximum likelihood estimator (MLE)
of the parameters in generalized linear model has been well studied ( e.g. see Fahrmeir and Kaufmann (1985)).
With sample size n, under regularity conditions, the MLE converges in distribution to a Gaussian distribution
whose mean is the true parameter and covariance matrix is the inverse of the Fisher information matrix.

Cov(θ̂MLE) = XTDX,

dii =
exp(Xiθ)

(1 + exp(Xiθ))2
,∀i ∈ [n]; dij = 0,∀i 6= j.

By the asymptotic normality, together with Lemma D.2, it is clear that an = n in Assumption 4.

Proof of Lemma 6.2. By Lemma D.1,

η(X)− δ =
κ exp(X

Tµ
2 )

κ exp(X
Tµ
2 ) + (1− κ) exp(−XTµ2 )

− δ

=
κ(1− δ) exp(X

Tµ
2 )− δ(1− κ) exp(−X

Tµ
2 )

κ exp(X
Tµ
2 ) + (1− κ) exp(−XTµ2 )

=
κ(1− δ) exp(XTµ)− δ(1− κ)

κ exp(XTµ) + (1− κ)
(D.1)

Hence for t < δ, the margin probability

PX∼Pµ,κ(0 < |η(X)− δ| < t) ≤ PX∼Pµ,κ
(

1− κ
κ
· δ − t

1− δ + t
< XTµ <

1− κ
κ
· δ + t

1− δ − t

)
Note the pdf of XTµ is upper bounded by 1√

2πw
, we have

PX∼Pµ,κ(0 < |η(X)− δ| < t) ≤ 2t

(1− δ + t)(1− δ − t)
· 1− κ√

2πκw

With t < min{δ, 1−δ2 },

PX∼Pµ,κ(0 < |η(X)− δ| < t) ≤ t

2(1− δ)2
· 1− κ√

2πκw

Therefore there exists a large enough C0(δ) such that PX∼Pµ,κ(0 < |η(X) − δ| < t) ≤ C0(δ)t holds for
∀t ∈ (0, 1]. This, by definition, is the margin assumption with α = 1.
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D.2 Non-parametric conditional probability estimators
The following two lemmas summarized the convergence rates for estimation β-Hölder class function with
locally polynomial and kernel density estimators.

Lemma D.3 (Theorem 3.2 in Audibert et al. (2007)). If a probability distribution P has a conditional
probability that belongs to the β-Hölder family, and the marginal law of X satisfies µmin ≤ µ(x) ≤ µmax,∀x ∈
supp(µ). Then there exists constants C1, C2, C3 > 0 such that for h = n−1/(2β+d), any t > 0, n ≥ 1, the
estimator ηn satisfies

sup
S
P (|ηn(x)− η(x)| ≥ t) ≤ C1 exp(−C2n

2β/(2β+d)t2)

for almost all x.

Lemma D.4 (Theorem 5 in Jiang (2017)). If a conditional probability η belongs to the β-Hölder class
(0 ≤ β < 1) is also bounded, spherically symmetric, and non-increasing and exponentially decay in terms of
the norm, then there exists constants C > 0 such that the following holds with probability at least 1− C1/n
for h = n−1/(2β+d),

sup
x
‖ηn(x)− η(x)‖∞ ≤ Cn−

β
2β+d

√
log n

Note that Lemma D.3 and Lemma D.4 have different assumptions hence may be applied on different
problems. Lemma D.3 makes assumption on the marginal distribution of X and Lemma D.4 assumes β < 1
and do not generalize to smoother classes.

Proof of Lemma 6.3. The proof follows directly from Lemma D.3 and Lemma D.4.
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