Mean Field Multi-Agent Reinforcement Learning

A. Detailed mean field reinforcement learning algorithms

We published the code at https://github.com/mlii/mfrl.

Algorithm 1 Mean Field Q-learning (MF-Q)

Initialise Oy, 0, , and a forallj € {1,...,N}
while training not finished do
form=1,..,Mdo
For each agent j, sample action @’ from 04 by Eq. (12), with the current mean action @’ and the exploration rate 3
For each agent j, compute the new mean action @’/ by Eq. (11)
Take the joint action @ = [a%, ..., a"] and observe the reward r = [rl,...,r"] and the next state s’
Store (s, a, r, s, @) in replay buffer @, where a = [a*, .. .,a"]
for j = 1to N do
Sample a minibatch of K experiences (s, a, r,s’, @) from &
Sample action a’_ from Qs with a_ « @/
Set y/ =1/ + yvf;j (s") by Eq. (10)

Update the Q-network by minimizing the loss Z(¢/) = = > (/ — Qi (s/, ¢/, @/ ))2

Update the parameters of the target network for each agent j with learning rate 7:

(ﬁi, — 1 +(1— T)(ﬁ'l

Algorithm 2 Mean Field Actor-Critic (MF-AC)

Initialize Qyi, O, . 7gs, My , and @ forallj € {1,...,N}
while training not finished do
For each agent j, sample action a/ = 7y, (s); compute the new mean action @ = [a', ..., a" ]
Take the joint action @ = [a%, ..., a™] and observe the reward r = [r1,...,r"] and the next state s’
Store (s, a, r, s’, a) in replay buffer &
for j = 1to N do
Sample a minibatch of K experiences (s, a, r, s', @) from &

Set y/ = r/ +y v (s') by Eq. (10)

Update the critic by minimizing the loss £(¢/) = £ > (y/ — Qi (s, a/, @ ))2

Update the actor using the sampled policy gradient:

Ve J(0) ~ e Z Vi log mei (s')Q, (s, al,al)

al =, (s)
Update the parameters of the target networks for each agent j with learning rates 7, and 74:

¢ e+ (1—14)4
¢ 190 + (1 —19)6"
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B. Proof of the bound for the remainder term in Eq. 7

Recall Eq. (8) that we approximate the action a* taken by the neighboring agent k with the mean action @ calculated from
the neighborhood W (). The state s and the action a’ of the central agent j can be considered as fixed parameters; the
indices j, k of agents are essentially irrelevant to the derivation. With those omitted for simplicity, We rewrite the expression
of the pairwise Q-function as Q(a) £ Q/(s, @/, a).

Suppose that Q is M-smooth, where its gradient VQ is Lipschitz-continuous with constant M such that for all @, a
IVQ(a) = VQ(a)l|2 < Mlla — a2, (20)
where || - ||2 indicates the £5-norm.
With the Lagrange’s mean value theorem, we have
VQ(a) —VQ(a) =VQ(a+1-(a—a))—VQ0(a) =V?Qa+e-(a—a)) (a—a), where ec[0,1]. (21)
Take the {5-norm on the both sides of the above equation, it follows from the smoothness condition that
IVO(a) = VQ(@)|2 = IV*Q(@+ - (a —a)) - (a—a)|2 < Mlla — a2 22)
Define a £ a — @ and the normalized vector 6@ £ a—a/|ja—al|, with ||6d|o = 1, it follows from the above inequality
V2Q(a + 7 - da) - ddll2 < M. (23)
By arbitrary choice of (the unnormalized vector) §a such that the magnitude ||6al|2 — 0, it follows from above that
IV20(a) - 6dll2 < M. (24)

By aligning (the normalized vector) §d in the direction of the eigenvectors of the Hessian matrix V2Q, we can obtain for
any eigenvalue 1 of V2Q that

IV2Q(a) - 6all2 = |4 - 6all2 = || - [|6a]l2 < M, (25)

which indicates that all eigenvalues of V2Q can be bounded in the symmetric interval [—M, M].

As the Hessian matrix V2Q is real symmetric and hence diagonalizable, there exist an orthogonal matrix U such that
UT[V2Q|U = A £ diag[Ay, . . ., Ap]. It then follows that

D D
da-V?Q-oa=[Usal AlUsa] = A[Usa)}, with — M|Usallz < A4[Usal} < M||Usallz (26)
i=1 i=1

Recall the definition da = a — a in Eq. (6), where a is the one-hot encoding for D actions, and a is a D-dimensional
multinomial distribution. It can be shown that

|USallz = ||6allz = (a—a) (a—a)=a'a+a'a—a'a—a'a=2(1-a)<2 (27)

where i represents the specific action a has represented such that a;; = 0 for i’ # i.

With all elements assembled, we have proved that each single remainder term Rﬁ @ (a*) in Eq. (8) is bounded in [-2M, 2M].
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C. Experiment details

C.1. Gaussian Squeeze

IL, FMQ, Rec-FMQ and MF-Q all use a three-layer MLP to approximate Q-value. All agents share the same Q-network
for each experiment. The shared Q-network takes an agent embedding as input and computes Q-value for each candidate
action. For MF-Q, we also feed in the action approximation a. We use the Adam optimizer with a learning rate of
0.00001 and e-greedy exploration unless otherwise specified. For FMQ, we set the exponential decay rate s = 0.006, start
temperature max_temp=1000 and FMQ heuristic ¢ = 5. For Rec-FMQ, we set the frequency learning rate ay = 0.01.

MAAC and MF-AC use the Adam optimizer with a learning rate of 0.001 and 0.0001 for Critics and Actors respectively,
and 7 = 0.01 for updating the target networks. We share the Critic among all agents in each experiment and feed in an agent
embedding as extra input. Actors are kept separate. The discounted factor v is set to be 0.95 and the mini-batch size is set to
be 200. The size of the replay buffer is 10° and we update the network parameters after every 500 samples added to the
replay buffer.

For all models, we use the performance of the joint-policy learned up to that point if learning and exploration were turned
off (i.e., take the greedy action w.r.t. the learned policy) to compare our method with the above baseline models.

C.2. Ising Model

An Ising model is defined as a stateless system with N homogeneous sites on a finite square lattice. Each site determines
their individual spin @’ to interact with each other and aims to minimize the system energy for a more stable environment.
The system energy is defined as

E(a,h):fZ(hjaj+g > dd) (28)

J kEN(J)

where W (j) is the set of nearest neighbors of site j, #/ € R is the external field affecting site j, and A € R is an interaction
term determines how much the sites tend to align in the same direction. The system is said to reach an equilibrium point
when the system energy is minimized, with the probability

exp (—E(a, h)/T)
Yaexp(=E(a.h)/7)
where 7 is the system temperature. When the temperature rises beyond a certain point (the Curie temperature), the system

can no longer keep a stable form and a phase transition happens. As the ground-truth is known, we would be able to evaluate
the correctness of the O-function learning when there is a large body of agents interacted.

29

P(a) =

The mean field theory provides an approximate solution to (@) = > a’/P(a) through a set of self-consistent mean field
equations

exp (—[hja-f +4 Zkeﬂ(j) <ak>]/‘r)

1+ exp (—[hjaj +4 ZkeN(j)(ak>]/T) .

(al) = (30)

which can be solved iteratively by

exp <—[hfaj + A kewni) (ak>(’)]/7)

, G1)
1+ exp (,Waj 42 ZkeN(j)(ak>([)VT)

<aj>(f+1> —

where ¢ represents the number of iterations.

To learn an optimal joint policy 7r* for Ising model, we use the stateless Q-learning with mean field approximation (MF-Q),
defined as

Q' (d, @) «+ Q' (a, @) + o[ — Q/(a/,@)), (32)
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Algorithm 3 MCMC in Ising Model

initialize spin state @ € {—1,1}" for N sites
while training not finished do
randomly choose site j € N (j)
flip the spin state for site j: a «— —a
compute neighbor energy E (a, h) = =32, (Wa/ + § 37, ;) a/a*) for @/ and a
randomly choose € ~ U(0, 1)

if exp((E(a’, h) — E(a’_, h))/7) > € then

@l —a

where the mean @’ is given as the mean (a/) from the last time step, and the individual reward is

) ] -
r=na —&—5 Z a’a”. (33)
kEN ()

To balance the trade-off between exploration and exploitation under low temperature settings, we use a policy with Boltzmann
exploration and a decayed exploring temperature. The temperature for Boltzmann exploration of MF-Q is multiplied by a
decay factor exponentially through out the training process.

Without lost of generality, we assume A > 0, thus neighboring sites with the same action result in lower energy (observe
higher reward) and are more stable. Each site should also align with the sign of external field 4/ to reduce the system energy.
For simplification, we eliminate the effect of external fields and assume the model to be discrete, i.e., Vj € N,/ = 0,a’ €

{-1,1}.

We simulate the Ising model using Metropolis Monte Carlo methods (MCMC). After initialization, we randomly change a

site’s spin state and calculate the energy change, select a random number between 0 and 1, and accept the state change only
(2l -£])

if the number is less than e — = . This is called the Metropolis technique, which saves computation time by selecting the

more probable spin states.

C.3. Battle Game

IL and MF-Q have almost the same hyper-parameters settings. The learning rate is « = 107, and with a dynamic
exploration rate linearly decays from y = 1.0 to y = 0.05 during the 2000 rounds training. The discounted factor v is set to
be 0.95 and the mini-batch size is 128. The size of replay buffer is 5 x 10°.

AC and MF-AC also have almost the same hyper-parameters settings. The learning rate is @ = 10, the temperature of
soft-max layer in actor is T = 0.1. And the coefficient of entropy in the total loss is 0.08, the coefficient of value in the total
loss is 0.1.
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D. Further details towards the theoretical guarantee of MF-Q
Proposition 1. Let the metric space be RY and the metric be d(a,b) = > |a/ — b/, for a = [@/|Y,b = [P/]Y. If the

Q-function is K-Lipschitz continuous w.rt. a’, then the operator B(a’) £ 7/ (al|s, @) in Eq. (12) forms a contraction
mapping under sufficiently low temperature £3.

Proof. Following the contraction mapping theorem (Kreyszig, 1978), in order to be a contraction, the operator has to satisfy:
d(%B(a),B(b)) < ad(a,b), Va,b

where 0 < o < 1 and B(a) £ [B(a'),...,B(aV)].

Here we start from binomial case and then adapt to the multinomial case in general. We first rewrite % (a’) as

exp (— BOI(s. @', @)

exp (— SO (s.al,al)) + exp ( — BOI (s, ~al,@))
1

R(a) =l (d|s,d) =

- . 4
1+exp(—B-40(s,al,a)) (34)
where AQ(s,a’,a@) = Q(s,a™,a) — Q(s, &', @).
Then we have
B(a’) !
[B(a’) I AQ(v @.a) 11 ePA0GbLa)
_| _pere |40(s, @', a) — 4Q(s, b, a)|
1 (1 + e P00)2 20
< ‘Q @) = Qs,b7,a) + Q(5,b,@) ~ O(s,a, )
§E~(K-|1—a’—(1—b’)|+[(~‘a’—b’])
1 . .
§E~2K-Z|a]—b’|. 35)

In the second equation, we apply the mean value theorem in calculus: Ixg € [x1, x2], s.t., f(x1) — f(x2) = f/(x0)(x1 — x2).
In the third equation we use the maximum value for e #9490 /(1 4- ¢$420)2 = 1/4 when Q¢ = 0. In the last equation we
apply the Lipschitz constraint in the assumption where constant K > 0. Finally, we have:

d(%(a),B(b)) < Lok > lal — b

AT
= —d(a,b 36
spdlab) (36)
In order for the contraction to hold, T > % In other words, when the action space is binary for each agent, and the

temperature is sufficiently large, the mean field procedure converges.

This proposition can be easily extended to multinomial case by replacing binary variable ¢/ by a multi-dimensional binary
indicator vector a/, on each dimension, the rest of the derivations would remain essentially the same. O

D.1. Discussion on Rationality

In line with (Bowling & Veloso, 2001; 2002), we argue that to better evaluate a multi-agent learning algorithm, on top of the
convergence guarantee, discussion on property of Rationality is also needed.

Property 1. (also see (Bowling & Veloso, 2001; 2002)) In an N-agent stochastic game defined in this paper, given all
agents converge to stationary policies, if the learning algorithm converges to a policy that is a best response to the other
agents’ policies, then the algorithm is Rationale.
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Our mean field Q-learning is rational in that Eq. (5) converts many agents interactions into two-body interactions between a
single agent and the distribution of other agents actions. When all agents follow stationary policies, their policy distribution
would be stationary too. As such the two-body stochastic game becomes an MDP, and the agent would choose a policy
(based on Assumption 2) which is the best response to the distribution of other stationary policies. As agents are symmetric
in our case, they all show the best response to the distributions, and are therefore rational.



