Yes, but Did It Work?: Evaluating Variational Inference

Yuling Yao 1 Aki Vehtari 2 Daniel Simpson 3 Andrew Gelman 1

Abstract

While it’s always possible to compute a variational approximation to a posterior distribution, it can be difficult to discover problems with this approximation. We propose two diagnostic algorithms to alleviate this problem. The Pareto-smoothed importance sampling (PSIS) diagnostic gives a goodness of fit measurement for joint distributions, while simultaneously improving the performance of point estimates.

1. Introduction

Variational Inference (VI), including a large family of posterior approximation methods like stochastic VI (Hoffman et al. 2013), black-box VI (Ranganath et al. 2014), automatic differentiation VI (ADVI, Kucukelbir et al. 2017), and many other variants, has emerged as a widely-used method for scalable Bayesian inference. These methods come with few theoretical guarantees and it’s difficult to assess how well the computed variational posterior approximates the true posterior.

Instead of computing expectations or sampling draws from the posterior $p(\theta \mid y)$, variational inference fixes a family of approximate densities Q, and finds the member q^* minimizing the Kullback-Leibler (KL) divergence to the true posterior: $KL(q(\theta), p(\theta \mid y))$. This is equivalent to maximizing the evidence lower bound (ELBO):

$$\text{ELBO}(q) = \int_{\theta} \left(\log p(\theta, y) - \log q(\theta) \right) q(\theta) d\theta. \quad (1)$$

There are many situations where the VI approximation is flawed. This can be due to the slow convergence of the optimization problem, the inability of the approximation family to capture the true posterior, the asymmetry of the true distribution, the fact that the direction of the KL divergence under-penalizes approximation with too-light tails, or all these reasons. We need a diagnostic algorithm to test whether the VI approximation is useful.

There are two levels of diagnostics for variational inference. First the convergence test should be able to tell if the objective function has converged to a local optimum. When the optimization problem (1) is solved through stochastic gradient descent (SGD), the convergence can be assessed by monitoring the running average of ELBO changes. Researchers have introduced many convergence tests based on the asymptotic property of stochastic approximations (e.g., Sielken, 1973; Stroup & Braun, 1982; Pflug, 1990; Wada & Fujisaki, 2015; Chee & Toulis, 2017). Alternatively, Blei et al. (2017) suggest monitoring the expected log predictive density by holding out an independent test dataset. After convergence, the optimum is still an approximation to the truth. This paper is focusing on the second level of VI diagnostics whether the variational posterior $q^*(\theta)$ is close enough to the true posterior $p(\theta \mid y)$ to be used in its place.

Purely relying on the objective function or the equivalent ELBO does not solve the problem. An unknown multiplicative constant exists in $p(\theta, y) \propto p(\theta \mid y)$ that changes with reparametrization, making it meaningless to compare ELBO across two approximations. Moreover, the ELBO is a quantity on an uninterpretable scale, that is it’s not clear at what value of the ELBO we can begin to trust the variational posterior. This makes it next to useless as a method to assess how well the variational inference has fit.

In this paper we propose two diagnostic methods that assess, respectively, the quality of the entire variational posterior for a particular data set, and the average bias of a point estimate produced under correct model specification.

The first method is based on generalized Pareto distribution diagnostics used to assess the quality of a importance sampling proposal distribution in Pareto smoothed importance sampling (PSIS, Vehtari et al., 2017). The benefit of PSIS diagnostics is two-fold. First, we can tell the discrepancy between the approximate and the true distribution by the estimated continuous k value. When it is larger than a pre-specified threshold, users should be alert of the limitation.
of current variational inference computation and consider further tuning it or turn to exact sampling like Markov chain Monte Carlo (MCMC). Second, in the case when \(\hat{k} \) is small, the fast convergence rate of the importance-weighted Monte Carlo integration guarantees a better estimation accuracy. In such sense, the PSIS diagnostics could also be viewed as a post-adjustment for VI approximations. Unlike the second-order correction Giordano et al. (2017), which relies on an un-testable unbiasedness assumption, we make diagnostics and adjustment at the same time.

The second diagnostic considers only the quality of the median of the variational posterior as a point estimate (in Gaussian mean-field VI this corresponds to the modal estimate). This diagnostic assesses the average behavior of the point estimate under data from the model and can indicate when a systemic bias is present. The magnitude of that bias can be monitored while computing the diagnostic. This diagnostic can also assess the average calibration of univariate functionals of the parameters, revealing if the bias can be monitored while computing the diagnostic. This diagnostic could be used as a partial justification for using the second-order correction of Giordano et al. (2017).

2. Is the Joint Distribution Good Enough?

If we can draw a sample \(\{\theta_1, \ldots, \theta_S\} \) from \(p(\theta | y) \), the expectation of any integrable function \(E_p[h(\theta)] \) can be estimated by Monte Carlo integration: \(\sum_{s=1}^{S} h(\theta_s)/S \xrightarrow{S \to \infty} E_p[h(\theta)] \). Alternatively, given samples \(\{\theta_1, \ldots, \theta_S\} \) from a proposal distribution \(q(\theta) \), importance sampling (IS) estimate is \(\left(\sum_{s=1}^{S} h(\theta_s) r_s / \sum_{s=1}^{S} r_s \right) \), where the importance ratios \(r_s \) are defined as

\[
r_s = \frac{p(\theta_s, y)}{q(\theta_s)}. \tag{2}
\]

In general, with a sample \(\{\theta_1, \ldots, \theta_S\} \) drawn from the variational posterior \(q(\theta) \), we consider a family of estimates with the form

\[
E_p[h(\theta)] \approx \sum_{s=1}^{S} h(\theta_s)w_s \sum_{s=1}^{S} w_s, \tag{3}
\]

which contains two extreme cases:

1. When \(w_s \equiv 1 \), estimate (3) becomes the plain VI estimate that is completely trust the VI approximation. In general, this will be biased to an unknown extent and inconsistent. However, this estimator has small variance.

2. When \(w_s = r_s \), (3) becomes importance sampling. The strong law of large numbers ensures it is consistent as \(S \to \infty \), and with small \(O(1/S) \) bias due to self-normalization. But the IS estimate may have a large or infinite variance.

There are two questions to be answered. First, can we find a better bias-variance trade-off than both plain VI and IS?

Second, VI approximation \(q(\theta) \) is not designed for an optimal IS proposal, for it has a lighter tail than \(p(\theta | y) \) as a result of entropy penalization, which lead to a heavy right tail of \(r_s \). A few large-valued \(r_s \) dominates the summation, bringing in large uncertainty. But does the finite sample performance of IS or stabilized IS contain the information about the dispensary measure between \(q(\theta) \) and \(p(\theta | y) \)?

2.1. Pareto Smoothed Importance Sampling

The solution to the first question is the Pareto smoothed importance sampling (PSIS). We give a brief review, and more details can be found in Vehtari et al. (2017).

A generalized Pareto distribution with shape parameter \(k \) and location-scale parameter \((\mu, \tau) \) has the density

\[
p(y | \mu, \sigma, k) = \begin{cases} \frac{1}{\sigma} \left(1 + k \left(\frac{y - \mu}{\sigma} \right) \right)^{-\frac{1}{k} - 1}, & k \neq 0, \\ \frac{1}{\sigma} \exp \left(\frac{y - \mu}{\sigma} \right), & k = 0. \end{cases}
\]

PSIS stabilizes importance ratios by fitting a generalized Pareto distribution using the largest \(M \) samples of \(r_s \), where \(M \) is empirically set as \(\min(S/5, 3\sqrt{S}) \). It then reports the estimated shape parameter \(\hat{k} \) and replaces the \(M \) largest \(r_s \) by their expected value under the fitted generalized Pareto distribution. The other importance weights remain unchanged. We further truncate all weights at the raw weight maximum \(\max(r_s) \). The resulted smoothed weights are denoted by \(\hat{w}_s \), based on which a lower variance estimation can be calculated through (3).

Pareto smoothed importance sampling can be considered as Bayesian version of importance sampling with prior on the largest importance ratios. It has smaller mean square errors than plain IS and truncated-IS (Ionides, 2008).

2.2. Using PSIS as a Diagnostic Tool

The fitted shape parameter \(\hat{k} \), turns out to provide the desired diagnostic measurement between the true posterior \(p(\theta | y) \) and the VI approximation \(q(\theta) \). A generalized Pareto distribution with shape \(k \) has finite moments up to order \(1/k \), thus any positive \(k \) value can be viewed as an estimate to

\[
k = \inf \left\{ k' > 0 : E_q \left(\frac{p(\theta | y)}{q(\theta)} \right)^{\frac{1}{k'}} < \infty \right\}. \tag{4}
\]
According to empirical study in Vehtari et al. (2017), we set

After log transformation, (4) can be interpreted as Rényi divergence (Rényi et al., 1961) with order \(\alpha \) between \(p(\theta|y) \) and \(q(\theta) \):

\[
k = \inf \left\{ k' > 0 : D_{\alpha} (p||q) < \infty \right\},
\]

where \(D_{\alpha} (p||q) = \frac{1}{\alpha - 1} \log \int \hat{p}(\theta)^{\alpha} q(\theta)^{1-\alpha} d\theta \).

It is well-defined since Rényi divergence is monotonic increasing on order \(\alpha \). Particularly, when \(k > 0.5 \), the \(\chi^2 \) divergence \(\chi(p||q) \), becomes infinite, and when \(k > 1 \), \(D_1 (p||q) = \text{KL}(p,q) = \infty \), indicating a disastrous VI approximation, despite the fact that \(\text{KL}(q,p) \) is always minimized among the variational family. The connection to Rényi divergence holds when \(k > 0 \). When \(k < 0 \), it predicts the importance ratios are bounded from above.

This also illustrates the advantage of a continuous \(\hat{k} \) estimate in our approach over only testing the existence of second moment of \(E_q (p/q)^2 \) (Epifani et al., 2008; Koopman et al., 2009) – it indicates if the Rényi divergence between \(q \) and \(p \) is finite for all continuous order \(\alpha > 0 \).

Meanwhile, the shape parameter \(k \) determines the finite sample convergence rate of both IS and PSIS adjusted estimate. Geweke (1989) shows when \(E_q [r(\theta)^2] < \infty \) and \(E_q [(r'(\theta)h(\theta))^2] < \infty \) hold (both conditions can be tested by \(\hat{k} \) in our approach), the central limit theorem guarantees the square root convergence rate. Furthermore, when \(k < 1/3 \), then the Berry-Esseen theorem states faster convergence rate to normality (Chen et al., 2004). Cortes et al. (2010) and Cortes et al. (2013) also link the finite sample convergence rate of IS with the number of existing moments of importance ratios.

PSIS has smaller estimation error than the plain VI estimate, which we will experimentally verify this in Section 4. A large \(\hat{k} \) indicates the failure of finite sample PSIS, so it further indicates the large estimation error of VI approximation. Therefore, even when the researchers’ primary goal is not to use variational approximation \(q \) as an PSIS proposal, they should be alert by a large \(\hat{k} \) which tells the discrepancy between the VI approximation result and the true posterior.

According to empirical study in Vehtari et al. (2017), we set the threshold of \(\hat{k} \) as follows.

- If \(\hat{k} < 0.5 \), we can invoke the central limit theorem to suggest PSIS has a fast convergence rate. We conclude the variational approximation \(q \) is close enough to the true density. We recommend further using PSIS to adjust the estimator (3) and calculate other divergence measures.

- If \(0.5 < \hat{k} < 0.7 \), we still observe practically useful finite sample convergence rates and acceptable Monte Carlo error for PSIS. It indicates the variational approximation \(q \) is not perfect but still useful. Again, we recommend PSIS to shrink errors.

- If \(\hat{k} > 0.7 \), the PSIS convergence rate becomes impractically slow, leading to a large mean square error, and a even larger error for plain VI estimate. We should consider tuning the variational methods (e.g., re-parametrization, increase iteration times, increase mini-batch size, decrease learning rate, et.al.) or turning to exact MCMC. Theoretically \(\hat{k} \) is always smaller than 1, for \(E_q [p(\theta|y)/q(\theta)] = p(y) < \infty \), while in practice finite sample estimate \(\hat{k} \) may be larger than 1, which indicates even worse finite sample performance.

The proposed diagnostic method is summarized in Algorithm 1.

Algorithm 1 PSIS diagnostic

1. **Input:** the joint density function \(p(\theta,y) \); number of posterior samples \(S \); number of tail samples \(M \).
2. Run variational inference to \(p(\theta|y) \), obtain VI approximation \(q(\theta) \).
3. Sample \((\theta_s,s = 1,\ldots,S) \) from \(q(\theta) \).
4. Calculate the importance ratio \(r_s = p(\theta_s,y)/q(\theta_s) \).
5. Fit generalized Pareto distribution to the \(M \) largest \(r_s \).
6. Report the shape parameter \(\hat{k} \).
7. **if** \(\hat{k} < 0.7 \) **then**
8. Conclude VI approximation \(q(\theta) \) is close enough to the unknown truth \(p(\theta|y) \).
9. Recommend further shrinking errors by PSIS.
10. **else**
11. Warn users that the VI approximation is not reliable.
12. **end if**

2.3. Invariance Under Re-Parametrization

Re-parametrization is common in variational inference. Particularly, the reparameterization trick (Rezende et al., 2014) rewrites the objective function to make gradient calculation easier in Monte Carlo integrations.

A nice property of PSIS diagnostics is that the \(\hat{k} \) quantity is invariant under any re-parametrization. Suppose \(\xi = T(\theta) \) is a smooth transformation, then the density ratio of \(\xi \) under the target \(p \) and the proposal \(q \) does not change:

\[
\frac{p(\xi)}{q(\xi)} = \frac{p(T^{-1}(\xi))}{q(T^{-1}(\xi))} \frac{|\det J_T T^{-1}(\xi)|}{|\det J_T T^{-1}(\xi)|} = \frac{p(\theta)}{q(\theta)}
\]
Therefore, \(p(\xi)/q(\xi) \) and \(p(\theta)/q(\theta) \) have the same distribution under \(q \), making it free to choose any convenient parametrization form when calculating \(k \).

However, if the re-parametrization changes the approximation family, then it will change the computation result, and PSIS diagnostics will change accordingly. Finding the optimal parametrization form, such that the re-parametrized posterior distribution lives exactly in the approximation family

\[
p(T(\xi)) = p(T^{-1}(\xi))|J_\xi T^{-1}(\xi)| \in Q,
\]

can be as hard as finding the true posterior. The PSIS diagnostic can guide the choice of re-parametrization by simply comparing the \(k \) quantities of any parametrization. Section 4.3 provides a practical example.

2.4. Marginal PSIS Diagnostics Do Not Work

As dimension increases, the VI posterior tends to be further away from the truth, due to the limitation of approximation families. As a result, \(k \) increases, indicating inefficiency of importance sampling. This is not the drawback of PSIS diagnostics. Indeed, when the focus is the joint distribution, such behaviour accurately reflects the quality of the variational approximation to the joint posterior.

Denoting the one-dimensional true and approximate marginal density of the \(i \)-th coordinate \(\theta_i \), as \(p(\theta_i|y) \) and \(q(\theta_i) \), the marginal \(k \) for \(\theta_i \) can be defined as

\[
k_i = \inf \left\{ 0 < k' < 1 : E_q \left(\frac{p(\theta_i|y)}{q(\theta_i)} \right)^{k'} < \infty \right\}.
\]

The marginal \(k_i \) is never larger (and usually smaller) than the joint \(k \) in (4).

Proposition 1. For any two distributions \(p \) and \(q \) with support \(\Theta \) and the margin index \(i \), if there is a number \(\alpha > 1 \) satisfying \(E_q \left(\frac{p(\theta_i|y)}{q(\theta_i)} \right)^{\alpha} < \infty \), then \(E_q \left(\frac{p(\theta_i|y)}{q(\theta_i)} \right)^{\alpha} < \infty \).

Proposition 1 demonstrates why the importance sampling is usually inefficient in high dimensional sample space, in that the joint estimation is “worse” than any of the marginal estimation.

Should we extend the PSIS diagnostics to marginal distributions? We find two reasons why the marginal PSIS diagnostics can be misleading. Firstly, unlike the easy access to the unnormalized joint posterior distribution \(p(\theta, y) \), the true marginal posterior density \(p(\theta_i|y) \) is typically unknown, otherwise one can conduct one-dimensional sampling easily to obtain the marginal samples. Secondly, a smaller \(k_i \) does not necessarily guarantee a well-performed marginal estimation. The marginal approximations in variational inference can both over-estimate and under-estimate the tail thickness of one-dimensional distributions, the latter situation gives rise to a smaller \(k_i \). Section 4.3 gives an example, where the marginal approximations with extremely small marginal \(k \) have large estimation errors. This does not happen in the joint case as the direction of the Kullback-Leibler divergence \(q^*(\theta) \) strongly penalizes too-heavy tails, which makes it unlikely that the tails of the variational posterior are significantly heavier than the tails of the true posterior.

3. Assessing the Average Performance of the Point Estimate

The proposed PSIS diagnostic assesses the quality of the VI approximation to the full posterior distribution. It is often observed that while the VI posterior may be a poor approximation to the full posterior, point estimates that are derived from it may still have good statistical properties. In this section, we propose a new method for assessing the calibration of the center of a VI posterior.

3.1. The Variational Simulation-Based Calibration (VSBC) Diagnostic

This diagnostic is based on the proposal of Cook et al. (2006) for validating general statistical software. They noted that if \(\theta^{(0)} \sim p(\theta) \) and \(y \sim p(y \mid \theta^{(0)}) \), then

\[
Pr_{(y,\theta^{(0)})} \left(Pr_{\theta^{(0)}}(\theta < \theta^{(0)}) \leq \cdot \right) = Unif_{[0,1]}([0, \cdot]).
\]

To use the observation of Cook et al. (2006) to assess the performance of a VI point estimate, we propose the following procedure. Simulate \(M > 1 \) data sets \(\{y_j\}_{j=1}^M \) as follows: Simulate \(\theta_j^{(0)} \sim p(\theta) \) and then simulate \(y_{j|\theta} \sim p(y \mid \theta_j^{(0)}) \), where \(y_{j|\theta} \) has the same dimension as \(y \). For each of these data sets, construct a variational approximation to \(p(\theta \mid y_j) \) and compute the marginal calibration probabilities

\[
p_{ij} = Pr_{\theta_j^{(0)}} \left(\theta_i \leq \theta_j^{(0)} \right).
\]

To apply the full procedure of Cook et al. (2006), we would need to test \(\dim(\theta) \) histograms for uniformity, however this would be too stringent a check as, like our PSIS diagnostic, this test is only passed if the variational posterior is a good approximation to the true posterior. Instead, we follow an observation of Anderson (1996) from the probabilistic forecasting validation literature and note that asymmetry in the histogram for \(p_{ij} \) indicates bias in the variational approximation to the marginal posterior \(\theta_i \mid y \).

The VSBC diagnostic tests for symmetry of the marginal calibration probabilities around 0.5 and either by visual inspection of the histogram or by using a Kolmogorov-Smirnov (KS) test to evaluate whether \(p_{ij} \) and \(1 - p_{ij} \) have the same distribution. When \(\theta \) is a high-dimensional parameter, it is important to interpret the results of any hypothesis tests
Algorithm 2 VSBC marginal diagnostics

1: **Input:** prior density \(p(\theta) \), data likelihood \(p(y \mid \theta) \); number of replications \(M \); parameter dimensions \(K \);
2: for \(j = 1 : M \) do
3: Generate \(\theta_j^{(0)} \) from prior \(p(\theta) \);
4: Generate a size-\(n \) dataset \(\{y_{ij}\} \) from \(p(y \mid \theta_j^{(0)}) \);
5: Run variational inference using dataset \(y_{ij} \), obtain a VI approximation distribution \(q_j(\cdot) \);
6: for \(i = 1 : K \) do
7: Label \(\theta_j^{(0)} \) as the \(i \)-th marginal component of \(\theta_j^{(0)} \);
8: Label \(\theta_i^* \) as the \(i \)-th marginal component of \(\theta^* \);
9: Calculate \(p_{ij} = \Pr(\theta_j^{(0)} < \theta_i^* \mid \theta^* \sim q_j) \)
10: end for
11: for \(i = 1 : K \) do
12: Test if the distribution of \(\{p_{ij}\}_{j=1}^M \) is symmetric;
13: If rejected, the VI approximation is biased in its \(i \)-th margin.
14: end for

With stronger assumptions, The VSBC test can be formalized as in Proposition 2.

Proposition 2. Denote \(\theta \) as a one-dimensional parameter that is of interest. Suppose in addition we have: (i) the VI approximation \(q \) is symmetric; (ii) the true posterior \(p(\theta|y) \) is symmetric. If the VI estimation \(q \) is unbiased, i.e., \(E_{\theta \sim q(\theta)} \theta = E_{\theta \sim p(\theta|y)} \theta \), then the distribution of VSBC \(p \)-value is symmetric. Otherwise, if the VI estimation is positively/negatively biased, then the distribution of VSBC \(p \)-value is right/left skewed.

The symmetry of the true posterior is a stronger assumption than is needed in practice for this result to hold. In the forecast evaluation literature, as well as the literature on posterior predictive checks, the symmetry of the histogram is a commonly used heuristic to assess the potential bias of the distribution. In our tests, we have seen the same thing occurs: the median of the variational posterior is close to the median of the true posterior when the VSBC histogram is symmetric. We suggest again that this test be interpreted conservatively: if the histogram is not symmetric, then the VI is unlikely to have produced a point estimate close to the median of the true posterior.

4. Applications

Both PSIS and VSBC diagnostics are applicable to any variational inference algorithm. Without loss of generality, we implement mean-field Gaussian automatic differentiation variational inference (ADVI) in this section.

4.1. Linear Regression

Consider a Bayesian linear regression \(y \sim N(X \beta, \sigma^2) \) with prior \(\{\beta_i\}_{i=1}^K \sim N(0, 1), \sigma \sim \text{gamma}(5, 5) \). We fix sample size \(n = 10000 \) and number of regressors \(K = 100 \).

Figure 1 visualizes the VSBC diagnostic, showing the distribution of VSBC \(p \)-values of the first two regression coefficients \(\beta_1, \beta_2 \) and \(\log \sigma \) based on \(M = 1000 \) replications. The two sided Kolmogorov-Smirnov test for \(p \) and \(1 - p \) is only rejected for \(p_{\sigma} \), suggesting the VI approximation is in average marginally unbiased for \(\beta_1 \) and \(\beta_2 \), while \(\sigma \) is overestimated as \(p_{\sigma} \) is right-skewed. The under-estimation of posterior variance is reflected by the U-shaped distributions.

Using one randomly generated dataset in the same problem, the PSIS \(k \) is 0.61, indicating the joint approximation is close to the true posterior. However, the performance of ADVI is sensitive to the stopping time, as in any other optimization problems. As displayed in the left panel of Figure 2, changing the threshold of relative ELBO change from a conservative \(10^{-5} \) to the default recommendation \(10^{-2} \) increases \(k \) to 4.4, even though \(10^{-2} \) works fine for many other simpler problems. In this example, we can also view \(k \) through a multiple testing lens.
KS-test $p = 0.27$

1. VSBC diagnostics for β_1, β_2 and $\log \sigma$ in the Bayesian linear regression example. The VI estimation overestimates σ as p_σ is right-skewed, while β_1 and β_2 are unbiased as the two-sided KS-test is not rejected.

2. ADVI is sensitive to the stopping time in the linear regression example. The default 0.01 threshold lead to a fake convergence, which can be diagnosed by monitoring PSIS k. PSIS adjustment always shrinks the estimation errors.

4.2. Logistic Regression

Next we run ADVI to a logistic regression $Y \sim Bernoulli(\logit^{-1}(\beta X))$ with a flat prior on β. We generate $X = (x_1, \ldots, x_n)$ from $N(0, (1 - \rho)I_{K \times K} + \rho^2 I_{K \times K})$ such that the correlation in design matrix is ρ, and ρ is changed from 0 to 0.99. The first panel in Figure 3 shows PSIS k increases as the design matrix correlation increases. It is not monotonic because β is initially negatively correlated when X is independent. A large ρ transforms into a large correlation for posterior distributions in β, making it harder to be approximated by a mean-field family, as can be diagnosed by \hat{k}. In panel 2 we calculate mean log predictive density (lpd) of VI approximation and true posterior using 200 independent test sets. Larger ρ leads to worse mean-field approximation, while prediction becomes easier. Consequently, monitoring lpd does not diagnose the VI behavior; it increases (misleadingly suggesting better fit) as ρ increases. In this special case, VI has larger lpd than the true posterior, due to the VI under-dispersion and the model misspecification. Indeed, if viewing lpd as a function $h(\beta)$, it is the discrepancy between VI lpd and true lpd that reveals the VI performance, which can also be diagnosed by \hat{k}. Panel 3 shows a sharp increase of lpd discrepancy around $\hat{k} = 0.7$, consistent with the empirical threshold we suggest.

Figure 3. In the logistic regression example, as the correlation in design matrix increase, the correlation in parameter space also increases, leading to larger \hat{k}. Such flaw is hard to tell from the VI log predictive density (lpd), as a larger correlation makes the prediction easier. \hat{k} diagnose the discrepancy of VI lpd and true posterior lpd, with a sharp jump at 0.7.

4.3. Re-parametrization in a Hierarchical Model

The Eight-School Model (Gelman et al., 2013, Section 5.5) is the simplest Bayesian hierarchical normal model. Each school reported the treatment effect mean y_i and standard deviation σ_i separately. There was no prior reason to believe that any of the treatments were more effective than any other, so we model them as independent experiments:

$$y_j | \theta_j \sim N(\theta_j, \sigma_j^2), \quad \theta_j | \mu, \tau \sim N(\mu, \tau^2), \quad 1 \leq j \leq 8,$$

$$\mu \sim N(0, 5), \quad \tau \sim \text{half-Cauchy}(0, 5).$$

where θ_j represents the treatment effect in school j, and μ and τ are the hyper-parameters shared across all schools.
In this hierarchical model, the conditional variance of \(\theta \) is strongly dependent on the standard deviation \(\tau \), as shown by the joint sample of \(\mu \) and \(\log \tau \) in the bottom-left corner in Figure 5. The Gaussian assumption in ADVI cannot capture such structure. More interestingly, ADVI over-estimates the posterior variance for all parameters \(\theta_i \) through \(\theta_8 \), as shown by positive biases of their posterior standard deviation in the last panel. In fact, the posterior mode is at \(\tau = 0 \), while the entropy penalization keeps VI estimation away from it, leading to an overestimation due to the funnel-shape. Since the conditional expectation \(E(\theta_i | \tau, y, \sigma) = (\sigma^2_j + \tau^2)^{-1} \) is an increasing function on \(\tau \), a positive bias of \(\tau \) produces over-dispersion of \(\theta \).

The top left panel shows the marginal and joint PSIS diagnostics. The joint \(\hat{k} \) is 1.00, much beyond the threshold, while the marginal \(\hat{k} \) calculated through the true marginal distribution for all \(\theta \) are misleadingly small due to the over-dispersion.

Alerted by such large \(\hat{k} \), researchers should seek some improvements, such as re-parametrization. The non-centered parametrization extracts the dependency between \(\theta \) and \(\tau \) through a transformation \(\theta^* = (\theta - \mu) / \tau \):

\[
y_j | \theta_j \sim N(\mu + \tau \theta^*_j, \sigma^2_j), \quad \theta^*_j \sim N(0, 1).
\]

There is no general rule to determine whether non-centered parametrization is better than the centered one and there are many other parametrization forms. Finding the optimal parametrization can be as hard as finding the true posterior, but \(\hat{k} \) diagnostics always guide the choice of parametrization. As shown by the top right panel in Figure 5, the joint \(\hat{k} \) for the non-centered ADVI decreases to 0.64 which indicated the approximation is not perfect but reasonable and usable. The bottom-right panel demonstrates that the re-parametrized ADVI posterior is much closer to the truth, and has smaller biases for both first and second moment estimations.

We can assess the marginal estimation using VSBC diagnostic, as summarized in Figure 6. In the centered parametrization, the point estimation for \(\theta_1 \) is in average unbiased, as the two-sided KS-test is not rejected. The histogram for \(\tau \) is right-skewed, for we can reject one-sided KS-test with the alternative to be \(p_{\tau} \), being stochastically smaller than \(p_{\tau_0} \). Hence we conclude \(\tau \) is over-estimated in the centered parameterization. On the contrast, the non-centered \(\tau \) is negatively biased, as diagnosed by the left-skewness of \(p_{\tau} \). Such conclusion is consistent with the bottom-right panel in Figure 5.

To sum up, this example illustrates how the Gaussian family assumption can be unrealistic even for a simple hierarchical model. It also clarifies VI posteriors can be both over-dispersed and under-dispersed, depending crucially on the true parameter dependencies. Nevertheless, the recommended PSIS and VSBC diagnostics provide a practical summary of the computation result.

4.4. Cancer Classification Using Horseshoe Priors

We illustrate how the proposed diagnostic methods work in the Leukemia microarray cancer dataset that contains \(D = 7129 \) features and \(n = 72 \) observations. Denote \(y_{1:n} \) as binary outcome and \(X_{n \times D} \) as the predictor, the logistic regression with a regularized horseshoe prior (Piironen & Vehtari, 2017) is given by

\[
y_i | \beta \sim \text{Bernoulli} \left(\logit^{-1}(X_i \beta) \right), \quad \beta_j | \tau, \lambda, c \sim N(0, \tau^2 \lambda^2_j), \quad \lambda_j \sim \text{Inv-Gamma}(2, 8), \quad \tau \sim \text{Inv-Gamma}(0, \tau_0) \text{, where } \tau > 0 \text{ and } \lambda > 0 \text{ are global and local shrinkage parameters, and } \lambda_j^2 = c^2 + \tau^2 \lambda_j^2 \). \]

The regularized
horseshoe prior adapts to the sparsity and allows us to specify a minimum level of regularization to the largest values.

ADVI is computationally appealing for it only takes a few minutes while MCMC sampling takes hours on this dataset. However, PSIS diagnostic gives $k = 9.8$ for ADVI, suggesting the VI approximation is not even close to the true posterior. Figure 7 compares the ADVI and true posterior density of β_{1834}, $\log \lambda_{1834}$ and τ. The Gaussian assumption makes it impossible to recover the bimodal distribution of some β.

![Figure 7. The comparison of ADVI and true posterior density of β_{1834}, $\log \lambda_{1834}$ and τ in the horseshoe logistic regression. ADVI misses the right mode of $\log \lambda$, making $\beta \propto \lambda$ become a spike.](image)

The VSBC diagnostics as shown in Figure 8 tell the negative bias of local shrinkage λ_{1834} from the left-skewness of $\rho_{\log \lambda_{1834}}$, which is the consequence of the right-missing mode. For compensation, the global shrinkage τ is overestimated, which is in agreement with the right-skewness of $\rho_{\log \tau}$. β_{1834} is in average unbiased, even though it is strongly underestimated from in Figure 7. This is because VI estimation is mostly a spike at 0 and its prior is symmetric. As we have explained, passing the VSBC test means the average unbiasedness, and does not ensure the unbiasedness for a specific parameter setting. This is the price that VSBC pays for averaging over all priors.

![Figure 8. VSBC test in the horseshoe logistic regression. It tells the positive bias of τ and negative bias of λ_{1834}, β_{1834} is in average unbiased for its symmetric prior.](image)

The VSBC tests are limited when the posterior is multimodal as the samples drawn from $q(\theta)$ may not cover all the modes of the posterior and the estimation of k will be indifferent to the unseen modes. In this sense, the PSIS diagnostic is a local diagnostic that will not detect unseen modes. For example, imagine the true posterior is $p = 0.8N(0, 0.2) + 0.2N(3, 0.2)$ with two isolated modes. Gaussian family VI will converge to one of the modes, with the importance ratio to be a constant number 0.8 or 0.2. Therefore k is 0, failing to penalize the missing density. In fact, any divergence measure based on samples from the approximation such as $KL(q, p)$ is local.

The bi-modality can be detected by multiple over-dispersed initialization. It can also be diagnosed by other divergence measures such as $KL(q, p) = E_p \log(q/p)$, which is computable through PSIS by letting $h = \log(q/p)$.

In practice a marginal missing mode will typically lead to large joint discrepancy that is still detectable by k, such as in Section 4.4.

The VSBC test, however, samples the true parameter from the prior distribution directly. Unless the prior is too restrictive, the VSBC p-value will diagnose the potential missing mode.

5.2. Tailoring Variational Inference for Importance Sampling

The PSIS diagnostic makes use of stabilized IS to diagnose VI. By contrast, can we modify VI to give a better IS proposal?

Geweke (1989) introduce an optimal proposal distribution based on split-normal and split-t, implicitly minimizing the χ^2 divergence between q and p. Following this idea, we could first find the usual VI solution, and then switch Gaussian to Student-t with a scale chosen to minimize the χ^2 divergence.

More recently, some progress is made to carry out variational inference based on Rényi divergence (Li & Turner, 2016; Dieng et al., 2017). But a big α, say $\alpha = 2$, is only meaningful when the proposal has a much heavier tail than the target. For example, a normal family does not contain any member having finite χ^2 divergence to a Student-t distribution, leaving the optimal objective function defined by Dieng et al. (2017) infinitely large.

There are several research directions. First, our proposed diagnostics are applicable to these modified approximation methods. Second, PSIS re-weighting will give a more reliable importance ratio estimation in the Rényi divergence variational inference. Third, a continuous k and the corresponding α are more desirable than only fixing $\alpha = 2$, as the latter one does not necessarily have a finite result. Considering the role k plays in the importance sampling, we can optimize the discrepancy $D_\alpha(q|p)$ and $\alpha > 0$ simultaneously. We leave this for future research.

5. Discussion

5.1. The Proposed Diagnostics are Local

As no single diagnostic method can tell all problems, the proposed diagnostic methods have limitations. The PSIS diagnostic is limited when the posterior is multimodal as the samples drawn from $q(\theta)$ may not cover all the modes of the posterior and the estimation of k will be indifferent to the unseen modes. In this sense, the PSIS diagnostic is
Acknowledgements

The authors acknowledge support from the Office of Naval Research grants N00014-15-1-2541 and N00014-16-P-2039, the National Science Foundation grant CNS-1730414, and the Academy of Finland grant 313122.

References

Wada, T. and Fujisaki, Y. A stopping rule for stochastic approximation. *Automatica, 60*:1–6, 2015. ISSN 0005-1098.