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A. Exact Hamming MST
Theorem A.1. For d = O(1) Hamming MST can be com-
puted exactly in O(log n) rounds of MPC.

Proof. For the special case d = 2 the algorithm is particu-
larly simple and is given in Section A.0.1. For d = O(1)
we construct an auxiliary graph with integer edge weights
in the interval [1, . . . , d] and use MPC algorithm graph con-
nectivity to compute MST for it.

For a binary vector b ∈ {0, 1}d of Hamming weight t and
v ∈ Rd we use notation v(b) to denote a vector in Rt con-
sisting of coordinates of v corresponding to non-zero val-
ues of b. For a binary vector b ∈ {0, 1}d we define an order
relation ≤b on vectors in Rd as follows: v1 ≤b v2 if and
only if v1(b) ≤ v2(b) and ≤ is the lexicographic order.

• Initialize G to an empty graph on n vertices and F to
a forest of singleton vertices.

• For each binary vector b ∈ {0, 1}d:

– Sort input vectors v1, . . . vn according to ≤b
breaking ties arbitrarily.

– Let π(i) be the index of the i-th vector in this
sorted order.

– For i = 1, . . . , n − 1 create an edge in G
of weight d − ‖b‖0 between vertices π(i) and
π(i+ 1) if vπ(i)(b) = vπ(i+1)(b)

• For i = 1, . . . , d

– Augment F using edges of length i in G to a
spanning forest for the subgraph of G consisting
of edges of weight at most i.
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The first loop of the above reduction can be performed
in O(1) rounds of MPC by replicating the data 2d =
O(1) times and running O(1)-round MPC sorting algo-
rithm (Goodrich et al., 2011) on all the replicas in parallel.
The second loop can be performed in O(d log n) rounds
total by using O(log n) connectivity algorithm in each iter-
ation. Correctness of the above algorithm follows from the
following observation: if ‖vi − vj‖0 = t then there exists
a path in the graph G between i and j that uses only edges
of weight at most t.

Indeed, if Hamming distance between two vectors equals t
then there exists a subset of d − t coordinates where these
two vectors agree. Let b ∈ {0, 1}d be the indicator vector
of this subset. In the iteration of the first loop correspond-
ing to b let pi and pj be positions of vectors vi and vj in
the sorted order in this iteration. W.l.o.g pi < pj and for all
k = pi, . . . , pj − 1 we added an edge of weight t between
π(k) and π(k + 1) creating the desired path in G.

From the above observation it follows directly that for all
t = 1, . . . , d the number of connected components in the
subgraph of G induced by edges of weight at most t is the
same as the number of connected components induced by
edges of Hamming weight at most t in the original input.
Thus executions of Kruskal’s algorithm on G and the dis-
tance graph under Hamming distance give the same result
and hence the MST constructed by the algorithm above is
optimal.

A.0.1. SIMPLE PROOF OF THEOREM A.1 FOR d = 2

An instance of Hamming MST for d = 2 is represented
by n vectors (x1, y1), . . . , (xn, yn). Because all edges in
the distance graph have cost either 1 or 2 the cost of the
optimum MST equals to n + c − 2 where c is the number
of connected components in the subgraph induced by edges
of cost 1. We will construct a subgraph that has the same
set of connected components using only 2n edges and then
run an O(log n)-round MPC connectivity algorithm on it.

Formally the construction is given as follows. First, we cre-
ate a vertex i for each input vector (xi, yi). Then we create
edges between these vertices as described below, repeating
this process with the role of x and y coordinates flipped
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(i.e. sort and group according to y).

• Sort input vectors according to the x-coordinate and
then according to the y-coordinate.

• For each value of x let yx1 , . . . , y
x
t be the correspond-

ing sorted y-coordinate values.

• For all j where 1 ≤ j < t create an edge between
vertices representing (x, yxj ) and (x, yxj+1) in the input
graph.

This reduction can be performed in a constant number of
rounds of MPC using a constant-round MPC sorting algo-
rithm of (Goodrich et al., 2011). Furthermore, it preserves
the connected components in the graph induced by edges
of length 1 under Hamming distance. Indeed, such edges
correspond to pair of vectors that have one of the coordi-
nates being equal and hence in our construction there is a
path between vertices representing such vectors. This com-
pletes the proof for the case d = 2.

B. Implementation details and performance
analysis

The implementation details in this section are similar
to (Andoni et al., 2014). The main difference is that we
need the Solve-and-Sketch to work under `1 and `∞ rather
than just `2 as in (Andoni et al., 2014) which requires some
modifications in the analysis.

B.1. Distance-preserving partitions

We use the following construction of (Andoni et al., 2014)
to build a distance-preserving partition P for S ⊆ Rd.
We can always shift S such that all points fit into a box
[0,∆]d where ∆ is the diameter of the metric space(S, `d∞).
Pick a vector r ∈ Rd uniformly at random from [0,∆]d.
Two points u and v belong to the same cell at level ` ∈
{0, . . . , L} if and only if for all dimensions i ∈ [d] it holds
that b (ui−ri)αL−`

∆ c = b (vi−ri)αL−`

∆ c where α is a parame-
ter (see Figure 1 for an example). Note that this partition
is indexable since coordinates of the point x ∈ Rd, random
shift r and ` suffice for computing C`(x).

Lemma B.1 ((Andoni et al., 2014), Lemma 5.3). Indexable
randomized hierarchical partition P given by the construc-
tion above has L = O(loga |S|) levels can be constructed
in O(1) rounds of MPC and is an (1/α, d, (α + 1)d)-
distance-preserving partition for (S, `d2) with approxima-
tion γ ≤

√
d.

Below we show that this partition P is also distance-
preserving for `d1 and `d∞.

∆x

∆y

`

∆y

∆x

Figure 1. Probability of a cut proportional to ∆x + ∆y corre-
sponds to edge landing in the shaded region

Lemma B.2. Indexable randomized hierarchical partition
P is: 1) (1/α, d2, (α+1)d)-distance-preserving for `d1 with
approximation d, 2) (1/α, d, (α+1)d)-distance-preserving
for `d∞ with approximation 1.

Proof. The degree bound of (α + 1)d follows from
Lemma B.1 in both cases so in the rest of the proof we
only analyze other parameters of the partition.

Part 1. Under `1 we have ∆(S) ≥ ∆ and ∆(S) ≤ d∆.
By construction cells of the partition at level ` have di-
ameter at most d∆α`−L. Hence we can set γ = d and
∆` = dα`−L∆(S) which satisfies the bounded diameter
condition ∆(P`) ≤ ∆`. To verify the condition on prob-
ability of cutting an edge consider two points u, v ∈ Rd.
The probability that b (ui−ri)αL−`

∆ c 6= b (vi−ri)αL−`

∆ c for a

fixed i is at most ‖ui−vi‖1α
L−`

∆ . By a union bound the prob-
ability that u and v belong to different cells at level ` is at
most

‖u− v‖1αL−`

∆
=
d‖u− v‖1∆(S)

∆`∆
≤ d2‖u− v‖1

∆`
.

Part 2. Under `d∞ we have ∆(S) = ∆. By construc-
tion cells of the partition at level ` have diameter at most
∆α`−L. Hence we can set γ = 1 and ∆` = α`−L∆.
As in the previous case the probability that two vectors
u, v ∈ Rd belong to different cells of the partition is at
most ‖u−v‖1α

L−`

∆ which can be bounded as follows:

‖u− v‖1αL−`

∆
≤ d‖u− v‖∞αL−`

∆
=
d‖u− v‖∞

∆`
.

Thus P is indeed an (1/α, d, (α+1)d)-distance-preserving
partition for `d∞ with approximation 1.

C. Solve-and-sketch details
Below we first show in Lemma C.1 that if the unit step can
be executed efficiently then the overall computation also
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can. This theorem is analogous to Theorem 5.2 in (Andoni
et al., 2014) but here we give a simpler and faster imple-
mentation using the fact that all our partitions are index-
able. Then we proceed to describe implementations of Al-
gorithm 3 for `1 and `∞ in Lemma C.3. For `2 such an
implementation is given in (Andoni et al., 2014), Lemma
3.23 and for `1 and `∞ the implementation is analogous us-
ing approximate nearest neighbor search (Arya et al., 1998)
and appropriate ε2∆`-covering construction for each met-
ric.

Lemma C.1. Let tu(x) be a convex function and su(x)
be a function with at least linear growth, i.e. su(x) ≥ x.
Let P = (P0, . . . , PL) be an indexable partition labeling
M(S, ρ) withL levels sampled from a randomized (a, b, c)-
distance-preserving family P . Let Au be a unit step al-
gorithm which for an input of size nu takes time at most
tu(nu), uses space su = su(nu) and produces output of
size pu = O(min(p, nu)) where p is a parameter. If space
per machine is s and su(cpu) ≤ s/3 then the unit step
computations for all cells of the partition can be executed
in O(L) rounds of MPC on O(n/s) machines. Further-
more, local computation time per machine in every round
is bounded by tu(s).

Proof. We process the partition level by level assuming
that when we process level k all results for level k−1 are al-
ready computed. Furthermore, all results from the previous
round are labeled by cells of the partition at Pk that they
belong to. Thus in round k we just execute the unit step
for all cells in this level and label the results with the cell
they belong at level k+ 1. The latter part can be performed
locally using the fact that P is an indexable partition. Note
that since pu = O(min(p, nu)) the overall output produced
in each round has size O(n).

Proposition C.2. Total number of machines that we need
to execute each round is at mostO(n/s) and maximum time
per machine in a round is at most tu(s).

Proof. First we estimate total space we need to allocate on
machines. Let mi be the number of nonempty subcells of
the i-th cell in the k-th level, i.e. the number of inputs for
this cell. For each i and j = 1, . . . ,mi let nij be the size of
output produced by the j-th subcell in the previous round
that is now input for the i-th cell in k-th level.

We know that
∑
i,j nij = O(n) and nij ≤ p. The input

to Au has overall size at most cp and hence each execution
uses space at most su(cp) ≤ s/3. Note that using the fact
that su(x) ≥ x this also implies that the input for each job
is of size at most s/3.

We assign executions of Au jobs in round k arbitrarily to
machines in such a way that we only start a new machine if

there is no existing machine with at least 2s/3 space avail-
able. This ensures that in the end of the assignment process
each machine has at least s/3 unused space for executing
the jobs. We then execute jobs assigned to each machine
sequentially using this space and store all inputs for all jobs
locally. Note that our assignment process ensures that if S
is the total space required to store inputs for all jobs then
the total space we use is at most 3S + s = O(n) and the
total number of machines is at most 3S/s+ 1 = O(n/s).

Suppose we are using t machines in total in this round and
let Bi be the subset of jobs assigned to i-th machine. The
maximum time per machine required to execute jobs in k-
th round is then:

t
max
i=1

∑
j∈Bi

tu

(
mj∑
`=1

nj,`

) ≤ t
max
i=1

tu
∑
j∈Bi

mj∑
`=1

nj,`


≤ tu(2s/3)

≤ tu(s)

Lemma C.3. If the input metric space M is a subset of
`1, `2 or `∞, the unit step Algorithm 3 has space com-
plexity su(nu) = nu logO(1) nu words, time complexity
tu(nu) = (d/ε)d+1nu logO(1) nu and output size pu =
O(min((1/ε)2d, nu)) words.

Proof. For `2 the proof is given in Lemma 3.23 of (Andoni
et al., 2014). For `1 and `∞ the proof is analogous and fol-
lows from the fact that we can execute Algorithm 3 by us-
ing approximate nearest neighbor search. Details are anal-
ogous to the details for `2 and are given in (Indyk, 2000;
Andoni et al., 2014). In particular Theorem 3.27 in (An-
doni et al., 2014) describes how to use approximate near-
est neighbor data structure of (Arya et al., 1998) for `2.
Since (Arya et al., 1998) gives data structures with the same
performance for `1 and `∞ as well the analysis of time and
space performance in these two cases is the same.

The bound on the output size follows from the fact that we
can construct an ε2∆`-covering by imposing a grid with
step size ξ and taking one arbitrary point from each cell of
the grid (if it is nonempty). Fix ξ = ε2∆`/d for `1 and
note that the total number of cells in the grid is at most
(∆`/dξ)

d. Fix ξ = ε2∆` for `∞ and note that the total
number of cells in the grid is (∆`/ξ)

d. In both cases the
bound of (1/ε)2d on the size of the output follows.

Putting things together we get the proof of Theorem 2.1:

Proof of Theorem 2.1. The algorithm is given as Algo-
rithm 2.1 and hence the approximation guarantee follows
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from Theorem 2.5. Hence it only remains to analyze per-
formance of Algorithm 2.1. Recall that this algorithm
uses an (a, b, c)-distance-preserving partition where a =
1/(sα/d − 1), b = poly(d) and c = sα. Also recall
that we set ε = min

(
η

6c1Lb
, η

3c2

)
and hence if we set

κ = min
(

1
6c1Lb

, 1
3c2

)
then κη = ε and κ is a constant

because c1, c2, L and b = poly(d) are constants.

A distance-preserving partition in Step 2 can be con-
structed for `2 using Lemma B.1 and for `1 and `∞ us-
ing Lemma B.2. This step takes O(1) rounds of MPC un-
der the resource constraints of the theorem. Thus, it suf-
fices to show that Step 2 can be executed with required
performance guarantees. Note that pu = O(ε−2d) =
O((κη)−2d) ≤ s1−2α and hence cpu = O(sαs1−2α) =
O(s1−α). Using the assumption that ε, α and d are con-
stants by Lemma C.3 we have su(cpu) = Õ(s1−α) ≤
s/3 for sufficiently large s. Thus combining Lemma C.3
and Lemma C.1 and using the assumption that ε and d
are constant we conclude that Step 2 can be executed on
O(n/s) machines with local computation time per ma-
chine in each round bounded by Õ(s). Furthermore since
the distance-preserving partition used in out algorithm
has O(logsα/d n) = O(d/α logs n) = O(1) levels (by
Lemma B.1) from Lemma C.1 it follows that this step only
takes O(1) rounds of MPC. Overall, each iteration of the
loop in Algorithm 2.1 can be executed in O(1) rounds
of MPC and hence sequential execution takes O(log n)
rounds as desired.

Finally, Boruvka’s algorithm in Step 2 is run onO(n log n)
edges and can be implemented in O(log n) rounds using
Õ(n/s) machines under constraints of the theorem.

D. Experimental results
Figure 2 shows dependence of approximation to the k-SLC
objective as a function of k for η = 0.5. Figure D shows
how approximation varies empirically as a function of η
(for k = 10). Evaluation of time performance demonstrates
more than an order of magnitude speedup over sequential
Prim’s algorithm1 for k = 10 as a function of η parame-
ter and empirical approximation. Results are given for two

1We use Prim’s algorithm as a sequential benchmark as our
local computation steps are also performed using Prim’s algo-
rithm in the experiments. For datasets of our size Prim’s algo-
rithm outperformed approximate nearest-neighbor (ANN) based
algorithms locally and it was our goal to use the best local algo-
rithm. In order to observe performance improvement from using
ANN algorithms larger datasets are required due to several log-
factors and a large constant in the theoretical almost-linear time
complexity.

different cluster setups: 1m/7w ( Figure 4 and Figure 5)
and 1m/3w (Figure 6 and Figure 7) and are averaged over
multiple runs to ensure consistency. We note that dramatic
increase in speedup for the KDDCUP04 dataset around
value η = 0.5 and approximation 1.15 corresponds to the
fact that local inputs start to fit in L2-cache which provides
more than an order of magnitude improvement over RAM.

E. Hardness
Part 2. We perform reduction as in Part 1 but without Step
3 and setting ξ = 1. Note that since the resulting vec-
tors have at most 3 non-zero entries each the input can be
represented in O(n) space. A calculation similar to the
above shows that in this case if there is an edge (i, j) in
the graph then ‖v′i − v′j‖1 = 2|1 − ξ| + 2|ξ|. Otherwise,
‖v′i − v′j‖1 = 2 + 4|ξ|. The ratio between these two cases
is maximized when ξ = 1 and equals 3.

Part 3. Given an instance G(V,E) of sparse connectiv-
ity we reduce it to `2-2-SLC as follows. Let n = |V | and
m = |E|. We can assume that G has no isolated vertices
as connectivity instances containing such vertices can be
solved in O(1) rounds of MPC by identifying isolated ver-
tices.

For the i-th edge of the input we create a vector v′i ∈ Rn.
We set v′i,j = 1 if the i-th edge in the input is adjacent
on vertex j and v′ij = 0 otherwise. Then we apply JL-
transform to reduce the dimension of constructed vectors
to O(log n/ε2) obtaining vectors v1, . . . , vm as in Part 1.

Since G has no isolated vertices it is connected if and
only if the set of its edges forms a connected subgraph.
By construction if two edges i and j share a vertex then
‖v′i − v′j‖ =

√
2, otherwise ‖v′i − v′j‖ = 2. Hence, if G

is connected all edges in the `2-MST for v1, . . . , vm have
length

√
2. Otherwise, there exists an edge in `2-MST of

length 2. Hardness of (
√

2 − ε)-approximation hence fol-
lows from the fact that JL-transform preserves all distances
up to (1± ε)-approximation.

Part 4. We use the same reduction as in Part 3 but without
using the JL-transform in the end. Since the instance of
sparse connectivity has O(n) edge we obtain O(n) vectors
with 2 non-zero entries in each. Hence, resulting instance
can be stored in O(n) space. As in Part 3 note that if two
edges i and j share a vertex then ‖vi−vj‖1 = 2, otherwise
‖vi − vj‖ = 4. Hence the costs of `1-2-SLC differ by a
factor of 2 depending on whether G is connected or not.
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Figure 2. Approximation vs number of clusters
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Figure 3. Approximation vs η parameter
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Figure 4. Speedup vs η parameter, 1m/7w cluster

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  1.05  1.1  1.15  1.2  1.25  1.3  1.35

S
pe

ed
up

Approximation

Image data
Shuttle data

KDDCUP04 data

Figure 5. Speedup vs approximation, 1m/7w cluster
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Figure 6. Speedup vs η parameter, 1m/3w cluster
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Figure 7. Speedup vs approximation, 1m/3w cluster
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