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Abstract

On the way to the robust learner for real-world
applications, there are still great challenges, in-
cluding considering unknown environments with
limited data. Learnware (Zhou, 2016) describes a
novel perspective, and claims that learning mod-
els should have reusable and evolvable proper-
ties. We propose to Encode Meta InformaTion
of features (EMIT), as the model specification
for characterizing the changes, which grants the
model evolvability to bridge heterogeneous fea-
ture spaces. Then, pre-trained models from re-
lated tasks can be Reused by our REctiFy via
heterOgeneous pRedictor Mapping (REFORM)
framework. In summary, the pre-trained model
is adapted to a new environment with different
features, through model refining on only a small
amount of training data in the current task. Exper-
imental results over both synthetic and real-world
tasks with diverse feature configurations validate
the effectiveness and practical utility of the pro-
posed framework.

1. Introduction
As machine learning has been successfully applied in many
real-world applications, the robustness of the learner is at-
tracting more attention (Dietterich, 2017). Increasing the
robustness of models in dynamic environments is desirable
in real-world scenarios. For example, dictionaries encode
words for documents classification, whose keys change as
hot topics appear/vanish with time; In a recommendation
system, statistics on interactions over items are character-
ized as user profiles, which fluctuates with newly arrival and
out-dated items; Although targeting the same goal, branches
of a company deal with locality specific features apart from
the general ones, which hampers the experience exchange
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Figure 1. Example of modeling with heterogeneous feature spaces
as environment changing. The number/types of extracted features
for each instance (each row) will increase or decrease. The two
task specific and shared feature dimensions are d1, d2, and d3,
respectively. To increase the robustness of models, the goal of
this paper is to smartly utilize limited current task data X and the
previous well-trained model (over d1 + d3 features) to improve
the performance of the current task (with d3 + d2 dimensions).

between branches. In summary, it is the feature set transi-
tion that becomes one of the fundamental issues in a non-
stationary environment, as in Fig. 1. Besides, due to the
expensive labeling cost, there are usually only a few col-
lected examples such as newly labeled documents for new
circumstances later, especially within a short period.

Learnware (Zhou, 2016) describes a novel perspective to-
wards the robust modeling, which is a well-performed pre-
trained learner with specifications. Two essential properties
of learnware, i.e., the reusable and evolvable, are empha-
sized in this work. Specifically, reusability ensures that for a
new related target, the model is capable of being enhanced,
adapted, and refined easily, with only limited new task data.
Evolvability considers the non-stationary nature of the envi-
ronment, so that the model is able to handle variations in the
environment, ensuring that it can be reused for tasks with
heterogeneous feature spaces.

This paper makes a preliminary step towards robust model-
ing guided by learnware, containing two parts implement-
ing the reusable and evolvable properties accordingly. We
develop a new model reuse framework on heterogeneous fea-
ture spaces in a dynamic environment, and propose a novel
evolvability solution via linking different feature spaces.

Popular approaches upon landmark (Gong et al., 2013),
instance weights (Sugiyama & Kawanabe, 2012), or sub-
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space (Bhattarai et al., 2016) require former task data to de-
termine the task relevance, whose models cannot be directly
reused in varying environments. In contrast, our framework
REctiFy via heterOgeneous pRedictor Mapping (REFORM)
utilizes the well-trained model from past environment ef-
fectively, even with diverse features. It is the inconsistency
between heterogeneous features that impedes the application
of the old model. If the features correspondence across tasks
is known in advance, REFORM bridges this heterogeneity
gap with a semantic mapping by optimal transport (Villani,
2008). Otherwise, we propose a novel strategy named En-
code Meta InformaTion of features (EMIT), discovering the
meta feature representations by dictionary reconstruction.
EMIT leverages a wide range of related tasks, and aims at
revealing the invariant regularities over features as task shift-
ing. It makes REFORM different from homogeneous domain
transferring (Long et al., 2014) or cross-modal adaptation
with paired examples (Kulis et al., 2011).

Therefore, after EMIT offers the feature correspondence
with meta encoding, REFORM refines a model from hetero-
geneous feature space through only a small amount of new
task training data. Two implementations of REFORM are
investigated on both synthetic and real-world tasks under
varying environments. Experiments validate the superiority
of REFORM, and its possession of learnware’s properties.

We start with theoretical intuitions on model reuse and then
describe the REFORM framework, including the EMIT strat-
egy and two concrete implementations. Next is related
literature followed by experiments and the conclusion.

2. Notations
Consider a C-class classification task with data D =
{(xi,yi)}Ni=1, where xi ∈ Rd, ‖xi‖2 ≤ χ, and yi ∈
{−1, 1}C . The position of 1 in yi indicates the class of
xi. Every example (xi,yi) is drawn from Z = X × Y ,
with X and Y corresponding to the instance and label dis-
tributions. diag(·) transforms the input vector to a diagonal
matrix. ∆d = {µ : µ ∈ Rd∗,µ>1 = 1} denotes the set of
d-dimensional simplex. 1 is a vector with all elements equal
to 1, whose size can be determined from the context.

3. Model Reuse and REFORM

This section starts with a theoretical explanation on how to
take advantage of a related homogeneous model and lim-
ited data in the current task. Based on this, we describe
the main idea of the REctiFy via heterOgeneous pRedictor
Mapping (REFORM) framework, building a semantic map
to reuse model from heterogeneous feature spaces. Then we
present the key component EMIT for feature meta informa-
tion encoding/management, which endows the framework
handling changed features in the dynamic environment.

3.1. Model Reuse on Homogeneous Features

Consider a linear classifier f(xi) = W>xi ∈ RC predicts
over the centralized instance xi. Model W ∈ Rd×C , with
columns corresponding to each class, can be learned by:

min
W

1

N

N∑
i=1

`(f(xi)− yi) + λ‖W‖2F .

Loss function `(·) : RC → R∗ measures the difference
between vector form class affiliation prediction and the true
label, the smaller the better. Instead of learning the linear
predictor W directly, in the model reuse scenario, the help-
fulness of the model W0 ∈ Rd×C from a related task is
stressed, which gives rise to the target function:

min
W

1

N

N∑
i=1

`(f(xi)− yi)︸ ︷︷ ︸
Empirical Risk εN (W )

+λ‖W −W0‖2F . (1)

εN (W ) depends on the N examples of the current task.
Instead of optimizing empirical loss directly, Eq. 1 reuses
previous model W0 as a biased regularizer, which ensures
the current model W will not deviate far away from the
provided W0. Learning by Eq. 1 can also be transformed
to learn a model bias ∆W based on the existing W0, and
then predicts with W0 + ∆W (Tommasi et al., 2014). The
expected risk of εN (W ) is ε(W ) = E(x,y)∼Z [`(f(x)−y)].
We prove that the consideration of a well-trained model from
a related homogeneous task facilitates the learning efficiency
in the current multi-class task, i.e., the convergence rate
from εN (W ) to ε(W ) is influenced by W0.

Theorem 1 Consider a C-class learning problem over
D = {(xi,yi)}Ni=1 as in Eq. 1, which has a M -bounded L-
Lipschitz vector valued loss function w.r.t. Euclidean norm.

DefineW = {W : ‖W −W0‖F ≤
√

εN (W0)
λ , εN (W ) ≤

εN (W0)}. Set C1 = ( 2
3 + 4LCχ)M log 1/δ, and C2 =

4LCχ+2√
λ

+
√

2M log 1/δ, then for every W ∈ W and
0 < δ < 1, with probability at least 1− δ, we have:1

ε(W ) ≤ εN (W ) +
C1

N
+ C2

√
ε(W0)

N
. (2)

Theorem 1 provides a O( 1√
N

) convergence rate for the
generalization error when learning the model W , which is
consistent with (Bartlett & Mendelson, 2002; Maurer, 2016).
This convergence rate is directly related to the sample com-
plexity, i.e., the faster the rate, the smaller the number of
training examples is required to obtain a certain risk differ-
ence. If the provided model W0 adapts well on the current
task distribution, i.e., a small expected risk ε(W0) → 0,
such that the r.h.s. of Eq. 2 will be more compact and

1The detailed proof can be found in the supplementary material
(http://lamda.nju.edu.cn/yehj/reform-supp.pdf).
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achieves a faster rate whose order is O( 1
N ). Here ε(W0)

naturally acts as a task relatedness measure. Thus, with
an uninformative prior Eq. 1 converges in a general rate;
but reusing suitable related model helps reduce the sample
complexity for target learning problem, and can even im-
prove the order of learning rate. In other words, with limited
current task examples, the current learned model W can
achieve higher performance in expectation.

3.2. Reuse Heterogeneous Feature Space Model

The above analysis is limited to the case reusing a well-
trained model within the same feature space. However,
real-world environment is not stationary, and the transition
between feature sets limits the direct model reuse between
feature domains. We extend the model reuse to the heteroge-
neous case by constructing a semantic map between feature
sets as well as models, which enables the current task to
leverage related heterogeneous models.

Considering that the variant feature spaces across tasks can
be substantially related, and model reuse on heterogeneous
feature spaces should focus on the feature mapping between
original and later features sets. If each feature has a corre-
sponding probability distribution, the map can be obtained
by the coupling between their normalized marginal prob-
ability mass vectors µ1 ∈ ∆d1 and µ2 ∈ ∆d2 . For the
practicability and comprehensibility, we introduce a matrix
Q ∈ Rd2×d1∗ to depict the feature variation relationship,
i.e., the semantic cost changing features from current to
former task. Thus, the feature space map T ∈ Rd2×d1∗ can
be obtained by minimizing the total transportation cost:

min
T
〈T,Q〉 s.t. T1 = µ2, T

>1 = µ1, T ≥ 0 . (3)

Eq. 3 is also the Kantorovitch formulation of the Optimal
Transport (OT) problem (Villani, 2008), which aligns two
distributions by the learned coupling T . So T shows how
to do a semantic map from one set to another. The proba-
bility mass of a feature will be moved to similar ones, i.e.,
those features with small costs. This feature semantic map
can also be applied on the model space, i.e., coefficients in
one model can be transported to another weighted by their
feature similarity. For example, in a simple case when we
exchange positions of features to construct a new feature
space, the cost matrix Q will be formed as a square per-
mutation like matrix revealing the correspondence between
features. With uniform feature marginal, OT will output a
permutation matrix with the right alignment between two
feature sets (Courty et al., 2017b). Applying this alignment
of features over models, we can transform a “well-trained”
classifier from former task to the current one perfectly. In
a general scenario, transforming model based on feature
transportation plan is also meaningful, since model coeffi-
cients for similar features usually have similar values. For
instance, when each feature represents a word, and cost
depicts their physical similarities, then predictor weights for

“Trump” maybe close to “Obama” (Kusner et al., 2015).

We propose our REctiFy via heterOgeneous pRedictor Map-
ping (REFORM) framework, reusing the model from related
task even the feature space changes. In detail, for current
task with dimension d = d2, the goal is to reuse a well-
trained model Ŵ0 ∈ Rd1×C from related task with dimen-
sion d1. The main REFORM idea is to utilize the semantic
map T ∈ Rd2×d1∗ between two feature spaces to link models
by setting the prior W0 = d2TŴ0. d2 in the transformation
scales the marginal probability. Based on this, we refine W0

with limited examples from the current task as in Eq. 1.

3.3. Cost Matrix and Meta Feature Representation

It is obvious that the cost matrix Q fully characterizes the
influence of the environmental change, i.e., the relationship
between heterogeneous feature spaces. Sometimes it can
be provided manually by measuring physical similarities
between two features. To make the model evolvable, we
propose to generate Q based on feature meta representa-
tions, which can be easily collected in real-world tasks. For
example, each word in the task-specific dictionary can be
represented in a word2vec (Mikolov et al., 2013) way. Ben-
efiting from the invariant nature of feature meta representa-
tions, utilizing which as the model specification depicts the
evolvable property over the environment, and facilitates the
construction of feature relationship, especially in the non-
stationary environment with different features. Therefore,
Q can be computed as the pairwise (squared) Euclidean
distance between corresponding feature meta vectors.

The REFORM framework can also be explained from
a reconstruction perspective in the feature meta space.
Given meta sets Mf = {mm}d1m=1 ∈ RD×d1 and M =

{mn}d2n=1 ∈ RD×d2 , each column is a D dimension meta
representation of features in former and current tasks. Al-
though models have different feature dimensions, d1 and
d2, we focus on their common regularities, i.e., feature meta
space where all features are in the same representation form.
Therefore, we analyze the change of features in this meta
space, and attribute the feature change to the distribution
variation between meta representations in this space. Then
relationship between two sets of meta representation can be
discovered by OT as in Eq. 3 (Courty et al., 2017b), and the
learned coupling T ∈ Rd2×d1∗ directs how to transport one
set of meta feature to another with the lowest cost: given T ,
a particular meta feature mn will be transferred to m̂n in
the domain of Mf by (Perrot et al., 2016):

m̂n = argmin
m

d1∑
m=1

Tn,m‖m−mm‖2 , n = 1, . . . , d2 . (4)

Optimization in Eq. 4 has a closed form solution that M̂ =
Mf (diag(T1)−1T )>, which can be further simplified to
M̂ = d2MfT

> if we assume the marginal distribution is
uniform. This transformation can be thought as using the co-
efficient d2T> to reconstruct meta features of domainM us-
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Figure 2. Illustration of the EMIT and REFORM flows. If no semantic embeddings provided, feature meta representation could be
constructed in a reconstruction manner as in the left plot. In the feature meta space (right plots), meta representations of features build the
transportation cost, and the corresponding relationship between features could be discovered by optimal transport in this space (with
uniform marginals). The reconstruction coefficients of new features by the old ones also apply to the reconstruction relationship between
two domain-specific models. It is expected that the transformed model can be easily adapted to the current task.

ing the meta features from domain Mf . REFORM assumes
this relationship also apply to the model space, where we
“reconstruct” the classifier W0 w.r.t. meta domain M using
model Ŵ0 w.r.t. domain Mf by W>0 = Ŵ>0 (d2T )>. This
process keeping reconstruction relationship across feature
and model spaces is illustrated in Fig. 2, where REFORM
deals with heterogeneous feature spaces by W0 = d2TŴ0.

3.4. EMIT: Encoding Feature Meta Information

In the scenario which is hard to obtain the concrete mean-
ing of features or no provided meta information, we pro-
pose a novel strategy, Encode Meta InformaTion of fea-
tures (EMIT), to enable learning in the REFORM way. We
focus on the case that former and current tasks have shared
features. To get the same form of meta representation of
features for two tasks, EMIT operates by reconstructing task-
specific features with dictionaries, i.e., connecting two non-
overlapping task features using their shared part. We decom-
pose former task features (with Nf instances) Xf and cur-
rent features X as Xf = [Xd1

f ∈ RNf×d1 , Xd3
f ∈ RNf×d3 ]

and X = [Xd3 ∈ RN×d3 , Xd2 ∈ RN×d2 ]. Since com-
ponents Xd3

f and Xd3 correspond to task shared features
and have the same feature meaning, we can use them to
represent/reconstruct Xd1

f and Xd2 , respectively:

‖Xd1
f −X

d3
f Mf‖2F + λ

d1∑
m=1

‖Mf,m‖0 , (5)

‖Xd2 −Xd3M‖2F + λ

d2∑
n=1

‖Mn‖0 . (6)

Mf ∈ Rd3×d1 and M ∈ Rd3×d2 are reconstruction coef-
ficients, whose m-th and n-th columns Mf,m ∈ Rd3 and
Mn ∈ Rd3 correspond to the coefficients for particular
features, and can be used as feature meta representations.
λ > 0 is the regularization parameter, which controls the
sparsity of reconstruction results. Eq. 5 and Eq. 6 obtain the
same form reconstruction coefficients by using correspond-
ing same meaning partsXd3

f andXd3 as dictionaries, which

can be solved by Orthogonal Matching Pursuit (OMP) effi-
ciently. Thus, for two overlapping feature sets, we get Mf

and M first, then the feature transition cost matrix Q can
be computed by their pairwise (squared) Euclidean distance.
It is noteworthy that the EMIT is unsupervised, which can
incorporate unlabeled data and get better reconstructions.

With EMIT, meta representations can be constructed inde-
pendently during the training process of the former task.
The pass of model and reconstruction coefficients keeps the
raw data privacy during the model reuse. Besides, feature
meta information helps the model perceive the change of
the environment, i.e., variations on features. Thus, EMIT
endows the evolvability of a model even in heterogeneous
spaces and acts as a key step in the REFORM framework.
More discussions on REFORM and EMIT are in the supp.

4. Framework Implementations
The REFORM framework points out a general way to reuse
related model from tasks with heterogeneous features. Since
constructing the semantic map with the optimal transport
process does not take current task examples into consider-
ation, hence directly learning with the help of prior W0 by
Eq. 1 still has some drawbacks. We focus on the transi-
tion between the non-overlapping parts between two feature
spaces and implement two variants of our REFORM frame-
work. First, an adaptive scale approach is designed, then the
map optimization is incorporated in current task training.

Assume former task specific features (d1-dimension) come
first, task shared features (d3-dimension) in the second,
and current task specific features (d2-dimension) at last,
as shown in Fig. 1. The well-trained former task model
can be decomposed into two parts, Ŵ0 = [Ŵ d1

0 ; Ŵ d3
0 ],

according to the task specific and shared dimensions, i.e.,
Ŵ d1

0 ∈ Rd1×C and Ŵ d3
0 ∈ Rd3×C . Similarly, for current

task classifier, we have W = [W d3 ;W d2 ], and the trans-
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formed prior W0 = [W d3
0 ;W d2

0 ]. The goal of REFORM

implementation is to reuse Ŵ0 the from previous task in
the current learning process of W , and improve the current
performance with limited training examples (X , Y ).

4.1. Implementation with Adaptive Scale

The original form of the optimal transported model W d2
0 =

d2TŴ
d1
0 lacks the flexibility over features with different

scales and complex mapping relationships. On the one
hand, direct scale by d2 may be insufficient; on the other
hand, new features will have negative relationships with
old ones, or there may exist redundant mapping between
features. Thus, we decompose the scale and model part of
a classifier. With W d2

0 serving as the model part, we add
a class-specific scale matrix A ∈ Rd2×C to take scale and
sign into consideration, which results in W0 = [Ŵ d3

0 ;A�
d2TŴ

d1
0 ] = [Ŵ d3

0 ;A � W d2
0 ]. Notation � denotes the

element-wise product. Therefore, current classifier W and
scale coefficients A can be learned in the objective jointly:

min
W,A,b

‖XW +1b>−Y ‖2F +λ1‖W −W0‖2F +λ2‖A‖2F . (7)

The first two terms in Eq. 7 learn a classifier like least
square SVM (Ye & Xiong, 2007), but biased w.r.t. the
transformed model W0. The third term tunes the scale and
sign of transformed classifier. b ∈ RC is a bias vector, and
λ1, λ2 are non-negative parameters. Using the fact that b =
1
N (Y >1−W>X>1), we can introduce the centralization
matrix H = I − 1

N 11>, and get rid of the bias vector b as:

min
W,A
‖HXW −HY ‖2F + λ1‖W −W0‖2F + λ2‖A‖2F , (8)

then the problem can be solved in an alternative manner.
With fixed scale matrix, we reuse former task transformed
classifier W0 to help the learning of current model; while
for a particular classifier, the scale of the related model is
tuned based on the current training data. The scaled matrix
A is initialized that all values are equal to one first, then the
current task classifier W can be solved in the closed form:

W = (X>HX + λ1I)
−1(λ1W0 +X>HY ) . (9)

This solution can be simplified in high dimensional case
with Woodbury identity. To deal with the scale matrix, we
first reformulate the optimization problem as:

min
A
λ1‖W d2 −A�W d2

0 ‖
2
F + λ2‖A‖2F ,

and then decompose the sub-problem for each class sepa-
rately. For the c-th class we have minac λ1‖W d2

c − ac �
W d2

0,c‖2F +λ2‖ac‖2F = minac λ1‖W d2
c −diag(W d2

0,c)ac‖2F +

λ2‖ac‖2F . ac, W d2
c , W d2

0,c are the c-th column of matrix
A, W d2 , and W d2

0 , respectively. Then, we can also get
ac = (λ1diag(W d2

0,c�W
d2
0,c) + λ2I)−1λ1(W d2

0,c�W d2
c ) in

a closed form. In summary, when reusing a related het-
erogeneous model from the previous task, this REFORM
implementation learns a classifier scale by taking advantage
of current task data, which is able to consider the negative
transformation relationship and identify redundant maps.

4.2. Implementation with Learned Transformation

To fully utilize data in the current task, the REFORM imple-
mentation can also incorporate the optimal transportation
process during training to find a semantic map with the
current data, which is different from the previous approach
using a pre-computed transportation plan. The target is

min
W,b,T

‖Y −XW − 1b>‖2F + λ1‖W −W0‖2F + λ2〈T,Q〉

s.t. W0 = [Ŵ d3
0 ; d2TŴ

d1
0 ]

T ∈ T = {T ≥ 0, T1 =
1

d2
1, T>1 =

1

d1
1} . (10)

In Eq. 10, we explicitly introduce the optimization process
for T when learning W . Thus, when we optimize over
the classifier with a fixed semantic map T , we reuse the
transformed model as a good prior; when classifier W is
fixed, then the optimal transport problem also considers
the effect of learning process, i.e., fine tuning the transport
plan T w.r.t. the learning performance. In the alternative
optimization process, we centralize the bias vector b as in
the previous subsection, then we can get the closed form
solution for W as in Eq. 9. When focusing on T , the sub-
problem is:

min
T∈T

f(T ) = λ1‖W d2 − d2TŴ d1
0 ‖

2
F + λ2〈T,Q〉 . (11)

Different from classical OT problem, Eq. 11 has a squared
term over T , which can be regarded as a non-linear regular-
izer. Therefore, some acceleration techniques, e.g., sinkhorn
strategy (Cuturi, 2013), cannot be applied directly. Here we
use Bregman Alternating Direction Method of Multipliers
(BADMM) (Wang & Banerjee, 2014) to deal with the sub-
problem efficiently. Different from ADMM, BADMM re-
places the Frobenius norm term in the augmented lagrangian
with the bregman divergence, and in a general form, it lin-
earizes the loss function to accelerate the optimization pro-
cess. Introducing an auxiliary variable Z and let Z = T ,
BADMM decomposes the complex constraint domain T
into two parts, i.e., T ∈ T1 = {T1 = 1

d2
1, T ≥ 0} and

Z ∈ T2 = {Z>1 = 1
d1
1, Z ≥ 0}. For iteration t, BADMM

updates the following three steps.2

T t+
1
2 = (Zt

ρ
ρ+ρx � T t

ρx
ρ+ρx )� (e

Ut+∇f(Tt)
ρ+ρx ) ,

T t+1 = diag(
1

d2T
t+ 1

2 1
)T t+

1
2 , Zt+

1
2 = T t+1e

Ut

ρ ,

Zt+1 = Zt+
1
2 diag(

1

d1Z
t+ 1

2
>1

) , U t+1 = U t + ρ(T t+1 − Zt+1) .

Superscript denotes the iteration of optimization process.
ρ > 0 and ρx > 0 are coefficients. U is the dual variable.
� denotes the element-wise division. The temporary vari-
able∇f(T t) = λ1(−2d2W

d2Ŵ d1>
0 +2d22T

tŴ d1
0 Ŵ d1>

0 )+
λ2Q. Since all updates only involve element-wise calcula-
tion, these closed form updates is efficient.

2Derivations and convergence analysis are in the supp.
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5. Related Work
On the way to the reusable and evolvable properties, re-
searchers investigate from different views. Transfer learning
analyzes the knowledge transition from the source to the tar-
get domain. Considering the distribution changes between
domains, transfer learning focuses on how to extract the
source domain information to help the learning process with
limited target examples (Pan & Yang, 2010; Si et al., 2010).
Heterogeneous transfer learning takes the variations of fea-
ture forms between two domains into consideration (Zhu
et al., 2011; Aljundi et al., 2015). Structure information
or subspaces can be found to link two domains (Shi et al.,
2010; Wang & Mahadevan, 2011), where sufficient source
domain examples should be provided, even the alignment
between instances across domains are required (Kulis et al.,
2011). Instead of borrowing knowledge from data, hypothe-
sis transfer aims at using only the source domain homoge-
neous model to handle the distribution change (Yang et al.,
2007; Kuzborskij et al., 2013; Tommasi et al., 2014). Its
effectiveness has been proved theoretically in the binary clas-
sification case (Kuzborskij & Orabona, 2017). (Hinton et al.,
2015; Yang et al., 2015; 2017) transfer the discriminative
ability from a related homogeneous strong model to a weak
one. Meta-knowledge also facilitates the cross-task transfer,
which is usually used in the few-shot learning (Motiian et al.,
2017). (Hou & Zhou) first reuses model to deal with the vari-
ations on feature space without the alignment assumption,
but there needs a specific training strategy on previous tasks.
REFORM starts with the theoretical model reuse intuition
in the multi-class case, and reuses model from the previous
task, even in heterogeneous feature spaces, to improve the
performance of the current task with limited examples.

Flexible in incorporating feature meta relationship, Optimal
Transport (OT) becomes the main tool in REFORM, which
has the ability to align distributions (Villani, 2008; San-
tambrogio, 2015). With types of solution strategy (Cuturi,
2013; Wang & Banerjee, 2014; Benamou et al., 2015), OT
has been successfully applied in various machine learning
fields with both its objective measure or the learned trans-
portation plan. For example, in image query (Rubner et al.,
1998), document classification (Huang et al., 2016), domain
adaptation (Perrot et al., 2016; Courty et al., 2017a;b), and
barycenter discovery (Cuturi & Doucet, 2014).

6. Experiments
We first investigate REFORM over synthetic datasets, where
feature meta information is generated by EMIT to link two
tasks together. In addition, reuse performances in different
task configurations are studied. Last, we apply REFORM
implementations in various real-world applications to show
their ability reusing a well-learned model with provided
meta information.

Table 1. Comparisons of classification performance (test accuracy,
mean ± std.) including REFORMA/B. The best performances are
in bold. Last two rows list the Win/Tie/Lose counts for REFORM

against others with t-test at significance level 95%.

REFORMA REFORMB OPID LSSVMA LSSVMOT SVM

caltech30 .262±.013 .248±.011 .128±.042 .256±.009 .219±.006 .123±.017
reut8 .696±.024 .745±.015 .592±.183 .690±.015 .689±.015 .570±.024
spambase .731±.086 .786±.032 .673±.196 .741±.032 .739±.037 .644±.126
waveform .609±.051 .497±.036 .516±.077 .514±.022 .459±.041 .344±.024
colic .619±.074 .632±.075 .565±.137 .588±.072 .600±.085 .605±.081
credit-g .609±.060 .598±.078 .610±.171 .606±.059 .558±.098 .545±.130
mfeat fou .488±.035 .480±.020 .351±.037 .325±.018 .355±.016 .318±.032
optdigits .572±.020 .495±.018 .384±.040 .422±.014 .360±.012 .229±.054
spectf .569±.128 .634±.142 .463±.061 .589±.133 .592±.120 .301±.028

W / T / L REFORMA vs. others 6 / 3 / 0 5 / 4 / 0 5 / 4 / 0 8 / 1 / 0
W / T / L REFORMB vs. others 7 / 2 / 0 6 / 1 / 2 8 / 1 / 0 8 / 1 / 0

6.1. General Classification and Parameter Study

We first explore our REFORM approaches on 9 datasets with
no meta feature representations. For each dataset, we ran-
domly split features of all examples into three parts, and the
dimension proportion of previous task specific features (d1),
current task specific features (d2), and task shared features
(d3) are 45%, 45%, and 10%, respectively. So there are
only 10% percent of overlapping features between former
and current tasks. Then half of all examples construct the
former task. A linear least square SVM (Ye & Xiong, 2007)
classifier is trained on the former task, with parameter tuned
by cross-validation. In the remaining half of the current task,
only two examples from each class are extracted for train-
ing, then 80% of examples are used for test. This process
is repeated for 30 trials. The EMIT method is conducted in
advance to generate feature meta representations using all
task-specific instances because of its unsupervised nature.

Our two REFORM implementations, considering adaptive
scale and using BADMM solver, are denoted as REFORMA

and REFORMB, respectively. We compare our REFORM
approaches with various baselines. First, we directly apply
linear SVM on the limited current task examples. Adaptive
least square SVM (Tommasi et al., 2014) operates as Eq. 1,
which requires a prior in the current feature space. Two
extensions of homogeneous models can be applied here.
After extracting the shared part of the well-trained classifier
from the former task, we can pad the remaining part with
zero values or with the OT transported prior. Combined
these two priors with the adaptive SVM, we get LSSVMA

and LSSVMOT. OPID (Hou & Zhou) involves the training
in the former task, and ensembles the last stage rectified
classifier with stacking. Since with limited target examples,
default parameters are used for all methods. This setting
also applies to other experiments. Dataset description, com-
parison results with more methods like HFA (Li et al., 2014),
MMDT (Hoffman et al., 2013), OTL (Zhao et al., 2014),
and detailed parameter settings can be found in the supp.
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(a) mfeat fou (b) mfeat fou

(c) reut8 (d) reut8

(e) spambase (f) spambase

Figure 3. Changes of accuracy over mfeat fou, reut8, and spam-
base. Plots in the left column show the performance with different
feature overlapping ratios (from 0.1 to 0.6); while the right column
lists the plots when the amount of training examples increases, i.e.,
the number of training examples per class from 2 to 20.

Comparison results (test accuracy, mean ± std.) can be
found in Table 1. The best performance on each dataset is
in bold. We can find that with only a small amount of train-
ing examples, SVM cannot perform well. However, after
reusing the model from the former task, the performance
will improve, which is in accordance with the results in The-
orem 1. The adaptive LSSVM with OT-transformed prior
sometimes performs better, e.g., in mfeat fou and spectf,
which shows the OT transformation strategy is able to find
good prior between different feature spaces. However, the
test accuracy of LSSVMA could be better sometimes, since
the zero prior is sufficient in some cases as in many real prob-
lems. OPID uses a stacking strategy to combine previous
task co-regularized classifier. Since the number of training
examples and overlapping features are limited, OPID can-
not perform well. Our REFORM approaches can achieve
superior results than other methods in 8/9 datasets, which
shows the effectiveness of reusing the heterogeneous model
together with limited current task examples to train a good
model, and the effectiveness of generating meta information
by EMIT as well. Since LSSVMOT equals to REFORMA

without optimizing the scale, the superiority of the latter
one validates the necessity of considering the scale. Last

SVM LSSVM LSSVMA

LSSVMOT HFA OPID
REFORMA REFORMA

(a) (2000-2002)⇒(2003-2005)

SVM LSSVM LSSVMA

LSSVMOT HFA OPID
REFORMA REFORMA

(b) (2003-2005)⇒(2006-2008)

Figure 4. Prediction accuracy and std. for user quality over Ama-
zon Movies and TV review data across different year ranges.

two rows list the Win/Tie/Lose counts for REFORM against
other methods with t-test at significance level 95%, which
also indicates the effectiveness of our REFORM framework.

We also study the performance of REFORM over tasks with
different configurations, i.e., when the amount of shared fea-
tures between tasks changes and the number of the current
task training examples increases. The results are in Fig. 3,
where each row corresponds to a dataset. Two plots in one
row show the change of feature overlapping ratio from 10%
to 60% and instance number per class increases from 2 to
20. The general performance variation reveals an increas-
ing trend in both cases. From Fig. 3, REFORM approaches
are in general with the top level performance in different
settings, which presents the reusability and evolvability of
REFORM in the dynamic environment.

6.2. User Quality Classification

We apply our REFORM implementations to predict whether
an Amazon user is high-quality or not given uses’ iterations
with items. With Amazon user-item click dataset (McAuley
et al., 2015; He & McAuley, 2016) over “Movies and TV”
sub-category, the user’s quality is judged by the helpful-
ness of his/her review ratings. Average of helpful or not
ratios for a user’s historical reviews is categorized into 5
levels. Features of users are constructed based on historical
behaviors, i.e., review records on items. As the change of
time, more items will be added, and out-dated items will be
deleted from the online shop. Thus, the user-item interac-
tion features are different in various stages. Time ranges of
task 1-3 cover years 2000-2002, 2003-2005, and 2006-2008.
About top-1000 popular items in each range are extracted
as features. In the current task, only a few labeled users are
provided, and the goal is to reuse a well-tuned model from
the former task, although with different features, to help
the learning of current classifier. For REFORM, online im-
age depiction (CNN extracted features) of a particular item
is used as item meta representation. Results are in Fig. 4,
which show that REFORM can achieve better performance
than other methods. In addition, it is notable that since there
are only a few training examples, most compared methods
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SVM LSSVM LSSVMA

LSSVMOT HFA OPID
REFORMA REFORMA

(a) (2013)⇒(2014)

SVM LSSVM LSSVMA

LSSVMOT HFA OPID
REFORMA REFORMA

(b) (2014)⇒(2015)

Figure 5. Average prediction accuracy and std. on academic paper
classification tasks across different year ranges. The blank column
at the top of our REFORM implementations show the performance
increments after an ensemble step with LSSVM.

possess high variations on results. The prediction accuracy
of REFORMB is stable, which shows its robustness.

6.3. Academic Paper Classification

The “hot-words” in academic papers change with years. For
example, new methods would be proposed which are ac-
companied with new words, and out-dated words vanish.
We collect papers from “International Conference on Ma-
chine Learning”, and then extract TF-IDF features (about
2000-3000 keyword features for each year), one for each
word, to do classification tasks. The papers are categorized
based on their session names and are organized into 10
classes. Since there are differences between words for pa-
pers in different years, this variation of dictionaries leads to
examples in each year being with different feature spaces.
Word2vec (Mikolov et al., 2013) representation serves as
feature meta information. Three subsequent years are inves-
tigated, i.e., the model from 2013 corpus helps the learning
with papers in 2014, and from 2014 to 2015. Results are
listed in Fig. 5. The superior results of REFORM validate its
reusability and evolvability with limited examples. Besides,
when equipped with an ensemble strategy, i.e., equally av-
eraging the REFORM prediction and the confidence output
from LSSVM, REFORM will achieve another performance
improvement. The amount of the accuracy increment owing
to the ensemble trick is denoted by a blank column on the
top of the basic REFORM result in Fig. 5.

6.4. Discussion on Deep Extension

We show the potential usage of our REFORM framework
on deep architectures, as illustrated in Fig. 6. Consider
the case using multiple fully connected layers where the
weights of the first layer are directly compounded with orig-
inal feature meaning w.r.t. each dimension. When shifting
the focus region over images between two tasks, the fea-
ture difference hinders the usage of the pre-trained model
over the current task. We investigate the 10-class MNIST-
Fashion (Xiao et al., 2017) dataset with standard partition.

Region 1 Region 2 Shared Region

Weights regularized
by the semantic map

Figure 6. Extension of the REFORM idea on neural networks.
Layer-wise weights of the current network are regularized by those
from a related model. Prior of the first-layer weights corresponding
to the changed features can be obtained by REFORM.

For the previous stage, a 4-layer perceptron is trained given
the 60000 upper-left 20×20 corner of 28×28 images. In
the current task, only bottom-right 20×20 corner images
are provided, with only 5 images per class. The model is
measured on unused bottom corner images. Although the
model achieves a 0.871 accuracy in the previous task, di-
rectly applying it on the current task or training over current
limited examples degrade the performance a lot, i.e., 0.084
(extreme low since focus on different parts of objects) and
0.564 (since overfitting) respectively. A layer-wise biased
regularization strategy like Eq. 1 is used in (Kirkpatrick
et al., 2016; Rusu et al., 2016) to overcome the catastrophic
forgetting in neural networks. This method, however, only
facilitates homogeneous tasks. To construct a suitable prior,
we keep coefficients from other layers in the previous model
unchanged and transform the first layer coefficients in the
model following the REFORM way, where meta features
are learned by EMIT. After adding regularizations for each
layer biased from the prior, the whole classification accuracy
can improve to 0.660 even trained with limited examples. 3

7. Conclusion
Inspired by the reusable and evolvable properties of learn-
ware, we propose the REctiFy via heterOgeneous pRedictor
Mapping (REFORM) framework towards robust modeling.
First, a well-trained model from the related task is able to be
reused to facilitate the current task with the limited amount
of training data. In addition, with the Encode Meta Infor-
maTion of features (EMIT) strategy, the generated feature
meta information can be leveraged to bridge heterogeneous
feature spaces. Thus, the whole framework can adapt mod-
els trained with different features sets, which is a practical
property handling the dynamic environment. Two imple-
mentations of REFORM are investigated on both synthetic
and real-world tasks. Experimental results validate their
effectiveness, especially with scarce training examples. Fu-
ture work may include model reuse under more complex
environments, e.g., with incremental/decremental classes.

3Experimental details and more results can be found in supp.
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G. Iterative bregman projections for regularized trans-
portation problems. SIAM Journal on Scientific Comput-
ing, 37(2), 2015.

Bhattarai, B., Sharma, G., and Jurie, F. Cp-mtml: Coupled
projection multi-task metric learning for large scale face
retrieval. In The 29th IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 4226–4235, Las Vegas,
NV., 2016.

Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy,
A. Joint distribution optimal transportation for domain
adaptation. In Advances in Neural Information Process-
ing Systems 30, pp. 3733–3742. Curran Associates, Inc.,
2017a.

Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A.
Optimal transport for domain adaptation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 39
(9):1853–1865, 2017b.

Cuturi, M. Sinkhorn distances: Lightspeed computation of
optimal transport. In Advances in Neural Information Pro-
cessing Systems 26, pp. 2292–2300. Curran Associates,
Inc., 2013.

Cuturi, M. and Doucet, A. Fast computation of wasserstein
barycenters. In Proceedings of the 31th International
Conference on Machine Learning, pp. 685–693, Beijing,
China, 2014.

Dietterich, T. G. Steps toward robust artificial intelligence.
AI Magazine, 38(3):3–24, 2017.

Gong, B., Grauman, K., and Sha, F. Connecting the
dots with landmarks: Discriminatively learning domain-
invariant features for unsupervised domain adaptation.
In Proceedings of the 30th International Conference on
Machine Learning, pp. 222–230, Atlanta, GA., 2013.

He, R. and McAuley, J. Ups and downs: Modeling the
visual evolution of fashion trends with one-class collabo-
rative filtering. In Proceedings of the 25th International
Conference on World Wide Web, pp. 507–517, Montreal,
Canada, 2016.

Hinton, G. E., Vinyals, O., and Dean, J. Distilling the
knowledge in a neural network. CoRR, abs/1503.02531,
2015.

Hoffman, J., Rodner, E., Donahue, J., Saenko, K., and Dar-
rell, T. Efficient learning of domain-invariant image rep-
resentations. CoRR, abs/1301.3224, 2013.

Hou, C. and Zhou, Z.-H. One-pass learning with incre-
mental and decremental features. IEEE Transactions on
Pattern Analysis and Machine Intelligence. to appear.

Huang, G., Guo, C., Kusner, M. J., Sun, Y., Sha, F., and
Weinberger, K. Q. Supervised word mover’s distance. In
Advances in Neural Information Processing Systems 29,
pp. 4862–4870. Curran Associates, Inc., 2016.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness,
J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,
Clopath, C., Kumaran, D., and Hadsell, R. Overcom-
ing catastrophic forgetting in neural networks. CoRR,
abs/1612.00796, 2016.

Kulis, B., Saenko, K., and Darrell, T. What you saw is
not what you get: Domain adaptation using asymmetric
kernel transforms. In The 24th IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1785–1792,
Colorado Springs, CO., 2011.

Kusner, M. J., Sun, Y., Kolkin, N. I., and Weinberger, K. Q.
From word embeddings to document distances. In Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, pp. 957–966, Lille, France, 2015.

Kuzborskij, I. and Orabona, F. Fast rates by transferring
from auxiliary hypotheses. Machine Learning, 106(2):
171–195, 2017.

Kuzborskij, I., Orabona, F., and Caputo, B. From N to
N+1: multiclass transfer incremental learning. In The
26th IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3358–3365, Portland, OR., 2013.

Li, W., Duan, L., Xu, D., and Tsang, I. W. Learning with
augmented features for supervised and semi-supervised
heterogeneous domain adaptation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(6):1134–
1148, 2014.

Long, M., Wang, J., Ding, G., Shen, D., and Yang, Q.
Transfer learning with graph co-regularization. IEEE



Rectify Heterogeneous Models with Semantic Mapping

Transactions on Knowledge and Data Engineering, 26
(7):1805–1818, 2014.

Maurer, A. A vector-contraction inequality for rademacher
complexities. In Proceedings of the 27th International
Conference on Algorithmic Learning Theory, pp. 3–17,
Bari, Italy, 2016.

McAuley, J. J., Targett, C., Shi, Q., and van den Hengel, A.
Image-based recommendations on styles and substitutes.
In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pp. 43–52, Santiago, Chile, 2015.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

Motiian, S., Jones, Q., Iranmanesh, S. M., and Doretto, G.
Few-shot adversarial domain adaptation. In Advances
in Neural Information Processing Systems 30, pp. 6673–
6683. Curran Associates, Inc., 2017.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22
(10):1345–1359, 2010.

Perrot, M., Courty, N., Flamary, R., and Habrard, A. Map-
ping estimation for discrete optimal transport. In Ad-
vances in Neural Information Processing Systems 29, pp.
4197–4205. Curran Associates, Inc., 2016.

Rubner, Y., Tomasi, C., and Guibas, L. J. A metric for
distributions with applications to image databases. In
Proceedings of the 6th IEEE International Conference on
Computer Vision, pp. 59–66, Bombay, India, 1998.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer,
H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R.,
and Hadsell, R. Progressive neural networks. CoRR,
abs/1606.04671, 2016.

Santambrogio, F. Optimal transport for applied mathemati-
cians. Springer, 2015.

Shi, X., Liu, Q., Fan, W., Yu, P. S., and Zhu, R. Transfer
learning on heterogenous feature spaces via spectral trans-
formation. In The 10th IEEE International Conference on
Data Mining, pp. 1049–1054, Sydney, Australia, 2010.

Si, S., Tao, D., and Geng, B. Bregman divergence-based
regularization for transfer subspace learning. IEEE Trans-
action on Knowledge and Data Engineering, 22(7):929–
942, 2010.

Sugiyama, M. and Kawanabe, M. Machine learning in non-
stationary environments: Introduction to covariate shift
adaptation. MIT press, 2012.

Tommasi, T., Orabona, F., and Caputo, B. Learning cate-
gories from few examples with multi model knowledge
transfer. IEEE Transaction on Pattern Analysis and Ma-
chine Intelligence, 36(5):928–941, 2014.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Wang, C. and Mahadevan, S. Heterogeneous domain adap-
tation using manifold alignment. In Proceedings of the
22nd International Joint Conference on Artificial Intelli-
gence, pp. 1541–1546, Barcelona, Catalonia, 2011.

Wang, H. and Banerjee, A. Bregman alternating direction
method of multipliers. In Advances in Neural Information
Processing Systems 27, pp. 2816–2824. Cambridge, MA.:
MIT Press, 2014.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Yang, J., Yan, R., and Hauptmann, A. G. Cross-domain
video concept detection using adaptive svms. In Proceed-
ings of the 15th International Conference on Multimedia,
pp. 188–197, Augsburg, Germany, 2007.

Yang, Y., Ye, H.-J., Zhan, D.-C., and Jiang, Y. Auxiliary
information regularized machine for multiple modality
feature learning. In Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence, pp.
1033–1039, Buenos Aires, Argentina, 2015.

Yang, Y., Zhan, D.-C., Fan, Y., Jiang, Y., and Zhou, Z.-H.
Deep learning for fixed model reuse. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence, pp.
2831–2837, San Francisco, CA., 2017.

Ye, J. and Xiong, T. SVM versus least squares SVM. In
Proceedings of the 11th International Conference on Ar-
tificial Intelligence and Statistics, pp. 644–651, San Juan,
Puerto Rico, 2007.

Zhao, P., Hoi, S. C., Wang, J., and Li, B. Online transfer
learning. Artificial Intelligence, 216:76–102, 2014.

Zhou, Z.-H. Learnware: on the future of machine learning.
Frontiers of Computer Science, 10(4):589–590, 2016.

Zhu, Y., Chen, Y., Lu, Z., Pan, S. J., Xue, G.-R., Yu, Y., and
Yang, Q. Heterogeneous transfer learning for image clas-
sification. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence, pp. 1304–1309, San Francisco,
CA., 2011.


