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Algorithm 1 Semi-Implicit Variational Inference (SIVI)
input :Data {xi}1:N , joint likelihood p(x, z), explicit vari-

ational distribution qξ(z |ψ) with reparameteriza-
tion z = f(ε, ξ,ψ), ε ∼ p(ε), implicit layer neu-
ral network Tφ(ε) and source of randomness q(ε)

output : Variational parameter ξ for the conditional distri-
bution qξ(z |ψ), variational parameter φ for the
mixing distribution qφ(ψ)

Initialize ξ and φ randomly
while not converged do

Set LKt
= 0, ρt and ηt as step sizes, and Kt ≥

0 as a non-decreasing integer; Sample ψ(k) =
Tφ(ε(k)), ε(k) ∼ q(ε) for k = 1, . . . ,Kt; take sub-
sample x = {xi}i1:iM

for j = 1 to J do
Sample ψj = Tφ(εj), εj ∼ q(ε)
Sample zj = f(ε̃j , ξ,ψj), ε̃j ∼ p(ε)
LKt

= LKt
+ 1

J

{
− log 1

Kt+1

[∑Kt
k=1 qξ(zj |ψ(k)) +

qξ(zj |ψj)
]
+ N

M
log p(x |zj) + log p(zj)

}
end
t = t+ 1
ξ = ξ + ρt∇ξLKt

(
{ψ(k)}1,Kt

, {ψj}1,J , {zj}1,J
)

φ = φ+ ηt∇φLKt

(
{ψ(k)}1,Kt , {ψj}1,J , {zj}1,J

)
end

A. Proofs
Proof of Inequility (3). To prove a functional form of
Jensen’s Inequality, let h(z) = Eψ∼qφ(ψ)q(z|ψ) and
〈f, g〉L2 =

∫
f(z)g(z)dz. From Theorem 1, we have

convexity, and according to Theorem 6.2.1. of Kurdila
& Zabarankin (2005), we have an equivalent first-order defi-
nition for convexity as

KL(q(z|ψ)||p(z)) ≥KL(h(z)||p)+
〈q(z|ψ)− h(z),∇qKL(q||p)|h(z)〉L2

Taking the expectation with respect to ψ ∼ qφ(ψ) on both
sides, we have

Eψ∼qφ(ψ)KL(q(z|ψ)||p(z))

≥ KL(h(z)||p(z))

+ Eψ∼qφ(ψ)[〈q(z|ψ)− h(z),∇qKL(q||p)|h(z)〉L2 ]

= KL(h(z)||p(z))

= KL(Eψ∼qφ(ψ)q(z|ψ)||p(z)).

Proof of Proposition 1. We show that directly maximizing
the lower bound L of ELBO in (4) may drive q(ψ) towards
degeneracy. For VI that uses q(z |ψ) as its variational
distribution, if supposing ψ∗ is the optimum variational
parameter, which means

ψ∗ = arg max
ψ

−Ez∼q(z|ψ) log
q(z|ψ)

p(x, z)
,

then we have

L = −Eψ∼qφ(ψ)Ez∼q(z|ψ) log
q(z|ψ)

p(x, z)

=

∫
qφ(ψ)[−Ez∼q(z|ψ) log

q(z|ψ)

p(x, z)
]dψ

≤
∫
qφ(ψ)dψ[−Ez∼q(z|ψ∗) log

q(z|ψ∗)
p(x, z)

]

= −Ez∼q(z|ψ∗) log
q(z|ψ∗)
p(x, z)

.

The equality in the above equation is reached if and only
if q(ψ) = δψ∗(ψ), which means the mixing distribution
degenerates to a point mass density and hence SIVI degen-
erates to vanilla VI.

Proof of Proposition 2. B0 = 0 is trivial. Denote ψ(0) =
ψv. For iid samples ψ(k) ∼ qφ(ψ), when K → ∞, by

the strong law of large numbers, h̃K(z) =
∑K

k=0 q(z |ψ
(k))

K+1
converges almost surely to Eqφ(ψ)q(z |ψ) = hφ(z). To
prove (6), by the strong law of large numbers, we first
rewrite it as the limit of a double sequence S(K,J), where
K,J ∈ {1, 2, . . . , }, and check the condition for the in-
terchange of iterated limits (Rudin, 1964; Habil, 2016): i)
The double limit exists; ii) Fixing one index of the double
sequence, the one side limit exists for the other index .

lim
K→∞

Eψ(0),ψ(1),··· ,ψ(K)∼q(ψ) log

∑K
k=0 q(z |ψ

(k))

K + 1

= lim
K→∞

lim
J→∞

1

J

J∑
j=1

log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )

=∆ lim
K→∞

lim
J→∞

S(K,J).

Here ψ(k)
j are iid samples from q(ψ). For i) we show

double limit limK,J→∞ S(K,J) = log h(z). For ∀ε > 0,
∃N(ε), when K,J > N(ε), | log 1

K+1

∑K
k=0 q(z |ψ

(k)
j )−

log h(z)| < ε thanks to the law of large numbers, then∣∣∣∣∣∣
J∑
j=1

log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )− J log h(z)

∣∣∣∣∣∣
≤

J∑
j=1

∣∣∣∣∣log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )− log h(z)

∣∣∣∣∣ ≤ Jε.
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Deviding both sides by J we get |S(K,J) − log h(z)| ≤
ε when K,J > N(ε). By definition, we have
limK,J→∞ S(K,J) = log h(z).
ii) for each fixed J ∈ N, limK→∞ S(K,J) = log h(z)
exists; for each fixed K ∈ N, limJ→∞ S(K,J) =

Eψ(0),ψ(1),··· ,ψ(K)∼q(ψ) log
∑K

k=0 q(z |ψ
(k))

K+1 ≤ log h(z)
also exists. The limitation can then be interchanged and
(6) is proved. Therefore, we have

lim
k→∞

Lk = L+ EψKL(q(z |ψ)||hφ(z))

= Eψ∼q(ψ)Ez∼q(z |ψ)

[
log

q(z |ψ)

hφ(z)
− log

q(z |ψ)

p(x, z)

]
=− Eψ∼q(ψ)Ez∼q(z |ψ) log

hφ(z)

p(x, z)

=− Ez∼hφ(z) log
hφ(z)

p(x, z)
= L.

Proof of Proposition 3. Assume integer K > M > 0. Let
I be the set that consists of all the subsets of {1, · · · ,K}
with cardinality M . Let I be a discrete uniform ran-
dom variable and for element {i1, · · · , iM} ∈ I, P (I =
{i1, · · · , iM}) = 1

(K
M)

. We have EI 1
M

∑
i∈I q(z |ψ

i) =

1
K

∑K
i=1 q(z |ψ

i). To show L̄K = L̄ − AK is monotonic
decreasing, we only need to show AK is monotonic increas-
ing:

AK =Eψ∼q(ψ)Ez∼hφ(z)Eψ(1),··· ,ψ(K)∼q(ψ)

log
1
K

∑K
i=1 q(z |ψ

(i))

q(z |ψ)

=Eψ∼q(ψ)Ez∼hφ(z)Eψ(1),··· ,ψ(K)∼q(ψ)

logEI

[
1
M

∑
i∈I q(z |ψ

(i))

q(z |ψ)

]
≥Eψ∼q(ψ)Ez∼hφ(z)Eψ(1),··· ,ψ(K)∼q(ψ)

EI log
1
M

∑
i∈I q(z |ψ

(i))

q(z |ψ)

=Eψ∼q(ψ)Ez∼hφ(z)Eψ(1),··· ,ψ(M)∼q(ψ)

log
1
M

∑M
i=1 q(z |ψ

(i))

q(z |ψ)

=AM .

We now show limK→∞ L̄K = L. Again, by the strong
law of large numbers, 1

K

∑K
i=1 q(z |ψ

(i)) converges almost

surely to Eψ∼qφ(ψ)q(z |ψ) = hφ(z) and hence

lim
K→∞

L̄K = L̄+ EψKL(hφ(z)||q(z |ψ))

=− Ez∼hφ(z)Eψ∼q(ψ)

[
log

q(z |ψ)

p(x, z)
+ log

hφ(z)

q(z |ψ)

]
=L.

Proof of Equation (11). The gradient of BK with respect
to φ can be expressed as

∇φBK = ∇φEψ∼qφ(ψ)Eψ(1),...,ψ(K)∼qφ(ψ)

[
KL
(
q(z |ψ)

∣∣∣∣∣∣ q(z |ψ)+
∑K

k=1 q(z |ψ
(k)

K+1

)]
= Eε,ε(1),...,ε(K)∼p(ε)∇φEz∼q(z |Tφ(ε))

[
log

q(z |Tφ(ε))

q(z |Tφ(ε))+
∑K

k=1
q(z |Tφ(ε(k)))

K+1

]
= Eε,...,ε(K)∇φEz∼q(z |Tφ(ε)) log

[
rφ(z, ε, ε(1:K))

]
= Eε,...,ε(K)∼p(ε)Ez∼q(z |Tφ(ε))

{
q(z |Tφ(ε))∇φ log

[
rφ(z, ε, ε(1:K))

]
+
[
∇φ log q(z |Tφ(ε))

]
log
[
rφ(z, ε, ε(1:K))

]}
.

B. Bayesian Logistic Regression
We consider datesets waveform (n = 5000, V = 21, and
400/4600 for training/testing), spam (n = 3000, V = 2,
and 2000/1000 for training/testing), and nodal (n = 53,
V = 5, and 25/28 for training/testing). The training-set-
size to feature-dimension ratio ntrain/V varies in these three
datasets, and we expect the posterior uncertainty to be large
if this ratio is small.

The contribution of observation i to the likelihood can be
expressed as

P (yi |xi,β) =
eyx

′
iβ

1 + ex
′
iβ

∝ e(y− 1
2 )x′iβEωi

[
e−

ωi(x
′
iβ)2

2

]
,

where the expectation is taken respect to a Pólya-Gamma
(PG) distribution (Polson et al., 2013) as ωi ∼ PG(1, 0),
and hence we have an augmented likelihood as

P (yi, ωi |xi,β) ∝ e(y− 1
2 )x′iβ− 1

2ωi(x
′
iβ)2 .
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B.1. Gibbs Sampling via Data Augmentation

Denoting X = (x1, . . . ,xN )′, y = (y1, . . . , yN )′, A =
diag(α0, . . . , αV )′, and Ω = diag(ω1, . . . , ωN ), we have

(ωi | −) ∼ PG(1,x′iβ), (β | −) ∼ N (µ,Σ),

where Σ = (A + X′ΩX)
−1 and µ = ΣX′(y − 1/2).

To sample from the Pólya-Gamma distribution, a random
sample from which can be generated as a weighted sum of an
infinite number of iid gamma random variables, we follow
Zhou (2016) to truncate the infinite sum to the summation
of M gamma random variables, where the parameters of
the M th gamma random variable are adjusted to match the
mean and variance of the finite sum with those of the infinite
sum. We set M = 5 in this paper.

B.2. Mean-Field Variational Inference with Diagonal
Covariance Matrix

We choose a fully factorized Q distribution as

Q =
[∏

i
q(ωi)

] [∏
v
q(βv)

]
.

To exploit conjugacy, defining

q(ωi) = PG (1, λi) ,

q(βv) = N (µv, σ
2
v),

we have closed-form coordinate ascent variational inference
update equations as

λi =
√

E[(x′iβ)2] =
√
x′iE[ββ′]xi,

σ2
v =

(
E[αv] +

∑
i
E[ωi]x

2
iv

)−1

µv = σ2
v

∑
i
xiv

{
yi − 1/2− E[ωi]

∑
ṽ 6=v

xiṽE[βṽ]
}
,

where the expectations with respect to the q distributions
can be expressed as E[ββ′] = µµ′+diag(σ2

0 , . . . , σ
2
V ) and

E[ωi] = tanh(λi/2)/(2λi).

B.3. Mean-Field Variational Inference with Full
Covariance Matrix

We choose a fully factorized Q distribution as

Q =
[∏

i
q(ωi)

]
q(β).

To exploit conjugacy, defining

q(ωi) = PG (1, λi) ,

q(β) = N (µ,Σ),

we have closed-form coordinate ascent variational inference
update equations as

λi =
√

E[(x′iβ)2] =
√
x′iE[ββ′]xi,

Σ = (E[A] + X′E[Ω]X)−1, µ = ΣX′(y − 1/2),

where the expectations with respect to the q distributions
can be expressed as E[ββ′] = µµ′ + Σ and E[ωi] =
tanh(λi/2)/(2λi). Note the update equations shown above
are identical to those shown in Jaakkola & Jordan (2000).

B.4. SIVI Configuration

For inputs in Algorithm 1, we choose a multi-layer percep-
tron with layer size [100, 200, 100] as Tφ for ψ = Tφ(ε),
ε as 50 dimensional isotropic Gaussian random variable
and K = 100, J = 50. For the explicit layer, we choose
an MVN as qξ(z |ψ) = N (z;ψ, ξ). In this setting, ψ is
the mean variable mixed with implicit distribution qφ(ψ)
while ξ is the covariance matrix which can be either di-
agonal or full. In the experiments, we update the neural
network parameter φ by the Adam optimizer, with learning
rate 0.01. We update ξ by gradient ascent, with step size
ηt = 0.001 ∗ 0.9iteration/100. The implicit layer parameter
φ and explicit layer parameter ξ are updated iteratively.

C. Experimental Settings and Results for
SIVAE

We implement SIVI with M = 3 stochastic hidden lay-
ers, with the dimensions of hidden layers [`1, `2, `3] as
[150, 150, 150] and with the dimensions of injected noises
[ε1, ε2, ε3] as [150, 100, 50]. Between two adjacent stochas-
tic layers there is a fully connected deterministic layer
with size 500 and ReLU activation function. We choose
binary pepper and salt noise (Im et al., 2017) for qt(ε). The
model is trained for 2000 epochs with mini-batch size 200
and step-size 0.001 ∗ 0.75epoch/100. Kt is gradually in-
creased from 1 to 100 during the first 1500 epochs. The
explicit and implicit layers are trained iteratively. Warm-up
is used during the first 300 epochs as suggested by Sønderby
et al. (2016) to gradually impose the prior regularization
term KL(qφ(z |x)||p(z)). The model is trained end-to-end
using the Adam optimizer. After training process, as in
Rezende et al. (2014) and Burda et al. (2015), we compute
the marginal likelihood for test set by importance sampling
with S = 2000:

log p(x) ≈ log
1

S

S∑
s=1

p(x | zs)p(zs)
ĥ(zs |x)

, zs ∼ h(zs|x),

where

ĥ(zs|x) =
1

M

M∑
k=1

q(zs |ψ(k)), ψ(k) iid∼ qφ(ψ|x)

is used to estimate h(zs |x); we set M = 100. The perfor-
mance of SIVI and a comparison to reported results with
other methods are provided in Table 2.
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Table 2. Comparison of the negative log evidence between various
algorithms.

Methods − log p(x)

Results below form Burda et al. (2015)
VAE + IWAE = 86.76
IWAE + IWAE = 84.78

Results below form Salimans et al. (2015)
DLGM + HVI (1 leapfrog step) = 88.08
DLGM + HVI (4 leapfrog step) = 86.40
DLGM + HVI (8 leapfrog steps) = 85.51

Results below form Rezende & Mohamed (2015)
DLGM+NICE (Dinh et al., 2014) (k = 80) ≤ 87.2
DLGM+NF (k = 40) ≤ 85.7
DLGM+NF (k = 80) ≤ 85.1

Results below form Gregor et al. (2015)
DLGM ≈ 86.60
NADE = 88.33
DBM 2hl ≈ 84.62
DBN 2hl ≈ 84.55
EoNADE-5 2hl (128 orderings) = 84.68
DARN 1hl ≈ 84.13

Results below form Maaløe et al. (2016)
Auxiliary VAE (L=1, IW=1) ≤ 84.59

Results below form Mescheder et al. (2017)
VAE + IAF (Kingma et al., 2016) ≈ 84.9± 0.3
Auxiliary VAE (Maaløe et al., 2016) ≈ 83.8± 0.3
AVB + AC ≈ 83.7± 0.3

SIVI (3 stochastic layers) = 84.07

SIVI (3 stochastic layers)+ IW(K̃ = 10) = 83.25

D. Additional Figures
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Figure 8. Visualization of the MLP based implicit distributions
ψ ∼ q(ψ), which are mixed with isotropic Gaussian (or Log-
Normal) distributions to approximate the target distributions shown
in Figure 1.
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Figure 9. The marginal posterior distribution of the negative bi-
nomial dispersion parameter r inferred by SIVI becomes more
accurate as K increases
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Figure 10. The marginal posterior distribution of the negative bi-
nomial probability parameter p inferred by SIVI becomes more
accurate as K increases.
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Figure 11. Comparison of all marginal posteriors of βv inferred by various methods for Bayesian logistic regression on waveform.
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Figure 12. Sample means and standard deviations of predictive
probabilities for dataset spam.
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Figure 13. Boxplot of marginal posteriors inferred by MCMC,
SIVI, and MFVI for dataset spam.
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Figure 14. Univariate marginal and pairwise joint posteriors for
dataset spam. Blue, green, and red are for MCMC, SIVI with a
full covariance matrix, and MFVI with a full covariance matrix,
respectively.
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Figure 15. Sample means and standard deviations of predictive
probabilities for dataset nodal.

b0 b1 b2 b3 b4 b5
Variables

20

10

0

10

20

V
al

ue

Nodal

MCMC
SIVI_full
Mean-field_full

Figure 16. Boxplot of marginal posteriors inferred by MCMC,
SIVI, and MFVI for dataset nodal.
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Figure 17. Univariate marginal and pairwise joint posteriors for dataset nodal. Blue, green, and red are for MCMC, SIVI with a full
covariance matrix, and MFVI with a full covariance matrix, respectively.


