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1. Proofs
1.1. Proof of Lemma 1

For t ∈ {0, 1} define the set M i
t = {m ∈ {0, 1}d : mi = t}.
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where (1) follows from switching the order of summation. We then note that y 7→ a log y + b log(1 − y) achieves its
maximum in [0, 1] at a

a+b and so V (D,G) is maximized (for fixed G) when

D(x,h)i =
p(x,h,mi = 1)

p(x,h,mi = 0) + p(x,h,mi = 1)
(1)

for each i ∈ {1, ..., d}. .

*Equal contribution 1University of California, Los Angeles, CA, USA 2University of Oxford, UK 3Alan Turing Institute, UK.
Correspondence to: Jinsung Yoon <jsyoon0823@gmail.com>.

Proceedings of the 35 th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the
author(s).



Supplementary Materials - GAIN: Missing Data Imputation using Generative Adversarial Nets

1.2. Proof of Theorem 1

Denote byHi
t the space {h ∈ H : ph(h|mi = t) > 0}.
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where (2) follows by using the identity log(ab) = log(a) + log(b) and integrating out x from the resulting second term.

We then note that for any two densities, p and q, the Kullback-Leibler divergence DKL(p||q) of p with respect to q is 0 if
and only if p = q (almost everywhere).

It follows that C(G) is minimized if only if for every i ∈ {1, ..., d}, t ∈ {0, 1}, h ∈ Hi
t we have that for (almost) every x,

p̂(x|h,mi = t) = p̂(x|h).

The minimum value is then given by
∑d

i=1

∑
t∈{0,1}

∫
Hi

t
p(mi = t,h) log pm(mi = t|h)dh, which lines up with the

intuition that the worst a discriminator can (always) do is to predict the mask vector based solely on the hint, using no
information in x̂, but exploiting correlations between m and h. .
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1.3. Proof of Proposition 1

We prove the first claim by constructing an example in which multiple solutions to (12) exist. Suppose that H is independent
of M (note that this is equivalent to simply not having a hinting mechanism, since we assume H is (conditionally)
independent of X given M).

Then (12) becomes
p̂(x|mi = t) = p̂(x), for all i ∈ {1, ..., d}, t ∈ {0, 1}. (2)

We then note that (2) holds if and only if

p̂(x|mi = 0) = p̂(x|mi = 1), for all i ∈ {1, ..., d}. (3)

Consider the case when X = (X1, X2, X3) with eachXi being a Bernoulli random variable. Then the number of parameters
to be specified by the generator (and therefore the number of parameters in p and p̂) is 38, whereas the total number of linear
equalities defined by (3) is 24. Therefore p̂ is not uniquely determined. .

1.4. Proof of Lemma 2

The result follows immediately by observing that pm(mi = t|hi = t) = 1 for t ∈ {0, 1} and by Lemma 1. .

1.5. Proof of Proposition 2

Let m0,m1 ∈ {0, 1}d be such that they differ only on one component and let this component be the ith with the ith
component of m0 being 0 and of m1 being 1. Then the hint defined by

hj =

{
mj if j 6= i

0.5 if j = i
(4)

is such that ph(h|mi = t) > 0 for t = 0 and t = 1. By Theorem 1 we then have that

p̂(x|h,mi = 0) = p̂(x|h,mi = 1) (5)

for all x ∈ X .

But then note

p̂(x|h,mi = t) = p̂(x|mt,b) =
p̂(x|mt)

P(B = b|M = mt)
=

p̂(x|mt)

P(B = b)
(6)

where the final equality follows from independence of B and M.

Substituting this into (5) and multiplying by P(B = b) we get

p̂(x|m0) = p̂(x|m1). (7)

Note that this holds for any m0, m1 that differ in at most one component.

Now let m1,m2 be any two vectors in {0, 1}d. Then there exists k ∈ N and a sequence of vectors m′1, ...,m
′
k such that m′i

and m′i+1 differ only on the ith component and m1 = m′1 and m2 = m′k.

It follows from (7) that
p̂(x|m1) = p̂(x|m′1) = ... = p̂(x|m′k) = p̂(x|m2) (8)

and so in particular, for any m ∈ {0, 1}d we have that

p̂(x|m) = p̂(x|1). (9)

Since p̂(x|1) is the density of X, it is unique, and so, the density satisfying (12) is necessarily unique. .
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2. Dataset description in details
2.1. Synthetic data generation

We construct a synthetic dataset using a joint Gaussian distribution with zero means and randomly generated co-variance
matrix (C). More specifically, each element of a matrix A is randomly sampled from the uniform distribution U(0, 1/2).
Then, the co-variance matrix C is given by C = A+AT .

Table 1. Statistics of the datasets. Scont: the number of continuous variables, Scat: the number of categorical variables, Avg. Corr: the
average absolute correlations among features.

Dataset N Scont Scat Avg. Corr
Breast 569 30 0 0.3949

Spam 4,601 57 0 0.0608

Letter 20,000 0 16 0.1829

Credit 30,000 14 9 0.1633

News 39,797 44 14 0.0688

3. Hyper-parameters
In all experiments, the depth of the generator and discriminator in both GAIN and auto-encoder is set to 3. The number of
hidden nodes in each layer is d, d/2 and d, respectively. We use tanh as the activation functions of each layer except for
the output layer where we use the sigmoid activation function and the number of batches is 64 for both the generator and
discriminator. For the GAIN algorithm, we use cross-validation to select α among {0.1, 0.5, 1, 2, 10}.

We use tensorflow to implement GAIN and auto-encoder. We use R to implement MICE (R package MICE (Buuren &
Groothuis-Oudshoorn, 2011)), MissForest (R package MissForest (Stekhoven, 2013)), Matrix Completion (R package
softImpute (Hastie & Mazumder, 2015)), and EM (R package Amelia (Honaker et al., 2011)).

4. Additional experiments
4.1. Understanding GAIN

Fig. 1 visualizes the convergence of the generator and the discriminator on synthetic data generated as described above.
The top figure shows the ground truth of the mask matrix. The three left figures show the estimations of the mask matrix
made by the discriminator. As the epoch number increases, it becomes more difficult for the discriminator to distinguish the
imputed and observed components (the generator produces imputed components closer to the ground truth). The three right
figures show the imputation accuracy of the generator. As the epoch number increases, the imputed components are closer
to the ground truth of the missing components.

4.2. Learning curves of GAIN

Fig 2 illustrates the learning curves of the generator and the discriminator of GAIN. As seen in Fig 2 (a), the cross
entropy loss of the discriminator converges around 0.7(' log(0.5)) which represents that the discriminator is barely able to
distinguish the observed and imputed components. As seen in Fig 2 (b), the RMSE loss of the generator converges to less
than 0.1 indicating that the generator imputes the missing components accurately. This result is consistent with Fig. 1.

4.3. Categorical value imputation

As an additional performance metric for comparing the imputation quality of categorical features, we compute the proportion
of falsely classified entries (PFC) defined by

PFC =

∑n
i=1

∑
j∈Scat

(1−mj(i))I(x̂j(i) 6= xj(i))∑n
i=1

∑
j∈Scat

(1−mj(i))
,
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Figure 1. Visualization of the convergence of GAIN. (a) Discriminator outputs, (b) Imputation accuracy of the generator
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Figure 2. Learning curves of GAIN. (a) Cross entropy loss, (b) RMSE loss

where Scat is the set of categorical variables. Note that a lower PFC indicates better imputation. We evaluate the PFC
performance on the 3 real datasets which have categorical variables (Letter, Credit, News). As can be seen in Table 2, GAIN
outperforms all the benchmarks in all the datasets in terms of the PFC metric as well.
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Table 2. Imputation performance in terms of PFC (Average ± Std)

Algorithms Letter Credit News
GAIN .714 ± .002 .478 ± .011 .063 ± .002
MICE .756 ± .001 .491 ± .013 .072 ± .008

MissForest .787 ± .001 .499 ± .015 .068 ± .002

Matrix .779 ± .002 .533 ± .029 .142 ± .003

Auto-encoder .748 ± .003 .575 ± .016 .065 ± .009

EM .801 ± .002 .738 ± .010 .091 ± .002

4.4. Estimation of joint distribution
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Figure 3. The estimation of joint distribution using GAIN. (a) Original co-variance, (b) Estimated co-variance by GAIN

Fig. 3 shows the qualitative performance of GAIN in estimating the joint distribution P (X). In this experiment, we again
use synthetic data and randomly remove 50% of the data. Then, we use GAIN to impute the missing components and
estimate the co-variance matrix. As verified by Fig. 3 (a) and (b), the covariance matrix estimated from the GAIN-generated
dataset is close to the covariance matrix of the actual data. This verifies that the distribution of X̂ is similar to that of X.

4.5. Preliminary results in error concealment with MNIST

Fig. 4 and 5 visualize the performance of GAIN using MNIST data (LeCun & Cortes, 2010) as an application to error
concealment. In this experiment, we randomly remove 50% of the original MNIST image and use GAIN to impute those
missing components. Fig 4 shows the imputed images by GAIN after 100, 500, 1000, and 5000 epochs. As the epochs
increase, the imputed images become more like the original image.

Fig. 5 shows a visualization of performing multiple imputations (Rubin, 2004) using GAIN. Three imputed images
are generated with differently sampled random values z ∼ U((0, 1)d). The three imputed images are different which
qualitatively shows that GAIN captures the uncertainty in the missing components.

4.6. Types of Missingness

As mentioned in Section 1, there are three types of missingness. Here we recall the definition of the first, and formalize the
other two, and then provide empirical results demonstrating GAIN’s performance in each of these settings.

MCAR: Data is said to be Missing Completely at Random (MCAR) if:

X ⊥⊥M (10)
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Figure 4. The results of error concealment applied to MNIST dataset. The first row represents the original image with 50% missing. From
the second to fifth rows represent the imputed image with different epochs (100, 500, 1000, 5000) by GAIN. The last row represents the
original image.
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Figure 5. Multiple imputation results with MNIST dataset. Rows 2-4 represent the multiple imputed images by GAIN.

MAR: Data is said to be Missing at Random (MAR) if:

∀x1,x2 ∈ X ,m ∈ {0, 1}d s.t. x̃1 = x̃2 (w.r.t. m)
P(M = m|X = x1) = P(M = m|X = x2) (11)

MNAR: Data is said to be Missing Not at Random (MNAR) if it is neither MCAR or MAR (in particular, the missingness
can depend on the values of the unobserved data points).

The following explains how we constructed datasets that satisfy the latter two mechanisms.

Missing at random (MAR): To create an MAR dataset, we sequentially define the probability that the ith component of
the nth sample is observed conditional on the missingness and values (if observed) of the previous i− 1 components to be

Pm
i (n) =

pm(i) ·N · e−
∑

j<i wjmj(n)xj(n)+bj(1−mj(n))∑N
l=1 e

−
∑

j<i wjmj(l)xj(l)+bj(1−mj(l))

where pm(i) corresponds to the average missing rate of the ith feature, and wj , bj are sampled from U(0, 1) (but are only
sampled once for the entire dataset). We sequentially sample m1, ...,md for each feature vector.

Missing not at random (MNAR): To create an MNAR dataset, we define the probability that the ith component of the nth
sample is observed (Pm

i (n)) to be

Pm
i (n) =

pm(i) ·N · e−wixi(n)∑N
l=1 e

−wixi(l)
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where again pm(i) corresponds to the average missing rate of the ith feature and wi is sampled from U(0, 1). In particular,
the missingness of a data point is directly dependent on its value (with dependence determined by the weight wi).

We compare the RMSE of GAIN against other imputation algorithms on both an MAR and MNAR version of the Credit
dataset. To make a fair comparison, we pass the mask matrix to all the benchmarks as an additional input so that they can
also utilize the informative missingness captured by it.

Different missing rates for different features: In order to also explore the effect of different missing rates across features on
the imputation performance of GAIN, we compare the MCAR, MAR and MNAR settings when pm(i) = 0.2 ∀i ∈ {1, ..., d}
(uniform) and when pm(i) = 0.4× p̂m(i) where p̂m(i) ∼ U(0, 1) (non-uniform). The average missing rate in both cases is
0.2.

Table 3. Imputation performance with uniform and non-uniform pm(i) in terms of MCAR, MAR, and MNAR (Average ± Std of RMSE)

Setting
Uniform Non-uniform

MCAR MAR MNAR MCAR MAR MNAR
GAIN .1858 ± .0010 .1974 ± .0006 .4046 ± .0053 .2114 ± .0007 .2245 ± .0008 .4672 ± .0066
MICE .2585 ± .0011 .2574 ± .0035 .5310 ± .0207 .2574 ± .0014 .2344 ± .0068 .5355 ± .0036

MissForest .1976 ± .0015 .2194 ± .0065 .4286 ± .0087 .2496 ± .0065 .2537 ± .0097 .4784 ± .0102

Matrix .2602 ± .0073 .2473 ± .0070 .4328 ± .0036 .2356 ± .0022 .2440 ± .0122 .5216 ± .0084

Auto-encoder .2388 ± .0005 .2405 ± .0070 .4876 ± .0097 .2444 ± .0037 .2498 ± .0129 .5017 ± .0078

EM .2604 ± .0015 .2755 ± .0063 .5157 ± .0039 .2620 ± .0010 .3339 ± .0024 .4998 ± .0053

As can be seen in Table 3, GAIN outperforms other state-of-the-art imputation methods in all three missingness settings
(both when feature missingness is uniform and non-uniform) and shows significantly better performance in the MNAR
setting.

As can also be seen from the right hand side of Table 3, GAIN still outperforms all benchmarks in the non-uniform setting,
although the performance of both GAIN and MissForest (its closest competitor in the uniform setting) both decrease
similarly, while MICE and Matrix completion both show improvements for the non-uniform setting.

Note that the standard deviation of the total number of missing points is higher for non-uniform pm(i) than uniform pm(i).
As consistent with Fig. 2(a), higher/lower missing rates yield higher/lower imputation errors; and so, due to the increased
standard deviation, there is a greater variance in the performance in the non-uniform setting.
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