
Appendix for “GraphRNN: Generating Realistic Graphs with Deep
Auto-regressive Models”

Jiaxuan You * 1 Rex Ying * 1 Xiang Ren 2 William L. Hamilton 1 Jure Leskovec 1

1. Appendix
1.1. Implementation Details of GraphRNN

In this section we detail parameter setting, data preparation
and training strategies for GraphRNN.

We use two sets of model parameters for GraphRNN. One
larger model is used to train and test on the larger datasets
that are used to compare with traditional methods. One
smaller model is used to train and test on datasets with nodes
up to 20. This model is only used to compare with the two
most recent preliminary deep generative models for graphs
proposed in (Li et al., 2018; Simonovsky & Komodakis,
2018).

For GraphRNN, the graph-level RNN uses 4 layers of GRU
cells, with 128 dimensional hidden state for the larger model,
and 64 dimensional hidden state for the smaller model in
each layer. The edge-level RNN uses 4 layers of GRU cells,
with 16 dimensional hidden state for both the larger model
and the smaller model. To output the adjacency vector
prediction, the edge-level RNN first maps the highest layer
of the 16 dimensional hidden state to a 8 dimensional vector
through a MLP with ReLU activation, then another MLP
maps the vector to a scalar with sigmoid activation. The
edge-level RNN is initialized by the output of the graph-
level RNN at the start of generating Sπi , ∀1 ≤ i ≤ n.
Specifically, the highest layer hidden state of the graph-level
RNN is used to initialize the lowest layer of edge-level
RNN, with a liner layer to match the dimensionality. During
training time, teacher forcing is used for both graph-level
and edge-level RNNs, i.e., we use the groud truth rather than
the model’s own prediction during training. At inference
time, the model uses its own preditions at each time steps to
generate a graph.

*Equal contribution 1Department of Computer Science, Stan-
ford University, Stanford, CA, 94305 2Department of Com-
puter Science, University of Southern California, Los Ange-
les, CA, 90007. Correspondence to: Jiaxuan You <jiax-
uan@stanford.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

For the simple version GraphRNN-S, a two-layer MLP with
ReLU and sigmoid activations respectively is used to gen-
erate Sπi , with 64 dimensional hidden state for the larger
model, and 32 dimensional hidden state for the smaller
model. In practice, we find that the performance of the
model is relatively stable with respect to these hyperparam-
eters.

We generate the graph sequences used for training the model
following the procedure in Section 2.3.4. Specifically, we
first randomly sample a graph from the training set, then
randomly permute the node ordering of the graph. We then
do the deterministic BFS discussed in Section 2.3.4 over the
graph with random node ordering, resulting a graph with
BFS node ordering. An exception is in the robustness sec-
tion, where we use the node ordering that generates B-A
graphs to get graph sequences, in order to see if GraphRNN
can capture the underlying preferential attachment proper-
ties of B-A graphs.

With the proposed BFS node ordering, we can reduce the
maximum dimension M of Sπi , illustrated in Figure 1. To
set the maximum dimension M of Sπi , we use the following
empirical procedure. We randomly ran 100000 times the
above data pre-processing procedure to get graph with BFS
node orderings. We remove the all consecutive zeros in
all resulting Sπi , to find the empirical distribution of the
dimensionality of Sπi . We set M to be roughly the 99.9
percentile, to account for the majority dimensionality of
Sπi . In principle, we find that graphs with regular structures
tend to have smallerM , while random graphs or community
graphs tend to have larger M . Specifically, for community
dataset, we set M = 100; for grid dataset, we set M = 40;
for B-A dataset, we set M = 130; for protein dataset, we
set M = 230; for ego dataset, we set M = 250; for all
small graph datasets, we set M = 20.

The Adam Optimizer is used for minibatch training. Each
minibatch contains 32 graph sequences. We train the model
for 96000 batchs in all experiments. We set the learning
rate to be 0.001, which is decayed by 0.3 at step 12800 and
32000 in all experiments.

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

Figure 1. Illustrative example of reducing the maximum dimension M of Sπi through the BFS node ordering. Here we show the adjacency
matrix of a graph with N = 10 nodes. Without the BFS node ordering (Left), we have to set M = N − 1 to encode all the necessary
connection information (shown in dark square). With the BFS node ordering, we could set M to be a constant smaller than N (we show
M = 3 in the figure).

1.2. Running Time of GraphRNN

Training is performed on only 1 Titan X GPU. For the
protein dataset that consists of about 1000 graphs, each
containing about 500 nodes, training converges at around
64000 iterations. The runtime is around 12 to 24 hours. This
also includes pre-processing, batching and BFS, which are
currently implemented using CPU without multi-threading.
The less expressive GraphRNN-S variant is about twice
faster. At inference time, for the above dataset, generating a
graph using the trained model only takes about 1 second.

1.3. More Details on GraphRNN’s Expressiveness

We illustrate the intuition underlying the good performance
of GraphRNNon graphs with regular structures, such as grid
and ladder networks. Figure 2 (a) shows the generation
process of a ladder graph at an intermediate step. At this
time step, the ground truth data (under BFS node ordering)
specifies that the new node added to the graph should make
an edge to the node with degree 1. Note that node degree is
a function of Sπ<i, thus could be approximated by a neural
network.

Once the first edge has been generated, the new node should
make an edge with another node of degree 2. However, there
are multiple ways to do so, but only one of them gives a valid
grid structure, i.e. one that forms a 4-cycle with the new
edge. GraphRNN crucially relies on the edge-level RNN
and the knowledge of the previously added edge, in order to
distinguish between the correct and incorrect connections
in Figure 2 (c) and (d).

1.4. Code Overview

In the code repository, main.py consists of the main train-
ing pipeline, which loads datasets and performs training and

Figure 2. Illustration that generation of ladder networks relies on
dependencies modeled by GraphRNN.

inference. It also consists of the Args class, which stores
the hyper-parameter settings of the model. model.py con-
sists of the RNN, MLP and loss function modules that are
use to build GraphRNN. data.py contains the minibatch
sampler, which samples a random BFS ordering of a batch
of randomly selected graphs. evaluate.py contains the
code for evaluating the generated graphs using the MMD
metric introduced in Sec. 4.3.

Baselines including the Erdős-Rényi model, Barabási-
Albert model, MMSB, and rge very recent deep generative
models (GraphVAE, DeepGMG) are also implemented in
the baselines folders. We adopt the C++ Kronecker
graph model implementation in the SNAP package 1.

1.5. Proofs

1.5.1. PROOF OF PROPOSITION 1

We use the following observation:

Observation 1. By definition of BFS, if i < k, then the
children of vi in the BFS ordering come before the children

1The SNAP package is available at http://snap.
stanford.edu/snap/index.html.

http://snap.stanford.edu/snap/index.html
http://snap.stanford.edu/snap/index.html

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

of vk that do not connect to vi′ , ∀1 ≤ i′ ≤ i.

By definition of BFS, all neighbors of a node vi include
the parent of vi in the BFS tree, all children of vi which
have consecutive indices, and some children of vi′ which
connect to both vi′ and vi, for some 1 ≤ i′ ≤ i. Hence if
(vi, vj−1) ∈ E but (vi, vj) 6∈ E, vj−1 is the last children of
vi in the BFS ordering. Hence (vi, vj′) 6∈ E, ∀j ≤ j′ ≤ n.

For all i′ ∈ [i], supposed that (vi′ , vj′−1) ∈ E but
(vi′ , vj′) 6∈ E. By Observation 1, j′ < j. By conclusion
in the previous paragraph, (vi′ , vj′′) 6∈ E, ∀j′ ≤ j′′ ≤ n.
Specifically, (vi′ , vj′′) 6∈ E, ∀j ≤ j′′ ≤ n. This is true for
all i′ ∈ [i]. Hence we prove that (vi′ , vj′) 6∈ E, ∀1 ≤ i′ ≤ i
and j ≤ j′ < n.

1.5.2. PROOF OF PROPOSITION 2

As proven in Kolouri et al. 2016, this Wasserstein distance
based kernel is a positive definite (p.d.) kernel. By proper-
ties that linear combinations, product and limit (if exists) of
p.d. kernels are p.d. kernels, kW (p, q) is also a p.d. kernel.2

By the Moore-Aronszajn theorem, a symmetric p.d. kernel
induces a unique RKHS. Therefore Equation (9) holds if we
set k to be kW .

1.6. Extension to Graphs with Node and Edge Features

Our GraphRNN model can also be applied to graphs where
nodes and edges have feature vectors associated with them.
In this extended setting, under node ordering π, a graph
G is associated with its node feature matrix Xπ ∈ Rn×m
and edge feature matrix Fπ ∈ Rn×k, where m and k are
the feature dimensions for node and edge respectively. In
this case, we can extend the definition of Sπ to include
feature vectors of corresponding nodes as well as edges
Sπi = (Xπ

i , F
π
i). We can adapt the fout module, by using a

MLP to generateXπ
i and an edge-level RNN to genearte Fπi

respectively. Note also that directed graphs can be viewed
as an undirected graphs with two edge types, which is a
special case under the above extension.

1.7. Extension to Graphs with Four Communities

To further show the ability of GraphRNN to learn from
community graphs, we further conduct experiments on a
four-community synthetic graph dataset. Specifically, the
data set consists of 500 four community graphs with 48 ≤
|V | ≤ 68. Each community is generated by the Erdős-Rényi
model (E-R) (Erdős & Rényi, 1959) with n ∈ [|V |/4 −
2, |V |/4+2] nodes and p = 0.7. We then add 0.01|V |2 inter-
community edges with uniform probability. FIgure 3 shows
the comparison of visualization of generated graph using

2This can be seen by expressing the kernel function using
Taylor expansion.

Figure 3. Visualization of graph dataset with four communi-
ties. Graphs from training set (First row), graphs generated by
GraphRNN(Second row) and graphs generated by Kronecker,
MMSB and B-A baselines respectively (Third row) are shown.

GraphRNN and other baselines. We observe that in contrast
to baselines, GraphRNN consistently generate 4-community
graphs and each community has similar structure to that in
the training set.

References
Erdős, P. and Rényi, A. On random graphs I. Publicationes

Mathematicae (Debrecen), 6:290–297, 1959.

Kolouri, S., Zou, Y., and Rohde, G. Sliced Wasserstein
kernels for probability distributions. In CVPR, 2016.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs,
2018. URL https://openreview.net/forum?
id=Hy1d-ebAb.

Simonovsky, M. and Komodakis, N. GraphVAE: Towards
generation of small graphs using variational autoencoders,
2018. URL https://openreview.net/forum?
id=SJlhPMWAW.

https://openreview.net/forum?id=Hy1d-ebAb
https://openreview.net/forum?id=Hy1d-ebAb
https://openreview.net/forum?id=SJlhPMWAW
https://openreview.net/forum?id=SJlhPMWAW

