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A. Proof of Proposition 1
We first introduce the following lemmas.

Lemma 1 (Liu et al. 2016, Proposition 3.5). Let H denote the Reproducing Kernel Hilbert Space (RKHS) induced by kernel
k. If k(·, ·) has continuous second order partial derivatives, and both k(x, ·) and k(·,x) satisfy the boundary condition in
eq. (7), then 8f 2 H, f satisfies the same boundary condition.

Lemma 2 (Mercer’s theorem). Let k be a continuous kernel on compact metric space X . q is a finite Borel measure on X .
Then for { 

j

}
j�1

that satisfies eq. (1), 8x,y 2 X :

k(x,y) =

X

j

µ
j

 
j

(x) 
j

(y).

Proof. See Sejdinovic & Gretton, Theorem 50.

Lemma 3 (Sejdinovic & Gretton, Theorem 51). Let X be a compact metric space and k: X ⇥ X ! R a continuous kernel,
Define:

H =

(
f =

X

i

a
i

 
i

:

⇢
a
ip
µ
i

�
2 `2

)
.

Then H is the same space as the RKHS induced by k.

Then we prove Proposition 1.

Proof. In Lemma 3 we set a
j

= 1, a
i

= 0(i 6= j), then we have  
j

2 H. Then according to Lemma 1, we can conclude
that  

j

satisfies the boundary condition.

B. Error Bound of SSGE
Define

g
i
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1X

j=1

�
ij
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(x), g
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ij

ˆ 
j

(x), (33)

which correspond to the major approximations in each step.

Lemma 4 (Izbicki et al. 2014). For all 1  j  J ,
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where �
j

= µ
j

� µ
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.

Lemma 5 (Izbicki et al. 2014). For all 1  j  J ,
Z
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and for all 1  i  J, i 6= j,
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Proof. By Cauchy-Schwartz inequality, Assumption 2 and Lemma 4:
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Lemma 7. For all 1  j  J ,
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Proof. Denote �(x) =  
j

(x) � ˆ 
j

(x). According to Assumption 1, it is easy to see that ˆ 
j

(x) satisfies the boundary
condition:

Z
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And from the proof of Proposition 1, we know  
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(x) satisfies the boundary condition. Combining the two, we have:
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By eq. (41), Lemma 4 and Assumption 2, we have
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Lemma 8. For all 1  j  J ,
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Proof.
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Therefore, by Lemma 7 we have
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Proof. By applying Minkowski inequality, Cauchy-Schwartz inequality, Lemma 8 and Lemma 5, we have
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i,J

(x)|2 dq =

Z
������

JX

j=1

�
ij

ˆ 
j

(x) �
JX

j=1

ˆ�
ij

ˆ 
j

(x)

������

2

dq =

Z
������

JX

j=1

(�
ij

� ˆ�
ij

)

ˆ 
j

(x)

������

2

dq


8
<

:

JX

j=1

Z ���(�
ij

� ˆ�
ij

)

ˆ 
j

(x)

���
2

dq

� 1
2

9
=

;

2


8
<

:

JX

j=1

Z ���(�
ij

� ˆ�
ij

)

���
2

dq

Z
ˆ 2

j

(x) dq

� 1
2

9
=

;

2

=

8
<

:

JX

j=1

"
O

q

✓
1

M

◆
+ O

q

 
C

µ
j

�2
j

M

!# 1
2 

O
q

✓
1

µ
j

�

2

J

M

◆
+ 1

� 1
2

9
=

;

2

= J2

✓
O

q

✓
1

M

◆
+ O

q

✓
C

µ
J

�

2

J

M

◆◆

(47)

Theorem 3 (Estimation Error).
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Proof. By lemma 6 and lemma 9.
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Theorem 4 (Truncation Error). Z
|g

i,J

(x) � g
i

(x)|2 dq = kg
i

k2HO(µ
J

) (50)

Proof. Z
|g

i,J

(x) � g
i

(x)|2 dq =

X

j>J

�2

ij

=

X

j>J

�2

ij

µ
j

µ
j

 µ
J

X

j>J

�2

ij

µ
j

= µ
J

kg
i

k2H (51)

Theorem 5 (Error Bound of SSGE).
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Proof. By theorem 3 and theorem 4, we have
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