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Dataset PBP SVGD WGF

Boston -2.57 0.09 -2.50 0.03 2.40 0.10
Concrete -3.16  0.02 -3.08 0.02 295 0.06
Energy -2.04 0.02 -1.77 0.02 0.73 0.08
Kin8nm 090 0.01 098 0.01 097 0.02
Naval 373 0.01 4.09 0.01 411 0.02
CCPP -2.80 0.05 -2.82 0.01 278 0.01
Winequality -0.97 0.01 -0.93 0.01 0.87 0.04
Yacht -1.63  0.02 -1.23 0.04 0.99 0.15
Protein -297 0.00 -295 0.00 288 0.01
YearPredict  -3.60 NA -3.58 NA 3.57 NA

Table 1. Averaged predictions, with standard deviations, in terms
of test log-likelihood.

2017). Similar arguments hold for other trust-region meth-
ods such as PPO (Schulman et al., 2017b) and Trust-PCL
(Nachum et al., 2017), which improve TRPO with either
different objective or trust-region constraints.

Noisy exploration Adding noise to the parameters for
noisy exploration (Fortunato et al., 2018; Plappert et al.,
2018) can be interpreted as a special case of our IP-WGF
framework with a single particle. Isotropic Gaussian noisy
exploration corresponds to the maximum a posterior (MAP)
solution with a Gaussian assumption on the posterior dis-
tributions of parameters, potentially leading to inferior so-
lutions when the assumption is not met. By contrast, our
method is endowed with the ability to explore multimodal
distributions, by optimizing the parameter distribution di-
rectly. More details are provided in Section C of the SM.

6. Experiments

We test the proposed WGF framework from two per-
spectives: i) the effectiveness of the proposed particle-
approximation method for WGF, and ii) the advantages
of the WGF framework for policy optimization. For i), a
standard regression model to learn optimal parameter dis-
tributions, i.e., posterior distributions. For ii), we test our
algorithms on several domains in OpenAl rllab and Gym
(Duan et al., 2016). All experiments are conducted on a
single Tesla P100. Detailed settings are given in the SM.

6.1. Regression

We use a single-layer BNN as a regression model. The
parameters of the BNN are treated probabilistically and opti-
mized with our WGF framework. We compare WGF, SVGD
(Liu & Wang, 2016), Bayesian Dropout (Gal & Ghahramani,
2016) and PBP (Hernandez-Lobato & Adams, 2015). The
RMSprop optimizer is employed. Detailed experimental
settings and datasets are described in Section D.2 of the
SM. We adopt the root-mean-squared error (RMSE) and test
log-likelihood as the evaluation criteria. The experimental
results are shown in Table 1 (complete results are provided
in Section D.2 of the SM). It is observed that our proposed
WGF obtains better results in both metrics, partially due
to the flexibility of our particle approximation algorithm,
which solves the original WGF problem effectively.

Figure 1. Learning curves by IP-WGF and SVPG with REIN-
FORCE and A2C.

6.2. Indirect-policy learning

For this group of experiments, we compare [P-WGF
with SVPG (Liu et al., 2017), a state-of-the-art method
for indirect-policy learning, considering three classical
continuous-control tasks: Cartpole Swing-Up, Double Pen-
dulum, and Cartpole. Only policy parameters are updated
by IP-WGF or SVPG, while the critics are updated with
TD-error. We train our agents for 100 iterations on the
easier Cartpole domain and 1000 iterations on the other
two domains. Following the settings in (Liu et al., 2017;
Houthooft et al., 2016; Zhang et al., 2018), the policy is
parameterized as a two-layer (25-16 hidden units) neural
network with tanh activation function. The maximum hori-
zon length is set to 500. A sample size of 5000 is used for
policy gradient estimation. We use M = 16 particles to
approximate parameter distributions, and A = 0.1 as the
discretized stepsize.

REINFORCE (Williams, 1992) and advantage actor
critic (A2C) (Schulman et al., 2016) are used as strategies
of policy learning. Figure 2 plots the mean (dark curves)
and standard derivation (light areas) of rewards over 5 runs.
It is clear that in all tasks IP-WGF consistently converges
faster than SVPG, and finally converges to higher average
rewards. The results are comparable to (Houthooft et al.,
2016). The experiments demonstrate that employing the
Wasserstein gradient flows on policy optimization improves
the performance, as suggested by our theory.
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WGE-DP-V SAC TRPO-GAE DDPG
Domain Threshold | MaxReturn.  Episodes | MaxReturn Epsisodes | MaxReturn Episodes | MaxReturn  Episodes
Swimmer 100 181.60 76 180.83 112 110.58 433 49.57 N/A
Walker 3000 4978.59 2289 4255.05 2388 3497.81 3020 2138.42 N/A
Hopper 2000 3248.76 678 3146.51 736 2604 1749 1317 N/A
Humanoid 2000 3077.84 18740 2212.51 26476 5411.15 32261 2230.60 34652

Table 2. WGF-DP-V, TRPO, SAC, and DDPG results showing the max average rewards attained and the episodes to cross specific reward
thresholds. WGF-DP-V often learn more sample-efficiently than the baselines, and WGF-DP-V can solve difficult domains such as
Humanoid better than DDPG.
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Figure 2. Average return in MuJoCo tasks by Soft-Q, SAC and DP-WGF-V (first row), and by DDPG, TRPO-GAE and DP-WGF-V
(second row). From left to right, the tasks are: Swimmer, Hopper, Walker and Humanoid, respectively.

and DDPG (Lillicrap et al., 2016) on the same Mujoco tasks.
In general, TRPO-GAE has been a state-of-the-art method
for policy optimization. Figure 2 (second row) plots average
returns over episodes, and it is observed that DP-WGF-V
consistently outperforms other algorithms. Table 2 summa-
rizes some key statistics, including the best attained average
rewards and the episodes to reach the reward thresholds. It
is observed that DP-WGF-V consistently outperform TRPO-
GAE and DDPG in terms of sample complexity, and often
achieves higher rewards than TRPO-GAE. A particularly
notable case, on Humanoid, shows DP-WGF-V substan-
tially outperforms TRPO-GAE in terms of sample efficiency,
while DDPG cannot learn a good policy at all.
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6.3. Direct-policy Learning

We compare our DP-WGF and DP-WGF-V frameworks
with existing off-policy and on-policy deep RL algorithms
on several tasks in MuJoCo, e.g., SAC, Soft-Q, DDPG (off-
policy) and TRPO-GAE (on-policy). Our DP-WGF-V is
considered to be an off-policy actor-critic method. For all
methods, value function and policy are parameterized as
two-layer (128-128 hidden units) neural networks with tanh
as the activation function. The maximum horizon length is
set to 1000 when simulating expected total rewards. Three
easier tasks (Swimmer, Hopper and Walker) in MuJoCo
can be solved by a wide range of algorithms; while the
more complex benchmark, the 21-dimensional Humanoid, is
known to be very difficult to solve with off-policy algorithms
(Duan et al., 2016). Implementation details of the algorithms
are specified in Section E.3 of the SM.

7. Conclusion

We lift policy optimization to the space of probabilistic
distributions, and interpret it as Wasserstein gradient flows.
Two types of WGFs are defined for the task, one on the
parameter-distribution space and the other on the policy-
distribution space. The WGFs are solved by a new particle-
approximation-based algorithm, where gradients of particles
are calculated in closed forms. Under some circumstance,
optimization on probability-distribution space is convex,
thus it is easier to deal with compared to existing methods.
Experiments are conducted on a number of reinforcement-
learning tasks, demonstrating the superiority of the proposed
framework compared to related algorithms.

Effectiveness of the Wasserstein trust-region We eval-
uate DP-WGF-V against SAC, and DP-WGF against Soft-Q
on four Mujoco tasks, as they are closely related to our
algorithms. Figure 2 (first row) plots average returns over
epochs on the tasks. Similarly, our WGF-based methods
converge faster and better than their counterparts due to the
introduction of WGFs. Furthermore, by variance reduction,
DP-WGF-V significantly outperforms DP-WGF on all tasks.

Comparisons with popular baselines Finally we com-
pare DP-WGF-V with TRPO-GAE (Schulman et al., 2016)
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