
Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow

A. Additional Experiments
In this section, we provide additional experimental results, including simulations under the rectangular setting, the relative
error versus CPU time plots and multi-label learning experiments on Yahoo datasets.

Simulations under Rectangular setting. The data generation approach for rectangular setting follows the same procedure
in Section 6.1. Specifically, the unknown low-rank matrix L∗ ∈ Rd1×d2 is modeled as L∗ = XLM∗X>R with dimensions
d1 = 5000, d2 = 2000 and rank r = 5. The feature dimensions n1, n2 are specified as n1 = 100 and n2 = 50. We compare
the performance of our proposed algorithm with existing (inductive) matrix completion methods, as explained in Section 6.1,
in terms of relative error and effective number of data passes, which is illustrated in Figure 3. Note that the sampling rate p
is chosen from the range {0.25%, 0.5%, 1%, 2%}. The results show that our proposed algorithm has better performance
under the rectangular setting compared with existing methods.

0 20 40 60 80 100

number of effective data passes

-30

-25

-20

-15

-10

-5

0

lo
ga

rit
hm

 o
f r

el
at

iv
e 

er
ro

r

MC
Maxide
AltMin
Ours

(a) p = 0.25%
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(b) p = 0.5%
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(c) p = 1%
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(d) p = 2%

Figure 3. Plots of logarithm relative error vs. number of effective data passes for different (inductive) matrix completion algorithms under
the setting d1 = 5000, d2 = 2000, n1 = 100, n2 = 50 and r = 5 with sampling rate p varied in the range {0.25%, 0.5%, 1%, 2%}.

Relative Error versus CPU Time. To further demonstrate the computational advantage of the proposed method, we
compare our algorithm with existing (inductive) matrix completion methods in terms of relative error and CPU time for all of
the aforementioned simulation settings. It can be seen from Figure 4 that our proposed method achieves the lowest relative
error with respect to the same CPU time under all settings, which again confirms the superiority of our proposed algorithm.
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(a) p = 2%
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(b) p = 5%
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(c) p = 10%
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(d) p = 0.25%
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(e) p = 0.5%
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(f) p = 1%

0 10 20 30 40

CPU time (in seconds)

10-15

10-10

10-5

100

re
la

tiv
e 

er
ro

r

MC
Maxide
AltMin
Ours

(g) p = 2%

Figure 4. Plots of relative error vs. CPU time for different (inductive) matrix completion algorithms under the settings: (i) d = 1000,
n = 100 and r = 10 with sampling rate p selected from {2%, 5%, 10%} in the top panel. (ii) d1 = 5000, d2 = 2000, n1 = 100,
n2 = 50 and r = 5 with p varied in the range {0.25%, 0.5%, 1%, 2%} in the bottom panel.
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Multi-Label Learning on Yahoo Datasets. We provide the experimental results for multi-label learning on the Web
page classification Yahoo datasets obtained from Ueda & Saito (2003), including Arts, Education, Health and Science. In
particular, each dataset has 5000 different Web pages, which are associated with 462-743 different features and labeled with
26-40 different predefined categories. We extract the top-100 principal components to reconstruct the feature matrix so that
our estimation model will not overfit. The comparison results are demonstrated in Table 3, which shows that our method
achieves higher prediction accuracy and shorter computational time against existing inductive matrix completion approaches
under all of the experimental settings (c.f. Section 6.2 for detailed information).

Table 3. Experimental results in terms of AP and total running time on Yahoo datasets for multi-label learning via different methods.

Dataest Method
p% = 10% p% = 25% p% = 50%

averaged AP (std) time (s) averaged AP (std) time (s) averaged AP (std) time (s)

Arts

BR-linear 0.4333 (0.0055) 1.63× 101 0.4608 (0.0059) 4.99× 101 0.4769 (0.0070) 1.22× 102

Maxide 0.5131 (0.0062) 3.53× 100 0.5698 (0.0046) 3.08× 100 0.5821 (0.0059) 2.78× 100

AltMin 0.5232 (0.0060) 3.04× 100 0.5647 (0.0056) 2.72× 100 0.5707 (0.0060) 2.20× 100

Ours 0.5412 (0.0056) 1.16× 100 0.5768 (0.0050) 0.83× 100 0.5872 (0.0061) 1.41× 100

Education

BR-linear 0.4515 (0.0057) 1.52× 101 0.4637 (0.0073) 4.23× 101 0.4775 (0.0073) 9.88× 101

Maxide 0.5451 (0.0054) 4.95× 100 0.5851 (0.0052) 4.16× 100 0.5844 (0.0052) 3.31× 100

AltMin 0.5338 (0.0057) 2.03× 100 0.5731 (0.0075) 2.68× 100 0.5848 (0.0059) 1.70× 100

Ours 0.5555 (0.0042) 1.05× 100 0.5906 (0.0058) 1.01× 100 0.5963 (0.0055) 0.88× 100

Health

BR-linear 0.6402 (0.0064) 1.39× 101 0.6859 (0.0028) 3.46× 101 0.6933 (0.0051) 8.45× 101

Maxide 0.7210 (0.0073) 6.10× 100 0.7454 (0.0059) 4.29× 100 0.7586 (0.0051) 4.03× 100

AltMin 0.6961 (0.0091) 1.73× 100 0.7370 (0.0042) 2.82× 100 0.7476 (0.0045) 2.86× 100

Ours 0.7305 (0.0053) 0.76× 100 0.7496 (0.0036) 1.60× 100 0.7627 (0.0049) 1.94× 100

Science

BR-linear 0.4517 (0.0113) 1.80× 101 0.4671 (0.0089) 4.67× 101 0.4769 (0.0083) 1.15× 102

Maxide 0.4960 (0.0075) 7.19× 100 0.5297 (0.0042) 5.46× 100 0.5413 (0.0059) 5.25× 100

AltMin 0.4888 (0.0081) 4.38× 100 0.5341 (0.0052) 4.55× 100 0.5477 (0.0056) 3.88× 100

Ours 0.5095 (0.0069) 1.11× 100 0.5391 (0.0039) 0.94× 100 0.5536 (0.0065) 1.38× 100

B. Proofs of the Main Results
In this section, we provide the proofs for our main theoretical results. To begin with, we introduce some notations to simplify
our proof. Let I : Rd1×d2 → Rd1×d2 be the identity map, i.e., I(A) = A. Denote the elementwise infinity norm of matrix
A by ‖A‖∞,∞. For any Z ∈ R(n1+n2)×r, we denote Z = [U; V], where U ∈ Rn1×r and V ∈ Rn2×r. According to (4.1),
our objective is equivalent to minimize the following regularized loss function in terms of Z

f̃Ω(Z) := fΩ(U,V) =
1

2p
‖PΩ(XLUV>X>R − L)‖2F +

1

8
‖U>U−V>V‖2F . (B.1)

Let Sym : Rd1×d2 → R(d1+d2)×(d1+d2) be the lifting operator, such that for any matrix A ∈ Rd1×d2

Sym(A) =

[
0 A

A> 0

]
.

For any block matrices A ∈ R(d1+d2)×(d1+d2) with partitions

A =

[
A11 A12

A21 A22

]
, where Aij ∈ Rdi×dj , i, j ∈ {1, 2},

define linear operators Pdiag and Poff : R(d1+d2)×(d1+d2) → R(d1+d2)×(d1+d2) as

Pdiag(A) =

[
A11 0

0 A22

]
and Poff(A) =

[
0 A12

A21 0

]
.

Similarly, for any block matrices B ∈ R(n1+n2)×(n1+n2) with partitions

B =

[
B11 B12

B21 B22

]
, where Bij ∈ Rni×nj , i, j ∈ {1, 2},
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define operators Pdiag and Poff : R(n1+n2)×(n1+n2) → R(n1+n2)×(n1+n2) as

Pdiag(B) =

[
B11 0

0 B22

]
and Poff(B) =

[
0 B12

B21 0

]
.

In addition, let Ω̃ ∈ [d1 + d2]× [d1 + d2] be the corresponding index set of observed entries in the lifted space, then the
observed matrix in the lifted space can be expressed as

PΩ̃

(
Sym(L)

)
=

[
0 PΩ(L)(

PΩ(L)
)> 0

]
.

And we let X ∈ R(d1+d2)×(n1+n2) be the corresponding feature matrix in the lifted space, such that

X =

[
XL 0
0 XR

]
.

Thus with the notations above, the regularized loss function f̃Ω in (B.1) can be rewritten as

f̃Ω(Z) =
1

4p

∥∥PΩ̃

(
XZZ>X> − Sym(L)

)∥∥2

F
+

1

8
‖Z>DZ‖2F , (B.2)

where D is defined as

D =

[
In1 0
0 −In2

]
.

Recall that Z∗ = [U∗; V∗] and PΩ(L) = PΩ(L∗), then the gradient of f̃Ω can be formulated as

∇f̃Ω(Z) =
1

p
X>PΩ̃(X[ZZ> − Z∗Z∗>]X>)XZ

+
1

2
(Pdiag − Poff)(ZZT )Z. (B.3)

B.1. Proof of Theorem 5.3

Proof. According to the initialization phase of Algorithm 1, we have

‖UinitV
>
init −M∗‖2 = ‖p−1

0 X>LPΩ0
(L∗)XR −M∗‖2

= ‖X>L (p−1
0 PΩ0

(L∗)− L∗)XR‖2

=

∥∥∥∥ (d1,d2)∑
(i,j)=(1,1)

(p−1
0 ξij − 1)L∗ij ·X>Leie

>
j XR

∥∥∥∥
2

:=

∥∥∥∥ (d1,d2)∑
(i,j)=(1,1)

Sij

∥∥∥∥
2

, (B.4)

where ξij = 1, if (i, j) ∈ Ω0; ξij = 0, otherwise. Next we are going to apply Matrix Bernstein to the right hand side of
(B.4). Note that E[Sij ] = 0, and we have

‖Sij‖2 ≤
1

p0
|L∗ij | · ‖X>Lei‖2 · ‖X>Rej‖2 ≤

1

p0
‖L∗‖∞,∞ · ‖XL‖2,∞ · ‖XR‖2,∞.

By Assumptions 3.1 and 3.2, we further obtain

‖Sij‖2 ≤
1

p0
‖XLU

∗‖2,∞ · ‖Σ∗‖2 · ‖XRV
∗‖2,∞ ·

√
µ2

1n1n2

d1d2
≤
µ0µ1r

√
n1n2σ

∗
1

p0d1d2
.
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Denote S =
∑

i,j Sij . To apply Matrix Bernstein, it remains to bound the terms ‖E(SS>)‖2 and ‖E(S>S)‖2 respectively.
Since Sij’s are independent, we have

‖E(SS>)‖2 =

∥∥∥∥ (d1,d2)∑
(i,j)=(1,1)

E(SijS
>
ij)

∥∥∥∥
2

=
1− p0

p0

∥∥∥∥ (d1,d2)∑
(i,j)=(1,1)

L∗2ij (X>Lei) · ‖X>Rej‖22 · (e>i XL)

∥∥∥∥
2

≤ 1

p0

∥∥∥∥ d1∑
i=1

eie
>
i ·
[ d2∑
j=1

L∗2ij · ‖X>Rej‖22
]∥∥∥∥

2

≤ 1

p0
· max
i∈[d1]

( d2∑
j=1

L∗2ij · ‖X>Rej‖22
)
≤ µ1n1

p0d2
· ‖L∗‖22,∞, (B.5)

where the first inequality is due to the fact that ‖AB‖2 ≤ ‖A‖2 · ‖B‖2 and XL is orthonormal, the last inequality follows
from Assumption 3.2. According to the SVD of L∗ and Assumption 3.1, we have

‖L∗‖2,∞ = ‖(XLU
∗
) ·Σ∗‖2,∞ ≤ ‖XLU

∗‖2,∞ · ‖Σ∗‖2 ≤
√
µ0r

d1
σ∗1 . (B.6)

Therefore, plugging (B.6) into (B.5), we obtain

‖E(SS>)‖2 ≤
µ0µ1rn1

p0d1d2
σ∗21 .

Similarly, we can obtain the upper bound of ‖E(S>S)‖2, which implies

max
{∥∥E(S>S)

∥∥
2
,
∥∥E(SS>)

∥∥
2

}
≤ µ0µ1r(n1 + n2)

p0d1d2
σ∗21 .

Applying Matrix Bernstein Lemma E.1, under condition that p0 ≥ cµ0µ1r
2κ2(n1 + n2) log d/(γ2d1d2), we have

P
{∥∥∥∥ (d1,d2)∑

(i,j)=(1,1)

Sij

∥∥∥∥
2

≥ γ · σ
∗
r√
r

}
≤ (d1 + d2) · exp(−c′ log d) ≤ 1

d
,

where c, c′, γ > 0 are some constants. This further implies that with probability at least 1 − 1/d, we have ‖UinitV
>
init −

M∗‖2 ≤ γσ∗r/
√
r. Finally, according to Lemma 5.14 in Tu et al. (2015), we obtain

D2(Zinit,Z
∗) ≤ 2√

2− 1
· ‖UinitV

>
init −M∗‖2F

σr(M∗)
≤ 10r‖UinitV

>
init −M∗‖22
σ∗r

≤ 10γ2σ∗r ,

where the second inequality holds because rank(UinitV
>
init −M∗) is at most 2r.

B.2. Proof of Theorem 5.4

Before proceeding to the main proof, we introduce the following notations and facts. Recall that M∗ = U
∗
Σ∗V

∗>

and Z∗ = [U
∗
; V
∗
]Σ∗1/2, we denote Z̃∗ = [U

∗
;−V

∗
]Σ∗1/2. Note that M∗ and L∗ have the same set of singular

values, thus for any ` ∈ [r], σ2
` (Z∗) = σ2

` (Z̃∗) = 2σ∗` . We further note that Z∗>Z̃∗ = Z̃∗>Z̃∗ = 0, and Sym(M∗) =

(Z∗Z∗>− Z̃∗Z̃∗>)/2. Define reference function G(Z) as G(Z) = ‖ZZ>−Z∗Z∗>‖2F /4, then the gradient of G is given by

∇G(Z) = (ZZ> − Z∗Z∗>)Z. (B.7)

Thus according to (B.3), we have

∇f̃Ω(Z) =
1

2
∇G(Z) +

1

2
(Z̃∗Z̃∗>)Z + X>

(
1

p
PΩ̃ − Poff

)
(X[ZZ> − Z∗Z∗>]X>)XZ. (B.8)
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The following lemmas demonstrate the local curvature and local smoothness properties of f̃Ω, which are proved in Sections
C.1 and C.2, respectively. In both lemmas, for any Z ∈ R(n1+n2)×r, we let R = argminR̃∈Qr

‖Z− Z∗R̃‖F , and denote
H = Z− Z∗R.
Lemma B.1 (Local curvature). Under the previously stated assumptions in Theorem 5.4, for any fixed Z = [U; V] ∈
R(n1+n2)×r such that D(Z,Z∗) ≤

√
2σ∗r/5 and ‖XLU‖2,∞ ≤ 2

√
µ0rσ∗1/d1, ‖XRV‖2,∞ ≤ 2

√
µ0rσ∗1/d2, there exists

constants c1, c2 such that if |Ω| ≥ c1 max{µ2
0r

2κ2, µ0µ1rκn} log d, then with probability at least 1− c2/d, we have

〈∇f̃Ω(Z),H〉 ≥ 1

20
‖ZZ> − Z∗Z∗>‖2F +

1

4σ∗1
‖Z̃∗Z̃∗>Z‖2F +

σ∗r
8
‖H‖2F − 40‖H‖4F ,

where Z̃∗ = [U∗;−V∗].
Lemma B.2 (Local smoothness). Under the previous stated assumptions as in Theorem 5.4, for any fixed Z = [U; V] ∈
R(n1+n2)×r such that D(Z,Z∗) ≤

√
σ∗r/4 and ‖XLU‖2,∞ ≤ 2

√
µ0rσ∗1/d1, ‖XRV‖2,∞ ≤ 2

√
µ0rσ∗1/d2, there exist

constants c1, c2 such that if |Ω| ≥ c1µ0µ1rκn log d, then with probability at least 1− c2/d, we have

‖∇f̃Ω(Z)‖2F ≤ (16r + 4)σ∗1‖ZZ> − Z∗Z∗>‖2F + ‖Z̃∗Z̃∗>Z‖2F + 4rσ∗2r ‖H‖2F ,

where Z̃∗ = [U∗;−V∗].

Now we are ready to prove Theorem 5.4.

Proof. Theorem 5.4 will be proved by induction. Consider the s-th iteration in Phase 2 of Algorithm 1, for any s ≥ 1.
Suppose the previous iterate Zs−1 is sufficiently close to Z∗, i.e., D(Zs−1,Z

∗) ≤ α
√
σ∗r , where α is defined in Theorem

5.4. In the following discussions, we are going to show that the following contraction result with respect to the s-th iterate:

D2(Zs,Z
∗) ≤

(
1− ησ∗r

16

)
·D2(Zs−1,Z

∗) + 3δ · α
√
σ∗r + 2δ2 (B.9)

holds with probability at least 1− c1/d, where Zs = [Us; Vs] and Zs−1 = [Us−1; Vs−1].

Denote the optimal rotation with respect to Zinit by Rinit such that Rinit = argminR∈Qr
‖Zinit − Z∗R‖F . Since the initial

iterate Zinit satisfies D(Zinit,Z
∗) ≤

√
σ∗r/40, we have ‖Zinit − Z∗Rinit‖2 ≤

√
σ∗r/40, which implies√

σ∗1 ≤ ‖Z∗Rinit‖2 − ‖Zinit − Z∗Rinit‖2 ≤ ‖Zinit‖2 ≤ ‖Z∗Rinit‖2 + ‖Zinit − Z∗Rinit‖2 ≤ 2
√
σ∗1 .

Thus, according to the definition of C1, C2 in (4.2) and Assumption 3.1, we have

‖XLU∗‖2,∞ ≤ ‖XLU
∗‖2,∞ · ‖Σ∗‖1/2

2 ≤
√
µrσ∗1
d1
≤
√
µr

d1
· ‖Zinit‖2,

which implies that U∗ ∈ C1. Similarly, we can derive that V∗ ∈ C2. In addition, based on the definition of the
constraint sets C1 and C2 in (4.2), we further have ‖U‖2,∞ ≤ 2

√
µ0rσ∗1/d1 and ‖V‖2,∞ ≤ 2

√
µ0rσ∗1/d2. For any

s ∈ {1, 2, . . . , S}, we denote Rs = argminR∈Qr
‖Zs − Z∗R‖F as the optimal rotation with respect to Zs, and we let

Hs = Zs − Z∗Rs. Consider the s-iteration of Phase 2 in Algorithm 1, we let Ûs = Us−1 − η∇UfΩs
(Us−1,Vs−1) and

V̂s = Vs−1 − η∇VfΩs
(Us−1,Vs−1). Thus based on the update rule, we have

D2(Zs,Z
∗) ≤ ‖Us −U∗Rs−1‖2F + ‖Vs −V∗Rs−1‖2F

= ‖PC1(Ûs, δ)−U∗Rs−1‖2F︸ ︷︷ ︸
I1

+ ‖PC2(V̂s, δ)−V∗Rs−1‖2F︸ ︷︷ ︸
I2

,

where the first inequality follows from Definition 5.1, and the second inequality follows from the update rule. As for the first
term I1, we have

I1 = ‖PC1(Ûs)−U∗Rs−1‖2F + 2〈PC1(Ûs, δ)− PC1(Ûs),PC1(Ûs)−U∗Rs−1〉

+ ‖PC1(Ûs, δ)− PC1(Ûs)‖2F
≤ ‖PC1(Ûs)−U∗Rs−1‖2F + 2δ · ‖PC1(Ûs)−U∗Rs−1‖F + δ2

≤ ‖Us−1 − η∇UfΩs
(Us−1,Vs−1)−U∗Rs−1‖2F + 2δ · ‖Us−1 − η∇UfΩs

(Us−1,Vs−1)−U∗Rs−1‖F + δ2,
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where the first inequality holds because PC1(Ûs, δ) is the δ-approximate solution and PC1(Ûs) is the exact solution to the
same optimization problem, and the second inequality is due to the non-expansive property of projection PC1 and the fact
that U∗ ∈ C1. Based on the similar technique, we can upper bound I2 as follows

I2 ≤ ‖Vs−1 − η∇VfΩs
(Us−1,Vs−1)−V∗Rs−1‖2F + 2δ · ‖Vs−1 − η∇VfΩs

(Us−1,Vs−1)−V∗Rs−1‖F + δ2.

Therefore, combining the upper bounds of I1 and I2, we have

D2(Zs,Z
∗) ≤ D2(Zs−1,Z

∗)− 2η〈∇f̃Ωs
(Zs−1),Hs−1〉+ η2‖∇f̃Ωs

(Zs−1)‖2F

+ 2
√

2δ ·
(
D2(Zs−1,Z

∗)− 2η〈∇f̃Ωs
(Zs−1),Hs−1〉+ η2‖∇f̃Ωs

(Zs−1)‖2F
)1/2

+ 2δ2,

where f̃Ωs
is defined in (B.3), and the inequality follows from the triangle inequality.

It is worth noting that the subsampling technique ensures the previous iterate Zs−1 is independent of the samples Ωs used
in the s-th iteration. According to the assumptions of Theorem 5.4, |Ωs| = |Ω|/(2S) ≤ c1 max{µ2

0r
2κ2, µ0µ1rκn} log d,

thus we can directly apply Lemmas B.1 and B.2. More specifically, with probability at least 1− c1/d, we have

〈∇f̃Ωs
(Zs−1),Hs−1〉 ≥

1

20
‖Zs−1Z

>
s−1 − Z∗Z∗>‖2F +

1

4σ∗1
‖Z̃∗Z̃∗>Zs−1‖2F +

σ∗r
8
‖Hs−1‖2F − 40‖Hs−1‖4F ,

where Z̃∗ = [U∗;−V∗]. In addition, we have

‖∇f̃Ωs
(Zs)‖2F ≤ (16r + 4)σ∗1‖Zs−1Z

>
s−1 − Z∗Z∗>‖2F + ‖Z̃∗Z̃∗>Zs−1‖2F + 4rσ∗2r ‖Hs−1‖2F .

Thus, by setting step size η ≤ 1/(200rσ∗1), we obtain

−2η〈∇f̃Ωs(Zs−1),Hs−1〉+ η2‖∇f̃Ωs(Zs)‖2F ≤ −
ησ∗r
8
‖Hs−1‖2F + 80η ‖Hs−1‖4F ,

which implies that the induction hypothesis that D(Zs−1,Z
∗) = ‖Hs−1‖F ≤ α

√
σ∗r , we have

D2(Zs,Z
∗) ≤

(
1− ησ∗r

16

)
·D2(Zs−1,Z

∗) + 2δ ·

√
2

(
1− ησ∗r

16

)
·D(Zs−1,Z

∗) + 2δ2

≤
(

1− ησ∗r
16

)
·D2(Zs−1,Z

∗) + 3δ · α
√
σ∗r + 2δ2,

which completes the proof of (B.9).

Moreover, according to the assumption that D(Zinit,Z
∗) ≤ α

√
σ∗r/2, if we choose δ ≤ α

√
σ∗r/(2

√
2), then we have

D2(Z0,Z
∗) ≤ ‖U0 −U∗Rinit‖2F + ‖V0 −V∗Rinit‖2F
≤ ‖PC1(Uinit)−U∗Rinit‖2F + ‖PC2(Vinit)−V∗Rinit‖2F

+ 2δ ·
(
‖PC1(Uinit)−U∗Rinit‖F + ‖PC2(Vinit)−V∗Rinit‖F

)
+ 2δ2

≤ D2(Zinit,Z
∗) + 2

√
2δ ·D(Zinit,Z

∗) + 2δ2 ≤ α2σ∗r ,

where we let Rinit be the optimal rotation with respect to Zinit, and the last inequality follows from the non-expansiveness
property of projection onto convex set. Thus, we have shown that the induction hypothesis D(Zs−1,Z

∗) ≤ α
√
σ∗r holds for

the first iterate.

To this end, it remains to verify the induction step, or more specifically,D(Zs−1,Z
∗) ≤ α

√
σ∗r impliesD(Zs,Z

∗) ≤ α
√
σ∗r ,

for any s ≥ 1. This step can be proved based on (B.9): with high probability, we have

D2(Zs,Z
∗) ≤

(
1− ησ∗r

16

)
·D2(Zs−1,Z

∗) + 3δ · α
√
σ∗r + 2δ2

≤
(

1− ησ∗r
16

)
· α2σ∗r + 3δ · α

√
σ∗r + 2δ2 ≤ α2σ∗r ,
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provided that δ ≤ c2
√
σ∗r/(rκ) with constant c2 sufficiently small. Finally, by induction and union bound, we obtain

D2(ZS ,Z
∗) ≤

(
1− ησ∗r

16

)S

·D2(Z0,Z
∗) +

16

ησ∗r
· (3δ · α

√
σ∗r + 2δ2)

holds with probability at least 1− c1S/d, which completes the proof.

B.3. Proof of Theorem 5.5

The proof of Theorem 5.5 will be similar to the proof of Theorem 5.4. The only difference is that we do not require sample
splitting in Phase 3, thus the iterates are no longer independent from the subset of samples. The following curvature and
smoothness of f̃Ω are proved for all Z ∈ R(n1+n2)×r satisfying D(Z,Z∗) ≤ c0

√
σ∗r/(µ1n). The proofs are presented in

Sections C.3 and C.4 respectively.
Lemma B.3 (Local curvature). Under the previously stated assumptions in Theorem 5.5, for all Z = [U; V] ∈ R(n1+n2)×r

such that D(Z,Z∗) ≤ c0
√
σ∗r/(µ1n) with constant c0 small enough, there exists constants c1, c2 such that if |Ω| ≥

c1µ0µ1rn log d, then with probability at least 1− c2/d, we have

〈∇f̃Ω(Z),H〉 ≥ 1

20
‖ZZ> − Z∗Z∗>‖2F +

1

4σ∗1
‖Z̃∗Z̃∗>Z‖2F +

σ∗r
8
‖H‖2F − 20‖H‖4F ,

where Z̃∗ = [U∗;−V∗].
Lemma B.4 (Local smoothness). Under the previous stated assumptions as in Theorem 5.5, for all Z = [U; V] ∈
R(n1+n2)×r such that D(Z,Z∗) ≤ c0

√
σ∗r/(µ1n) with constant c0 small enough, there exist constants c1, c2 such that if

|Ω| ≥ c1µ0µ1rn log d, then with probability at least 1− c2/d, we have

‖∇f̃Ω(Z)‖2F ≤ 84σ∗1‖ZZ> − Z∗Z∗>‖2F + ‖Z̃∗Z̃∗>Z‖2F + 4σ∗1σ
∗
r‖H‖2F + 40σ∗1‖H‖4F ,

where Z̃∗ = [U∗;−V∗].

Now we are ready to prove Theorem 5.5.

Proof. For any t ∈ {0, 1, . . . , T}, we denote Rt = argminR∈Qr
‖Zt − Z∗R‖F as the optimal rotation with respect to Zt,

and we let Ht = Zt − Z∗Rt. Note that the initial iterate of Phase 3 in Algorithm 1 satisfying D(Z0,Z∗) ≤ c0
√
σ∗r/(µn).

Assume the induction hypothesis D(Zs,Z∗) ≤ c0
√
σ∗r/(µn) holds for s = 1, 2, . . . , t. Consider the t-th iteration, based on

the update rule, we have

D2(Zt+1,Z∗) ≤ ‖Ut+1 −U∗Rt‖2F + ‖Vt+1 −V∗Rt‖2F
= ‖Ut − τ∇UfΩ(Ut,Vt)−U∗Rt‖2F + ‖Vt − τ∇VfΩ(Ut,Vt)−V∗Rt‖2F
= D2(Zt,Z∗)− 2τ〈∇f̃Ω(Zt),Ht〉+ τ2‖∇f̃Ω(Zt)‖2F ,

where the inequality follows from Definition 5.1. According to the assumptions of Theorem 5.5, we can directly apply
Lemmas B.3 and B.4. More specifically, with probability at least 1− c′/d, we have

〈∇f̃Ω(Zt),Ht〉 ≥ 1

20
‖ZtZt> − Z∗Z∗>‖2F +

1

4σ∗1
‖Z̃∗Z̃∗>Zt‖2F +

σ∗r
8
‖Ht‖2F − 20‖Ht‖4F ,

where Z̃∗ = [U∗;−V∗]. In addition, we have

‖∇f̃Ω(Zt)‖2F ≤ 84σ∗1‖ZtZt> − Z∗Z∗>‖2F + ‖Z̃∗Z̃∗>Zt‖2F + 4σ∗1σ
∗
r‖Ht‖2F + 40σ∗1‖Ht‖4F .

Thus, by setting step size τ ≤ c1/σ∗1 with c1 ≤ 1/840, we obtain

−2τ〈∇f̃Ωs(Zt),Ht〉+ τ2‖∇f̃Ω(Zt)‖2F ≤ −
ησ∗r
8
‖Ht‖2F + 50η ‖Ht‖4F ,

which implies that under condition that D(Zt,Z∗) = ‖Ht‖F ≤ c2
√
σ∗r with c2 ≤ 1/30, we have

D2(Zt+1,Z∗) ≤
(

1− τσ∗r
16

)
·D2(Zt,Z∗),

which implies the (t+ 1)-th iterate Zt+1 still satisfies D2(Zt+1,Z∗) ≤ c0
√
σ∗r/(µn). Thus by induction, we complete the

proof.
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B.4. Proof of Theorem 5.2

Proof. To prove the overall theoretical guarantee of Algorithm 1, we need to examine the conditions required by previous
main theorems regarding the three phases. More specifically, to ensure the O(

√
σ∗r ) initial ball assumption D(Zinit,Z

∗) ≤
α
√
σ∗r/2 in Theorem 5.4, it suffices to set δ ≤ α/8 in Theorem 5.3, which implies the sample complexity required by Phase

1 is |Ω0| = O(r2κ2n log d). In addition, according to Theorem 5.4, we have

D2(ZS ,Z
∗) ≤

(
1− c2

16rκ

)S

· α2σ∗r + c4δ · rκ
√
σ∗r .

Thus, in order to guarantee the O(
√
σ∗r/n) initial ball assumption D(ZS ,Z

∗) ≤ c0
√
σ∗r/(µ1n) holds in Theorem 5.5, it is

sufficient to perform S = O(rκ log n) iterations in Phase 2 of Algorithm 1 and let the approximation error δ = O(1/(rκn2)).
Based on Theorem 5.4, we derive the sample complexity required by Phase 2 is c ·max{µ1n, µ0rκ}µ0r

2κ2 log n log d.
Together with Theorem 5.5, we conclude that the overall sample complexity of Algorithm 1.

Finally, as for the reconstruction error ‖MT −M∗‖F , let RT be the optimal rotation between ZT and Z∗, then we have

‖UT (VT )> −U∗V∗>‖F ≤ ‖UT (VT −V∗RT )>‖F + ‖(UT −U∗RT )(V∗RT )>‖F
≤ ‖UT ‖2 · ‖VT −V∗RT ‖F + ‖V∗RT ‖2 · ‖UT −U∗RT ‖F
≤ 3
√
σ∗1 ·D(ZT ,Z∗), (B.10)

where the second inequality is due to ‖AB‖F ≤ ‖A‖2 · ‖B‖F , and the last inequality follows from the fact that ‖ZT −
Z∗RT ‖F ≤ D(ZS ,Z

∗) ≤ α
√
σ∗r/(µ1n) ≤

√
σ∗1 . Noticing that according to Theorem 5.5, Phase 3 achieves linear rate of

convergence, which implies that with T = O (κ log(1/ε)) iterations, we have D(ZT ,Z∗) ≤ ε. Combining with (B.10), we
complete the proof.

C. Proofs of the Technical Lemmas in Section B
In this section, we provide the theoretical proofs of the technical lemmas used in Section B.

C.1. Proof of Lemma B.1

To prove Lemma B.1, we need to make use of the following auxiliary lemmas. Inspired by Tu et al. (2015), we show that the
reference function G(Z) has a similar local curvature property in Lemma C.1. Based on Matrix Bernstein Inequality, Lemma
C.2 generalizes the results of Theorem 4.1 in Candès & Recht (2009) to inductive setting, while Lemma C.3 provides the
high probability bound on the remaining term.

Lemma C.1. Let Z,Z∗ ∈ R(n1+n2)×r, and G(Z) = ‖ZZ> − Z∗Z∗>‖2F /4. For any Z satisfying

‖Z− Z∗R‖22 ≤ σ2
r(Z∗)/5, where R = argmin

R̃∈Qr

‖Z− Z∗R̃‖F ,

we have

〈∇G(Z),Z− Z∗R〉 ≥ σ2
r(Z∗)

4
‖Z− Z∗R‖2F +

1

4
‖ZZ> − Z∗Z∗>‖2F .

Lemma C.2. Assume the previously stated assumptions in Lemma B.1 hold. Define subspace

T =
{
U
∗
A> + BV

∗>
, for some A ∈ Rn2×r and B ∈ Rn1×r

}
.

Let PT : Rn1×n2 → Rn1×n2 be the Euclidean projection onto T . Specifically, for any Z ∈ Rn1×n2 , we have

PT (Z) = U
∗
U
∗>

Z + ZV
∗
V
∗> −U

∗
U
∗>

ZV
∗
V
∗>
. (C.1)

For any γ ∈ (0, 1), there exist constants c1, c2 such that if |Ω| ≥ c1µ0µ1rn log d/γ2, then for all Z ∈ Rn1×n2 , with
probability at least 1− c2/d, we have∥∥∥PT (Z)− p−1PT

(
X>LPΩ

(
XLPT (Z)X>R

)
XR

)∥∥∥
F
≤ γ‖Z‖F . (C.2)
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Moreover for all Z1,Z2 ∈ T , we have∣∣〈XLZ1X
>
R − p−1PΩ

(
XLZ1X

>
R

)
,XLZ2X

>
R〉
∣∣ ≤ γ‖Z1‖F · ‖Z2‖F ,

and for all Z ∈ T , we have

p−1
∥∥PΩ

(
XLZX>R

)∥∥2

F
≤ (1 + γ)‖Z‖2F .

Lemma C.3. Assume the previously stated assumptions in Lemma B.1 hold. For any fixed U ∈ Rn1×r, V ∈ Rn2×r

satisfying ‖XLU‖2,∞ ≤ 3
√
µ0rσ∗1/d1 and ‖XRV‖2,∞ ≤ 3

√
µ0rσ∗1/d2, there exist constants c1, c2 such that with

probability 1− c1/d, we have

1

p

∥∥PΩ(XLUV>X>R)
∥∥2

F
≤ ‖UV>‖2F + γσ∗r · (‖U‖2F + ‖V‖2F ),

provided that |Ω| ≥ c2 max{µ2
0r

2κ2, µ0µ1rκn} log d/γ2.

Now we are ready to prove Lemma B.1.

Proof of Lemma B.1. Recall that R = argminR̃∈Qr
‖Z− Z∗R̃‖F and H = Z− Z∗R. According to the gradient of f̃Ω in

(B.8), we have

〈∇f̃Ω(Z),H〉 =
1

2
〈∇G(Z),H〉+

1

2
〈Z̃∗Z̃∗>Z,H〉︸ ︷︷ ︸

I1

+ 〈(p−1PΩ̃ − Poff)
(
X
[
ZZ> − Z∗Z∗>

]
X>
)
,XH(XZ)>〉︸ ︷︷ ︸

I2

.

In the sequel, we are going to bound the terms I1 and I2, respectively.

Lower bound of I1. According to the assumption ‖H‖F ≤
√

2σ∗r/5, we have ‖Z− Z∗R‖22 ≤ σ2
r(Z∗)/5. Thus, we can

apply Lemma C.1 directly

I1 =
1

2
〈∇G(Z),H〉+

1

2
tr(Z>Z̃∗Z̃∗>Z)

≥ σ2
r(Z∗)

8
‖H‖2F +

1

8
‖ZZ> − Z∗Z∗>‖2F +

1

2‖Z̃∗‖22
‖Z̃∗Z̃∗>Z‖2F

=
σ∗r
4
‖H‖2F +

1

8
‖ZZ> − Z∗Z∗>‖2F +

1

4σ∗1
‖Z̃∗Z̃∗>Z‖2F , (C.3)

where the first equality holds because Z∗>Z̃∗ = 0, the second inequality follows from Lemma C.1 and the fact that
‖Z̃∗Z̃∗>Z‖2F ≤ ‖Z̃∗‖22 · ‖Z̃∗>Z‖2F , and the third equality holds because σ2

r(Z∗) = 2σ∗r and ‖Z̃∗‖22 = 2σ∗1 .

Upper bound of |I2|. Note that Z = [U; V] and M∗ = U∗V∗>, we denote M = UV>, Ũ = U∗R and Ṽ = V∗R.
Besides, let HU ∈ Rn1×r, HV ∈ Rn2×r be the top n1 and bottom n2 rows of H, respectively, then we have U = Ũ + HU

and V = Ṽ + HV . Note that UV> − ŨṼ> = ŨH>V + HUṼ> + HUH>V , and HUV> + UH>V = ŨH>V + HUṼ> +
2HUH>V . Based on the above notations, we can reformulate I2 as follows

I2 = 〈(p−1PΩ − I)(XL[UV> − ŨṼ>]X>R),XL(HUV> + UH>V )X>R〉

= 〈(p−1PΩ − I)(XL[ŨH>V + HUṼ>]X>R),XL(ŨH>V + HUṼ>)X>R〉︸ ︷︷ ︸
I21

+ 3 〈(p−1PΩ − I)(XL[ŨH>V + HUṼ>]X>R),XLHUH>V X>R〉︸ ︷︷ ︸
I22

+ 2 〈(p−1PΩ − I)(XLHUH>V X>R),XLHUH>V X>R〉︸ ︷︷ ︸
I23

.
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Note that ŨH>V + HUṼ> falls into the subspace T defined in Lemma C.2. Thus according to Lemma C.2, we obtain

|I21| ≤ γ‖ŨH>V + HUṼ>‖2F ≤ 2γ‖M−M∗‖2F +
γ

2
‖H‖4F (C.4)

holds with probability at least 1− c2/d, provided that |Ω| ≥ c1µ0µ1rn log d/γ2, where γ is a constant such that γ ∈ (0, 1).
Here, the second inequality holds because ‖A + B‖2F ≤ 2‖A‖2F + 2‖B‖2F and ‖HUH>V ‖F ≤ ‖H‖2F /2. As for the term
I22, we have

|I22| ≤
1

p

∣∣〈PΩ(XL[ŨH>V + HUṼ>]X>R),XLHUH>V X>R〉
∣∣+
∣∣〈XL(ŨH>V + HUṼ>)X>R,XLHUH>V X>R〉

∣∣
≤ 1

2β
· p−1

∥∥PΩ(XL[ŨH>V + HUṼ>]X>R)
∥∥2

F
+
β

2
· p−1

∥∥PΩ(XLHUH>V X>R)
∥∥2

F

+
1

2β
‖ŨH>V + HUṼ>‖2F +

β

2
‖HUH>V ‖2F

≤ β

2
· p−1

∥∥PΩ(XLHUH>V X>R)
∥∥2

F
+

2 + γ

2β
‖ŨH>V + HUṼ>‖2F +

β

8
‖H‖4F , (C.5)

where constant β > 0 will be specified later. Here, the second inequality follows from the Young’s Inequality, and the
last inequality is due to Lemma C.2 and the fact that ‖HUH>V ‖F ≤ ‖HU‖F · ‖HV ‖F ≤ ‖H‖2F /2. Since we have
‖XLHU‖2,∞ ≤ ‖XLU‖2,∞ + ‖XLŨ‖2,∞ ≤ 3

√
µ0rσ∗1/d1, and similarly we have ‖XRHV ‖2,∞ ≤ 3

√
µ0rσ∗1/d2,

according to Lemma C.3, we further obtain

1

p

∥∥PΩ(XLHUH>V X>R)
∥∥2

F
≤ ‖HUHV ‖2F + γσ∗r‖H‖2F ≤

1

4
‖H‖4F + γσ∗r‖H‖2F (C.6)

holds with probability at least 1− c1/d, provided that |Ω| ≥ c2 max{µ2
0r

2κ2, µ0µ1rκn} log d/γ2. Thus, plugging (C.6)
into (C.5), we have

|I22| ≤
β

2
γσ∗r‖H‖2F +

2 + γ

2β
‖ŨH>V + HUṼ>‖2F +

β

4
‖H‖4F

≤ 2 + γ

β
‖M−M∗‖2F +

β

2
γσ∗r‖H‖2F +

(
2 + γ

4β
+
β

4

)
‖H‖4F , (C.7)

where M = UV>. Similarly, according to Lemma C.3, we can upper bound |I23|

|I23| ≤
1

p
|〈PΩ(XLHUH>V X>R),XLHUH>V X>R〉|+ |〈XLHUH>V X>R,XLHUH>V X>R〉|

≤ 1

p
‖PΩ(XLHUH>V X>R)‖2F + ‖HUH>V ‖2F

≤ 1

2
‖H‖4F + γσ∗r‖H‖2F . (C.8)

Therefore, combining (C.4),(C.7) and (C.8), we obtain the upper bound of |I2|

|I2| ≤ |I21|+ 3|I22|+ 2|I23|

≤
(

2γ +
3(2 + γ)

β

)
‖M−M∗‖2F +

(
γ

2
+

3(2 + γ)

4β
+

3β

4
+ 1

)
‖H‖4F +

(
3β

2
+ 2

)
γσ∗r‖H‖2F . (C.9)

Finally, set β = 48, then combining (C.3) and (C.9), we obtain

〈∇f̃Ω(Z),H〉 ≥
(

1

16
− 3γ

2

)
‖ZZ> − Z∗Z∗>‖2F +

1

4σ∗1
‖Z̃∗Z̃∗>Z‖2F +

(
σ∗r
4
− 75γσ∗r

)
‖H‖2F − 40‖H‖4F ,

where the inequality holds because ‖M−M∗‖2F ≤ ‖ZZ> − Z∗Z∗>‖2F /2. Thus, by choosing constant γ to be sufficiently
small, we complete the proof.
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C.2. Proof of Lemma B.2

Proof. Recall the gradient of f̃Ω in (B.3), we have

‖∇f̃Ω(Z)‖2F ≤2
∥∥p−1X>PΩ̃

(
X[ZZ> − Z∗Z∗>]X>

)
XZ
∥∥2

F︸ ︷︷ ︸
I1

+
1

2

∥∥(Pdiag − Poff)ZZ>Z
∥∥2

F︸ ︷︷ ︸
I2

,

where the inequality holds because ‖A + B‖2F ≤ 2(‖A‖2F + ‖B‖2F ). In the sequel, we will upper bound I1 and I2,
respectively.

Upper bound of I1. Recall that Z = [U; V], R = argminR̃∈Qr
‖Z− Z∗R̃‖F , and H = Z− Z∗R. Denote M = UV>,

then based on the above notations, we have

I1 = ‖p−1X>LPΩ(XL[M−M∗]X>R)XRV‖2F +
∥∥p−1X>R

(
PΩ(XL[M−M∗]X>R)

)>
XLU

∥∥2

F

≤ r · ‖p−1X>LPΩ(XL[M−M∗]X>R)XRV‖22︸ ︷︷ ︸
I11

+ r ·
∥∥p−1X>R

(
PΩ(XL[M−M∗]X>R)

)>
XLU

∥∥2

2︸ ︷︷ ︸
I12

, (C.10)

where the inequality holds because both U and V have rank at most r. Consider the term I11 first, we observe

1

p
X>LPΩ(XL[M−M∗]X>R)XRV − (M−M∗)V

=

(d1,d2)∑
(i,j)=(1,1)

(p−1ξij − 1) · [XL(M−M∗)X>R]ij · [XL]>i,∗ · [XRV]j,∗ :=

(d1,d2)∑
(i,j)=(1,1)

Aij ,

where ξij = 1, if (i, j) ∈ Ω; ξij = 0, otherwise. We are going to apply matrix bernstein inequality to the above summation.
Due to sample splitting, the randomness only comes from Ω, thus Aij’s are independent and E[Aij ] = 0. Denote
Ũ = U∗R and Ṽ = V∗R, and let HU ∈ Rn1×r, HV ∈ Rn2×r be the top n1 and bottom n2 rows of H. Then we have
M−M∗ = ŨH>V + HUṼ> + HUH>V . For any (i, j), we have the following upper bound of ‖Aij‖2

‖Aij‖2 ≤
1

p

∣∣[XL(M−M∗)X>R]ij
∣∣ · ‖[XL]>i,∗ · [XRV]j,∗‖2

≤ 1

p
‖XL(ŨH>V + HUṼ> + HUH>V )X>R‖∞,∞ · ‖XL‖2,∞ · ‖XRV‖2,∞

≤ 10µ0µ1rnσ
∗
1

pd1d2
· ‖H‖F ,

where the last inequality is due to Assumptions 3.1, 3.2 and the fact that ‖XLHU‖2,∞ ≤ ‖XLU‖2,∞ + ‖XLŨ‖2,∞ ≤
3
√
µ0rσ∗1/d1 and ‖XRV‖2,∞ ≤ 2

√
µ0rσ∗1/d2. To apply matrix bernstein, it remains to bound ‖

∑
i,j E[AijA

>
ij ]‖2 and

‖
∑

i,j E[A>ijAij ]‖2. In particular, we have

∥∥∥ (d1,d2)∑
(i,j)=(1,1)

E[AijA
>
ij ]
∥∥∥

2
=

1− p
p

∥∥∥ (d1,d2)∑
(i,j)=(1,1)

[XL(M−M∗)X>R]2ij · [XL]>i,∗ ·
∥∥[XRV]j,∗

∥∥2

2
· [XL]i,∗

∥∥∥
2

≤ 1

p

∥∥∥ d1∑
i=1

eie
>
i ·

d2∑
j=1

(
[XL(M−M∗)X>R]2ij ·

∥∥[XRV]j,∗
∥∥2

2

)∥∥∥
2

≤ 1

p
max
i∈[d1]

d2∑
j=1

(
[XL(M−M∗)X>R]2ij · ‖XRV‖22,∞

)
≤ 4µ0rσ

∗
1

pd2
·
∥∥XL(M−M∗)X>R

∥∥2

2,∞ ≤
cµ0µ1rσ

∗
1n

pd1d2
· ‖M−M∗‖2F ,
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where the last inequality holds because ‖AB‖2,∞ ≤ ‖A‖2,∞ · ‖B‖F . Similarly, we have

∥∥∥ (d1,d2)∑
(i,j)=(1,1)

E[A>ijAij ]
∥∥∥

2
≤ 1

p

∥∥∥ (d1,d2)∑
(i,j)=(1,1)

[XL(M−M∗)X>R]2ij · [XRV]>j,∗ ·
∥∥[XL]i,∗

∥∥2

2
· [XRV]j,∗

∥∥∥
2

≤ 1

p
‖XL‖22,∞ · ‖XRV‖22,∞ ·

(d1,d2)∑
(i,j)=(1,1)

[XL(M−M∗)X>R]2ij

≤ 4µ0µ1rσ
∗
1n

pd1d2
· ‖M−M∗‖2F ,

where the second inequality follows from the definition of spectral norm. Therefore, according to Lemma E.1, with
probability at least 1− c/d, we have∥∥∥∥ (d1,d2)∑

(i,j)=(1,1)

Aij

∥∥∥∥
2

≤ γσ∗1/2
r ‖M−M∗‖F + γ2σ∗r‖H‖F ,

under condition that |Ω| ≥ c′µ0µ1rnκ/γ
2, where c, c′ are both constants. Hence, by triangle’s inequality, we obtain the

upper bound of I11

I11 ≤
(
‖(M−M∗)V‖2 + γσ∗1/2

r ‖M−M∗‖F + γ2σ∗r‖H‖F
)2 ≤ 8σ∗1‖M−M∗‖2F + σ∗2r ‖H‖2F , (C.11)

where the last inequality holds because ‖V‖2 ≤ ‖V∗‖2 + ‖V −V∗R‖2 ≤ 2
√
σ∗1 and γ ∈ (0, 1/2). Similarly, we obtain

the upper bound of I12

I12 ≤
(
‖U>(M−M∗)‖2 + γσ∗1/2

r ‖M−M∗‖F + γ2σ∗2r ‖H‖F
)2 ≤ 8σ∗1‖M−M∗‖2F + σ∗2r ‖H‖2F . (C.12)

Plugging (C.11) and (C.12) into (C.10), we have

I1 ≤ 2r · (8σ∗1‖M−M∗‖2F + σ∗2r ‖H‖2F ). (C.13)

Upper bound of I2. As for I2, we obtain

I2 = ‖Z̃∗Z̃∗>Z− (Pdiag − Poff)(Z
∗Z∗> − ZZ>)Z‖2F

≤ 2‖Z̃∗Z̃∗>Z‖2F + 2‖(Pdiag − Poff)(Z
∗Z∗> − ZZ>)‖2F · ‖Z‖22

≤ 2‖Z̃∗Z̃∗>Z‖2F + 8σ∗1‖ZZ> − Z∗Z∗>‖2F , (C.14)

where the first inequality holds because ‖A−B‖2F ≤ 2(‖A‖2F + ‖B‖2F ) and ‖AB‖F ≤ ‖A‖F · ‖B‖2, and the second
inequality holds because ‖Z‖2 ≤ 2

√
σ∗1 .

Finally, combining (C.13) and (C.14), we obtain

‖∇f̃Ω(Z)‖2F ≤ 32rσ∗1‖M−M∗‖2F + 4rσ∗2r ‖H‖2F + ‖Z̃∗Z̃∗>Z‖2F + 4σ∗1‖ZZ> − Z∗Z∗>‖2F
≤ (16r + 4)σ∗1‖ZZ> − Z∗Z∗>‖2F + ‖Z̃∗Z̃∗>Z‖2F + 4rσ∗2r ‖H‖2F ,

where the second inequality holds because ‖M−M∗‖2F ≤ ‖ZZ> − Z∗Z∗>‖2F /2, which completes the proof.

C.3. Proof of Lemma B.3

Proof of Lemma B.3. Similar to the proof of Lemma B.1, we have

〈∇f̃Ω(Z),H〉 =
1

2
〈∇G(Z),H〉+

1

2
〈Z̃∗Z̃∗>Z,H〉︸ ︷︷ ︸

I1

+ 〈(p−1PΩ̃ − Poff)
(
X
[
ZZ> − Z∗Z∗>

]
X>
)
,XH(XZ)>〉︸ ︷︷ ︸

I2

.
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According to Lemma C.1, we have

I1 ≥
σ∗r
4
‖H‖2F +

1

8
‖ZZ> − Z∗Z∗>‖2F +

1

4σ∗1
‖Z̃∗Z̃∗>Z‖2F . (C.15)

Recall the notations in the proof of Lemma B.1, we let Z = [U; V] and M∗ = U∗V∗>, we denote M = UV>, Ũ = U∗R

and Ṽ = V∗R. Besides, let HU ∈ Rn1×r, HV ∈ Rn2×r be the top n1 and bottom n2 rows of H. Then we can reformulate
I2 as follows

I2 = 〈(p−1PΩ − I)(XL[ŨH>V + HUṼ>]X>R),XL(ŨH>V + HUṼ>)X>R〉︸ ︷︷ ︸
I21

+ 3 〈(p−1PΩ − I)(XL[ŨH>V + HUṼ>]X>R),XLHUH>V X>R〉︸ ︷︷ ︸
I22

+ 2 〈(p−1PΩ − I)(XLHUH>V X>R),XLHUH>V X>R〉︸ ︷︷ ︸
I23

.

Note that ŨH>V + HUṼ> falls into the subspace T defined in Lemma C.2. Thus according to Lemma C.2, we can still
obtain the same upper bound of I21

|I21| ≤ γ‖ŨH>V + HUṼ>‖2F ≤ 2γ‖M−M∗‖2F +
γ

2
‖H‖4F

holds with probability at least 1− c2/d, provided that |Ω| ≥ c1µ0µ1rn log d/γ2. As for the term I22, similarly we have

|I22| ≤
1

p

∣∣〈PΩ(XL[ŨH>V + HUṼ>]X>R),XLHUH>V X>R〉
∣∣+
∣∣〈XL(ŨH>V + HUṼ>)X>R,XLHUH>V X>R〉

∣∣
≤ β

2
· p−1

∥∥PΩ(XLHUH>V X>R)
∥∥2

F
+

2 + γ

2β
‖ŨH>V + HUṼ>‖2F +

β

8
‖H‖4F ,

where constant β > 0 will be specified later. Here, the second inequality follows from the Young’s Inequality and Lemma
C.2. According to bernstein-type inequality for Bernoulli random variables, we further obtain

1

p

∥∥PΩ(XLHUH>V X>R)
∥∥2

F
≤ 1

p
|Ω| · ‖XLHUH>V X>R‖2∞,∞ ≤

3

2
µ2

1n1n2 · ‖HUH>V ‖2F ≤ c20σ∗r‖H‖2F

holds with probability at least 1 − c1/d, where the second inequality follows from Lemma E.2 and the incoherence
Assumptions 3.2, and the last inequality holds because ‖H‖2F = D2(Z,Z∗) ≤ c20σ

∗
r/(µ

2
1n

2). Therefore, we obtain the
upper bound of I22

|I22| ≤
2 + γ

2β
‖ŨH>V + HUṼ>‖2F +

β

2
· c20σ∗r‖H‖2F +

β

8
‖H‖4F

≤ 2 + γ

β
‖M−M∗‖2F +

β

2
· c20σ∗r‖H‖2F +

(
2 + γ

4β
+
β

8

)
‖H‖4F .

Similarly, we can upper bound I23

|I23| ≤
1

p
|〈PΩ(XLHUH>V X>R),XLHUH>V X>R〉|+ |〈XLHUH>V X>R,XLHUH>V X>R〉|

=
1

p
‖PΩ(XLHUH>V X>R)‖2F + ‖HUH>V ‖2F ≤ c20σ∗r‖H‖2F +

1

4
‖H‖4F .

Hence, we obtain

|I2| ≤ |I21|+ 3|I22|+ 2|I23|

≤
(

2γ +
3(2 + γ)

β

)
· ‖M−M∗‖2F +

(
2 +

3β

2

)
· c20σ∗r‖H‖2F +

(
3(2 + γ)

4β
+

3β

8
+

1

2

)
· ‖H‖4F . (C.16)

Set β = 48, and let constants c0, γ be sufficiently small. Combining (C.15) and (C.16), we complete the proof.
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C.4. Proof of Lemma B.4

In order to prove Lemma B.4, we need to make use of the following lemma.

Lemma C.4. Let X ∈ Rd1×n1 , Y ∈ Rd2×n2 be the feature matrices, which are orthonormal and self-incoherent with
parameter µ1, and Ω ⊆ [d1]× [d2] be an index set followed Bernoulli Model (3.1) with p = |Ω|/(d1d2). For any γ ∈ (0, 1),
there exist constants c1 and c2 such that, under condition |Ω| ≥ c1µ1n log d/γ2, for all Z ∈ Rn1×n2

‖p−1X>PΩ

(
XZY>

)
Y‖F ≤ (1 + µ1nγ)‖Z‖F ,

holds with probability at least 1− c2/d.

Now we are ready to prove Lemma B.4.

Proof of Lemma B.4. According to the gradient of f̃Ω in (B.3), we have

‖∇f̃Ω(Z)‖2F ≤2
∥∥p−1X>PΩ̃

(
X[ZZ> − Z∗Z∗>]X>

)
XZ
∥∥2

F︸ ︷︷ ︸
I1

+
1

2

∥∥(Pdiag − Poff)ZZ>Z
∥∥2

F︸ ︷︷ ︸
I2

.

In the following discussions, we will upper bound I1 and I2 respectively. As for I1, similar to the proof of Lemma B.2, we
have

I1 = ‖p−1X>LPΩ(XL[M−M∗]X>R)XRV‖2F︸ ︷︷ ︸
I11

+
∥∥p−1X>R

(
PΩ(XL[M−M∗]X>R)

)>
XLU

∥∥2

F︸ ︷︷ ︸
I12

. (C.17)

Consider the first term I11. Note that M−M∗ = HUṼ> + ŨH>V + HUH>V . Recall the definition of PT in Lemma C.2,
we have PT (M) + PT ⊥(M) = M, for any M ∈ Rn1×n2 , where PT ⊥(M) = (I−U

∗
U
∗>

)M(I−V
∗
V
∗>

). Thus we
obtain

I11 ≤ 2
∥∥p−1

(
X>LPΩ(XL[ŨH>V + HUṼ>]X>R)XR

)
V
∥∥2

F
+ 2
∥∥p−1X>LPΩ(XLHUH>V X>R)XRV

∥∥2

F

≤ 4
∥∥p−1PT

(
X>LPΩ(XL[ŨH>V + HUṼ>]X>R)XR

)
V
∥∥2

F︸ ︷︷ ︸
J1

+ 4
∥∥p−1PT ⊥

(
X>LPΩ(XL[ŨH>V + HUṼ>]X>R)XR

)
HV

∥∥2

F︸ ︷︷ ︸
J2

+2
∥∥p−1X>LPΩ(XLHUH>V X>R)XRV

∥∥2

F︸ ︷︷ ︸
J3

,

where the inequality follows from ‖A + B‖2F ≤ 2‖A‖2F + 2‖B‖2F , and the equality is due to the definition of PT ⊥ and
the fact that (I −V

∗
V
∗>

)Ṽ = 0. In the sequel, we will upper bound the terms J1, J2 and J3 respectively. Note that
ŨH>V + HUṼ> ∈ T , according to Lemma C.2, with probability at least 1− c′/d, we have

J1 ≤ (1 + γ)2‖ŨH>V + HUṼ>‖2F · ‖V‖22 ≤ 4(1 + γ)2σ∗1 · ‖ŨH>V + HUṼ>‖2F , (C.18)

provided that |Ω| ≥ µ0µ1rn log d/γ2, where the first inequality holds because ‖AB‖F ≤ ‖A‖F · ‖B‖2, and the second
inequality follows from the fact that ‖V‖2 ≤ ‖V∗‖2 + ‖HV ‖2 ≤ 2

√
σ∗1 . Consider the second term J2, we have

J2 ≤ ‖p−1PT ⊥
(
X>LPΩ(XL[ŨH>V + HUṼ>]X>R)XR

)
‖2F · ‖HV ‖2F

≤ ‖p−1X>LPΩ(XL[ŨH>V + HUṼ>]X>R)XR‖2F · ‖HV ‖2F
≤ (1 + µ1nγ)2 · ‖ŨH>V + HUṼ>‖2F · ‖HV ‖2F ≤ 2γ2σ∗r‖ŨH>V + HUṼ>‖2F ,

where the first inequality holds because ‖AB‖F ≤ ‖A‖F · ‖B‖F , the second inequality is due to the non-expansiveness of
PT ⊥ , the third inequality follows from Lemma C.4, and the last inequality is due to ‖H‖F ≤ c0

√
σ∗r/(µ1n). According to

Lemma C.4, we can upper bound the last term J3 as follows

J3 ≤
∥∥p−1X>LPΩ(XLHUH>V X>R)XR

∥∥2

F
· ‖V‖22

≤ (1 + µ1nγ)2 · ‖HUH>V ‖2F · ‖V‖22 ≤ 2γ2σ∗1σ
∗
r‖H‖2F ,
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where the second inequality follows from Lemma C.4, and the last inequality is due to ‖HUH>V ‖F ≤ ‖H‖2F /2 and
‖H‖F ≤ α

√
σ∗r/(µ1n). Therefore, we obtain the upper bound of I11

I11 ≤ 4J1 + 4J2 + 2J3 ≤ 20σ∗1‖ŨH>V + HUṼ>‖2F + σ∗1σ
∗
r‖H‖2F

≤ 40σ∗1‖M−M∗‖2F + 10σ∗1‖H‖4F + σ∗1σ
∗
r‖H‖2F ,

where we set γ to be small enough in the first inequality, and the last inequality follows from ‖A+B‖2F ≤ 2‖A‖2F +2‖B‖2F .
By symmetry, we can use the same techniques to bound the term I12, which will yields the same upper bound and implies

I1 ≤ 80σ∗1‖M−M∗‖2F + 20σ∗1‖H‖4F + 2σ∗1σ
∗
r‖H‖2F .

The upper bound of the remaining term I2 is as follows

I2 ≤ 2‖Z̃∗Z̃∗>Z‖2F + 8σ∗1‖ZZ> − Z∗Z∗>‖2F ,

where the detailed proof can be found in the proof of Lemma B.2. Hence, we obtain

‖∇f̃Ω(Z)‖2F ≤ 2I1 +
1

2
I2 ≤ 84σ∗1‖ZZ> − Z∗Z∗>‖2F + ‖Z̃∗Z̃∗>Z‖2F + 4σ∗1σ

∗
r‖H‖2F + 40σ∗1‖H‖4F ,

which completes the proof.

D. Proof of Technical Lemmas
In this section, we prove the technical lemmas used in Section C.

D.1. Proof of Lemma C.1

Proof. We begin our proof with some properties regarding the optimal solution. Let H = Z− Z∗R and AΣB> be the
SVD of Z∗>Z, then we have R = AB>. Thus,

Z>Z∗R = BΣB> = (Z∗R)>Z,

which implies that Z>Z∗R is symmetric and positive definite. Moreover, we have

H>Z∗R = Z>Z∗R−R>Z∗>Z∗R = Z>Z∗R− (Z∗R)>Z∗R,

which implies H>Z∗R is also symmetric. Without loss of generality, we assume R = I, then Z>Z∗ is positive definite,
and H>Z∗ is symmetric. Thus, to prove Lemma C.1, it is sufficient to prove

〈(Z∗H> + HZ∗> + HH>)(Z∗ + H),H〉 ≥ σ2
r(Z∗)

4
‖H‖2F +

1

4
‖Z∗H> + HZ∗> + HH∗‖2F ,

which is equivalent to

0 ≤ tr

(
(H>H)2 + 3H>HH>Z∗ + (H>Z∗)2 + H>HZ∗>Z∗

− 1

4

[
(H>H)2 + 4H>HH>Z∗ + 2(H>Z∗)2 + 2H>HZ∗>Z∗

]
− σ2

r(Z∗)

4
H>H

)
.

Combining terms, we have

0 ≤ tr

(
3

4
(H>H)2 + 2H>HH>Z∗ +

1

2
(H>Z∗)2 +

1

2
H>HZ∗>Z∗ − σ2

r(Z∗)

4
H>H

)
,

which is further equivalent to

0 ≤ tr

(
1

2
(H>Z∗ + 2H>H)2 − 5

4
(H>H)2 +

1

2
H>HZ∗>Z∗ − σ2

r(Z∗)

4
H>H

)
. (D.1)

Note that tr
(
(H>H)2

)
= ‖H>H‖2F ≤ ‖H‖2F · ‖H‖22, and tr(H>HZ∗>Z∗) ≥ σ2

r(Z∗) · ‖H‖2F . Therefore, in order to
prove (D.1), it is sufficient to require that

‖H‖22 ≤
σ2
r(Z∗)

5
,

which completes the proof.
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D.2. Proof of Lemma C.2

Proof. For any i ∈ [d1], denote Xi,∗ ∈ R1×n1 as the i-th row of X. Similarly, for any j ∈ [d2], denote Yj,∗ ∈ R1×n2 as
the j-th row of Y. Thus, for any Z ∈ Rn1×n2 , we have

X>PΩ

(
XPT (Z)Y>

)
Y =

∑
(i,j)∈Ω

〈XPT (Z)Y>, eie
>
j 〉X>eie

>
j Y

=
∑

(i,j)∈Ω

〈PT (Z),X>i,∗Yj,∗〉X>i,∗Yj,∗

=
∑

(i,j)∈Ω

〈Z,PT (X>i,∗Yj,∗)〉X>i,∗Yj,∗, (D.2)

where the last equality holds because 〈PT (A),B〉 = 〈A,PT (B)〉. Besides, for any (i, j) ∈ [d1] × [d2], let ξij = 1, if
(i, j) ∈ Ω, and zero otherwise. Note that both X and Y are orthonormal, thus according to (D.2), we have

PT (Z)− p−1PT
(

X>PΩ

(
XPT (Z)Y>

)
Y

)
= PT

(
X>(I − p−1PΩ)(XPT (Z)Y>)Y

)
=

∑
(i,j)∈

[d1]×[d2]

(1− p−1ξij)〈Z,PT (X>i,∗Yj,∗)〉PT (X>i,∗Yj,∗),

where I : Rd1×d2 → Rd1×d2 is the identity mapping. For any (i, j) ∈ [d1]× [d2], define linear operator Sij : Rn1×n2 →
Rn1×n2 , such that

Sij(Z) = (1− p−1ξij)〈Z,PT (X>i,∗Yj,∗)〉PT (X>i,∗Yj,∗).

Define Sij ∈ Rd1d2×d1d2 as the corresponding matrix to the linear operator Sij such that

Sij = (1− p−1ξij)vec
(
PT (X>i,∗Yj,∗)

)
vec
(
PT (X>i,∗Yj,∗)

)>
,

then we can easily show that ‖
∑

i,j Sij(Z)‖2F = ‖
∑

i,j Sij · vec(Z)‖2F , for any Z ∈ Rd1×d2 . Next, we are going to apply
matrix bernstein to the summation

∑
i,j Sij . We note that E[Sij ] = 0, and Sij is symmetric, for any (i, j) ∈ [d1]× [d2].

Since XM∗Y> is µ0-incoherent and M∗ = U
∗
ΣV

∗>
, we have ‖XU

∗‖2,∞ ≤
√
µ0r/d1, ‖YV

∗‖2,∞ ≤
√
µ0r/d2.

According to the definition of PT in (C.1), for any (i, j) ∈ [d1]× [d2], we obtain

‖PT (X>i,∗Yj,∗)‖2F = 〈U∗U∗>X>i,∗Yj,∗ + X>i,∗Yj,∗V
∗
V
∗> −U

∗
U
∗>

X>i,∗Yj,∗V
∗
V
∗>
,X>i,∗Yj,∗〉

= ‖U∗>X>i,∗Yj,∗‖2F + ‖V∗>Y>j,∗Xi,∗‖2F − ‖U
∗>

X>i,∗Yj,∗V
∗‖2F

≤ ‖Xi,∗U
∗‖22 · ‖Yj,∗‖22 + ‖Yj,∗V

∗‖2 · ‖Xi,∗‖22

≤ ‖XU
∗‖22,∞ · ‖Y‖22,∞ + ‖YV

∗‖2,∞ · ‖X‖22,∞ ≤
µ0µ1r(n1 + n2)

d1d2
, (D.3)

where the first equality holds because ‖PT (A)‖2F = 〈PT (A),A〉, the first inequality holds because for any vectors
x,y ∈ Rn, ‖xy>‖F ≤ ‖x‖2 · ‖y‖2, and the last inequality holds because both X, Y are µ1 self-incoherent. To apply matrix
bernstein inequality, we need to bound ‖Sij‖2 and

∥∥∑
i,j E(S2

ij)
∥∥

2
, respectively. To begin with, for any (i, j) ∈ [d1]× [d2],

according to definition of Sij , we have

‖Sij‖2 ≤
1

p
‖vec(PT (X>i,∗Yj,∗))‖22 =

1

p
‖PT (X>i,∗Yj,∗)‖2F ≤

µ0µ1r(n1 + n2)

pd1d2
, (D.4)
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where the first inequality holds because |〈A,B〉| ≤ ‖A‖F · ‖B‖F , and the second inequality follows from (D.3). Similarly,
for any Z ∈ Rn1×n2 , we have

∥∥∑
i,j

E[S2
ij ]
∥∥

2
=

1− p
p

∥∥∥∥∑
i,j

vec(PT (X>i,∗Yj,∗)) · ‖PT (X>i,∗Yj,∗)‖2F · vec(PT (X>i,∗Yj,∗))
>
∥∥∥∥

2

≤ µ0µ1r(n1 + n2)

pd1d2
· sup
‖Z‖F =1

∥∥∥∥∑
i,j

vec(PT (X>i,∗Yj,∗))vec(PT (X>i,∗Yj,∗))
>vec(Z)

∥∥∥∥
2

=
µ0µ1r(n1 + n2)

pd1d2
· sup
‖Z‖F =1

∥∥∥∥PT (∑
i,j

〈PT (Z),X>i,∗Yj,∗〉X>i,∗Yj,∗

)∥∥∥∥
F

≤ µ0µ1r(n1 + n2)

pd1d2
· sup
‖Z‖F =1

∥∥PT (X>XPT (Z)Y>Y
)∥∥

F
≤ µ0µ1r(n1 + n2)

pd1d2
,

where the first equality follows from the definition of Sij , the first inequality follows from (D.3) and the definition of spectral
norm, the second equality holds because 〈PT (A),B〉 = 〈A,PT (B)〉, and the second inequality holds because X, Y are
orthonormal and the projection operator PT is non-expansive. Thus, we obtain∥∥E(S2

ij)
∥∥

2
≤ µ0µ1r(n1 + n2)

pd1d2
. (D.5)

Therefore, combining (D.4) and (D.5), according to Lemma E.1, for any γ ∈ (0, 1), we have

P
{∥∥∥∥∑

i,j

Sij

∥∥∥∥
2

≥ γ
}
≤ (n1 + n2) · exp

(
−γ2/2

(1 + γ/3)µ0µ1r(n1 + n2)/(pd1d2)

)
≤ c′/d,

under condition p ≥ cµ0µ1rn log(d)/(γ2d1d2), where c is a constant. Note that for all Z ∈ Rd1×d2 , we have∥∥∥∑
i,j

Sij(Z)
∥∥∥
F

=
∥∥∥∑

i,j

Sij · vec(Z)
∥∥∥
F
≤
∥∥∥∑

i,j

Sij

∥∥∥
2
· ‖Z‖F ,

we complete the proof of (C.2). Furthermore, for all Z1,Z2 ∈ T , we have∣∣〈XZ1Y
> − p−1PΩ

(
XZ1Y

>),XZ2Y
>〉∣∣ =

∣∣∣〈PT (Z1)− p−1PT
(
X>PT

(
XPT (Z1)Y>

)
Y>
)
,Z2

〉∣∣∣
≤
∥∥∥PT (Z1)− p−1PT

(
X>PT

(
XPT (Z1)Y>

)
Y>
)∥∥∥

F
· ‖Z2‖F

≤ γ‖Z1‖F · ‖Z2‖F ,

where the first equality holds because 〈A,PT (B)〉 = 〈PT (A),B〉, the second inequality holds because 〈A,B〉 ≤
‖A‖F · ‖B‖F , and the last inequality follows from (C.2). Finally, for all Z ∈ T , we have

p−1
∥∥PΩ

(
XZY>

)∥∥2

F
≤
∣∣〈Z− p−1X>PΩ

(
XZY>

)
Y,Z

〉∣∣+ ‖Z‖2F ≤ (1 + γ)‖Z‖2F ,

which complete the proof.

D.3. Proof of Lemma C.3

Proof. Note that we have

1

p

∥∥PΩ(XLUV>X>R)
∥∥2

F
= ‖XLUV>X>R‖2F + 〈p−1PΩ(XLUV>X>R)−XLUVX>R,XLUV>X>R〉

= ‖UV>‖2F + 〈(p−1PΩ − I)(XLUV>X>R),XLUV>X>R〉

= ‖UV>‖2F +

(d1,d2)∑
(i,j)=(1,1)

(
ξij
p
− 1

)
·
[
XLUV>X>R

]2
ij
,
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where ξij = 1, if (i, j) ∈ Ω; ξij = 0, otherwise.Thus, it is sufficient to bound the second term on the right hand side. For
simplicity, we let αij = (p−1ξij − 1) · [XLUV>X>R]2ij . Note that U,V are fixed, we have E[αij ] = 0. In addition, we can
upper bound |αij | by

|αij | ≤
1

p
‖XLUV>X>R‖2∞,∞ ≤

1

p
max

{
‖XL‖22,∞ · ‖U‖2F · ‖XRV‖22,∞, ‖XLU‖22,∞ · ‖V‖2F · ‖XR‖22,∞

}
≤ 9µ0µ1rσ

∗
1(n1 + n2)

pd1d2
· (‖U‖2F + ‖V‖2F ),

where the second inequality follows from Assumption 3.2. Next, we are going to bound the variance

Var
( (d1,d2)∑

(i,j)=(1,1)

αij

)
=

(i,j)∑
(i,j)=(1,1)

Var(αij)

≤ 1

p

(d1,d2)∑
(i,j)=(1,1)

[
XLUV>X>R

]4
ij

≤ 1

p
‖XLUV>X>R‖2∞,∞ · ‖XLUV>X>R‖2F ≤

9µ2
0r

2σ∗21

pd1d2
(‖U‖2F + ‖V‖2F )2,

where equality holds because αij’s are independent, and the last inequality follows from the assumptions ‖XLU‖2,∞ ≤
3
√
µ0rσ∗1/d1, ‖XRV‖2,∞ ≤ 3

√
µ0rσ∗1/d2. Therefore, applying bernstein inequality for random variables, under condition

that |Ω| ≥ cmax{µ2
0r

2κ2, µ0µ1rκn} log d/γ2, with probability at least 1− c′/d, we have

∣∣∣ (d1,d2)∑
(i,j)=(1,1)

αij

∣∣∣ ≤ γσ∗r · (‖U‖2F + ‖V‖2F ),

which completes the proof.

D.4. Proof of Lemma C.4

Proof. For any i ∈ [d1], we denote Xi,∗ ∈ R1×n1 as the i-th row vector of X. Similarly, for any j ∈ [d2], we denote
Yj,∗ ∈ R1×n2 as the j-th row vector of Y. Besides, for any (i, j) ∈ [d1]× [d2], let ξij = 1, if (i, j) ∈ Ω, and zero otherwise.
Note that X, Y are orthonormal, thus for any Z ∈ Rn1×n2 , we have

Z− p−1X>PΩ

(
XZY>

)
Y = X>(I − p−1PΩ)(XZY>)Y

=
∑

(i,j)∈[d1]×[d2]

(1− p−1ξij)〈XZY>, eie
>
j 〉X>eie

>
j Y

=
∑

(i,j)∈[d1]×[d2]

(1− p−1ξij)〈Z,X>i,∗Yj,∗〉X>i,∗Yj,∗,

where I : Rd1×d2 → Rd1×d2 is the identity mapping, and ei denotes the i-th standard basis. For any (i, j) ∈ [d1]× [d2],
define linear operator Sij : Rn1×n2 → Rn1×n2 , such that

Sij(Z) = (1− p−1ξij)〈Z,X>i,∗Yj,∗〉X>i,∗Yj,∗.

Define Sij ∈ Rd1d2×d1d2 as the corresponding matrix to the linear operator Sij such that

Sij = (1− p−1ξij)vec(X>i,∗Yj,∗)vec(X>i,∗Yj,∗)
>, (D.6)

then we can easily show that ‖
∑

i,j Sij(Z)‖2F = ‖
∑

i,j Sij ·vec(Z)‖22, for any Z ∈ Rd1×d2 . Obviously, we have E[Sij ] = 0
and Sij is symmetric. For any (i, j) ∈ [d1]× [d2], according to the definition of Sij in (D.6), we have

‖Sij‖2 ≤
1

p
‖vec(X>i,∗Yj,∗)‖22 =

1

p
‖X>i,∗Yj,∗‖2F ≤

1

p
‖X‖22,∞ · ‖Y‖22,∞ ≤

µ2
1n1n2

pd1d2
, (D.7)
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where the second inequality holds because ‖X>i,∗Yj,∗‖F = ‖Xi,∗‖2 · ‖Yj,∗‖2, and the last inequality follows from the fact
that X,Y are µ1 self-incoherent. Moreover, for any Z ∈ Rn1×n2 , we have

∥∥∑
i,j

E[S2
ij ]
∥∥

2
=

1− p
p

∥∥∥∥∑
i,j

vec(X>i,∗Yj,∗) · ‖X>i,∗Yj,∗‖2F · vec(X>i,∗Yj,∗)
>
∥∥∥∥

2

≤ µ2
1n1n2

pd1d2
· sup
‖Z‖F =1

∥∥∥∥∑
i,j

vec(X>i,∗Yj,∗)vec(X>i,∗Yj,∗)
>vec(Z)

∥∥∥∥
2

=
µ2

1n1n2

pd1d2
· sup
‖Z‖F =1

∥∥∑
i,j

〈Z,X>i,∗Yj,∗〉X>i,∗Yj,∗
∥∥
F

=
µ2

1n1n2

pd1d2
· sup
‖Z‖F =1

∥∥X>XZY>Y
∥∥
F
≤ µ2

1n1n2

pd1d2
,

where the first equality follows from the definition of Sij in (D.6), the first inequality follows from the fact that
‖X>i,∗Yj,∗‖2F ≤ µ2n1n2/(d1d2), and the last equality holds because X, Y are both orthonormal. Therefore, accord-
ing to matrix bernstein inequality as in Lemma E.1, for any γ ∈ (0, 1), we have

P
{∥∥∥∥∑

i,j

Sij

∥∥∥∥
2

≥ µ1nγ

}
≤ 2n1n2 · exp

(
−γ2µ2

1n
2/2

(1 + γµ1n/3)µ2
1n1n2/(pd1d2)

)
≤ c′/d,

under condition |Ω| ≥ cµ1n log d/γ2, where c is a constant. Thus according to the definition of Sij , for all Z ∈ Rn1×n2 ,
with probability at least 1− c′/d, we have

‖Z− p−1X>PΩ

(
XZY>

)
Y‖F =

∥∥∥∑
i,j

Sij(Z)
∥∥∥
F

=
∥∥∥∑

i,j

Sij · vec(Z)
∥∥∥

2
≤
∥∥∥∑

i,j

Sij

∥∥∥
2
· ‖Z‖F ≤ µ1nγ‖Z‖F .

By triangle’s inequality, we complete the proof.

E. Additional Auxiliary Lemmas
In this section,we provide the bernstein inequalities used in the proofs for our main results .

Lemma E.1. (Tropp, 2012) Consider a finite sequence {Zk} of independent random matrices with dimension d1 × d2.
Assume that each random matrix satisfies

E(Zk) = 0 and ‖Zk‖2 ≤ R almost surely.

Define

σ2 = max

{∥∥∥∥∑
k

E(ZkZ>k )

∥∥∥∥
2

,

∥∥∥∥∑
k

E(Z>k Zk)

∥∥∥∥
2

}
.

Then, for all t ≥ 0, we have

P
{∥∥∥∥∑

k

Zk

∥∥∥∥
2

≥ t
}
≤ (d1 + d2) · exp

(
−t2/2

σ2 +Rt/3

)
.

Lemma E.2. Assume the index set Ω follows Bernoulli model (3.1). There exists constants c, c′ such that under condition
that |Ω| ≥ c log d, with probability at least 1− c′/d, we have∣∣|Ω| − pd1d2

∣∣ ≤ 1

2
pd1d2,

where p = |Ω|/(d1d2).

Lemma E.2 can be directly derived from the bernstein-type inequality for independent random variables.


