Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow

A. Additional Experiments

In this section, we provide additional experimental results, including simulations under the rectangular setting, the relative
error versus CPU time plots and multi-label learning experiments on Yahoo datasets.

Simulations under Rectangular setting. The data generation approach for rectangular setting follows the same procedure
in Section 6.1. Specifically, the unknown low-rank matrix L* € R%*% js modeled as L* = X, M*X}, with dimensions
d; = 5000, d2 = 2000 and rank r = 5. The feature dimensions 71, ny are specified as ny = 100 and no = 50. We compare
the performance of our proposed algorithm with existing (inductive) matrix completion methods, as explained in Section 6.1,
in terms of relative error and effective number of data passes, which is illustrated in Figure 3. Note that the sampling rate p
is chosen from the range {0.25%, 0.5%, 1%, 2%}. The results show that our proposed algorithm has better performance
under the rectangular setting compared with existing methods.
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Figure 3. Plots of logarithm relative error vs. number of effective data passes for different (inductive) matrix completion algorithms under
the setting di = 5000, d2 = 2000, n1 = 100, n2 = 50 and r = 5 with sampling rate p varied in the range {0.25%, 0.5%, 1%, 2%}.

Relative Error versus CPU Time. To further demonstrate the computational advantage of the proposed method, we
compare our algorithm with existing (inductive) matrix completion methods in terms of relative error and CPU time for all of
the aforementioned simulation settings. It can be seen from Figure 4 that our proposed method achieves the lowest relative
error with respect to the same CPU time under all settings, which again confirms the superiority of our proposed algorithm.
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Figure 4. Plots of relative error vs. CPU time for different (inductive) matrix completion algorithms under the settings: (i) d = 1000,
n = 100 and » = 10 with sampling rate p selected from {2%, 5%, 10%} in the top panel. (ii) di = 5000, d2 = 2000, n, = 100,
nz = 50 and r = 5 with p varied in the range {0.25%, 0.5%, 1%, 2%} in the bottom panel.
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Multi-Label Learning on Yahoo Datasets. We provide the experimental results for multi-label learning on the Web
page classification Yahoo datasets obtained from Ueda & Saito (2003), including Arts, Education, Health and Science. In
particular, each dataset has 5000 different Web pages, which are associated with 462-743 different features and labeled with
26-40 different predefined categories. We extract the top-100 principal components to reconstruct the feature matrix so that
our estimation model will not overfit. The comparison results are demonstrated in Table 3, which shows that our method
achieves higher prediction accuracy and shorter computational time against existing inductive matrix completion approaches
under all of the experimental settings (c.f. Section 6.2 for detailed information).

Table 3. Experimental results in terms of AP and total running time on Yahoo datasets for multi-label learning via different methods.

p% = 10% p% = 25% p% = 50%
averaged AP (std) time (s) averaged AP (std) time (s) averaged AP (std) time (s)

BR-linear  0.4333(0.0055)  1.63 x 10  0.4608 (0.0059)  4.99 x 101  0.4769 (0.0070)  1.22 x 10
Maxide 0.5131 (0.0062)  3.53 x 10°  0.5698 (0.0046)  3.08 x 10°  0.5821 (0.0059)  2.78 x 10°

Dataest Method

Arts
s AltMin 0.5232(0.0060)  3.04 x 10°  0.5647 (0.0056)  2.72 x 10°  0.5707 (0.0060)  2.20 x 10°

Ours 0.5412 (0.0056)  1.16 x 10°  0.5768 (0.0050)  0.83 x 10°  0.5872 (0.0061)  1.41 x 10°

BR-linear  0.4515(0.0057)  1.52 x 10  0.4637 (0.0073)  4.23 x 10} 0.4775 (0.0073)  9.88 x 10*

Education  Maxide 0.5451 (0.0054)  4.95 x 10°  0.5851 (0.0052)  4.16 x 10°  0.5844 (0.0052)  3.31 x 10°
AltMin 0.5338 (0.0057)  2.03 x 10°  0.5731(0.0075)  2.68 x 10°  0.5848 (0.0059)  1.70 x 10°

Ours 0.5555 (0.0042)  1.05 x 10°  0.5906 (0.0058)  1.01 x 10°  0.5963 (0.0055)  0.88 x 10°

BR-linear  0.6402 (0.0064)  1.39 x 10!  0.6859 (0.0028)  3.46 x 10'  0.6933 (0.0051)  8.45 x 10*

Health Maxide 0.7210 (0.0073)  6.10 x 10°  0.7454 (0.0059)  4.29 x 10°  0.7586 (0.0051)  4.03 x 10°
AltMin 0.6961 (0.0091)  1.73x 10°  0.7370 (0.0042)  2.82 x 10°  0.7476 (0.0045)  2.86 x 10°

Ours 0.7305 (0.0053)  0.76 x 10°  0.7496 (0.0036)  1.60 x 10°  0.7627 (0.0049)  1.94 x 10°

BR-linear  0.4517 (0.0113)  1.80 x 10  0.4671 (0.0089)  4.67 x 10}  0.4769 (0.0083)  1.15 x 10

Science  Maxide 0.4960 (0.0075)  7.19 x 10°  0.5297 (0.0042)  5.46 x 10°  0.5413 (0.0059)  5.25 x 10°

AltMin 0.4888 (0.0081)  4.38 x 10°  0.5341 (0.0052)  4.55 x 10°  0.5477 (0.0056)  3.88 x 10°
Ours 0.5095 (0.0069)  1.11 x 10°  0.5391 (0.0039)  0.94 x 10°  0.5536 (0.0065)  1.38 x 10°

B. Proofs of the Main Results

In this section, we provide the proofs for our main theoretical results. To begin with, we introduce some notations to simplify
our proof. Let Z : R4*d2 — Rd1Xd2 pe the identity map, i.e., Z(A) = A. Denote the elementwise infinity norm of matrix
A by [|A|oo.00. For any Z € R("+72)%7 we denote Z = [U; V], where U € R™*" and V € R™2*", According to (4.1),
our objective is equivalent to minimize the following regularized loss function in terms of Z

~ 1 1
fa(Z) = fo(U,V) = %HPQ(XLUVTX; -L)|7+ g”UTU - V'V|i. (B.1)

Let Sym : R%1xd2 _ R(di+d2)x(di+dz2) pe the lifting operator, such that for any matrix A € R%1 x4z
0 A

For any block matrices A € R(¢1+d2)x(di+d2) with partitions

A= m; i;z] , where A;; € R%*% 4 j e {1,2},

define linear operators Pgiae and Pog : R(d1td2)x(di+dz) _y R(d1+d2)x(di+d2) yq

A 0 0 A

Similarly, for any block matrices B € R(1+72)x(n1+72) with partitions

B = [gi g;ﬂ , where B;; € R"*"™ 4 j € {1,2},
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define operators Pgipg and Pogy : R(P1+72)x(n1dn2) _ Rn1+n2)x(nidn2) 4

= B 0 = 0 B
AN

In addition, let © € [dy + da] x [dy + ds] be the corresponding index set of observed entries in the lifted space, then the
observed matrix in the lifted space can be expressed as

0 Pa(L
Pa(Sym(L)) = [(%(L))T ) )] '

And we let X € R(d1+d2)x(n1+n12) pe the corresponding feature matrix in the lifted space, such that

XL 0
x=[% 2.

Thus with the notations above, the regularized loss function ﬁg in (B.1) can be rewritten as
~ 1 2 1
fa(Z) = @HPQ (XZZ" X" - Sym(L))|| ;. + gHZTDZH%, (B.2)

where D is defined as

I, 0
o= 1)

Recall that Z* = [U*; V*] and P (L) = Pq(L*), then the gradient of fq, can be formulated as
~ 1
Via(Z)=-X"P5(X[ZZ" - 2*Z*"|X")XZ
p
1 — _
+ i(Pdiag — Pott)(ZZT)Z. (B.3)

B.1. Proof of Theorem 5.3

Proof. According to the initialization phase of Algorithm 1, we have
[Uinie Vigi = M [l2 = [lpg ' X[, Pay (L)X — M|

init
= X, (py ' Pay, (L*) — L) Xg|l2
‘ (d1,d2)

Y (& — DLy - Xjee[Xg
(4,9)=(1,1)

where &;; = 1,if (4, 7) € Qo; &; = 0, otherwise. Next we are going to apply Matrix Bernstein to the right hand side of

(B.4). Note that E[S;;] = 0, and we have

(d1,d2)

> Sy

(1,5)=(1,1)

, (B.4)
2

2 ‘

1 * 1 *
1S45ll2 < . L] IX Leillz - [ X eyl < . I o000 - XL l2,00 - X Rl2,00-

By Assumptions 3.1 and 3.2, we further obtain

2 *

. HIMINg Hof17/N1N207]

AZ* e - XV 200 - < :
2,00 || 2 H R ||2’ didy — podids

1 —x
[1Ss]l2 < — IXLU |
Po



Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow

Denote S =}, ; S;;. To apply Matrix Bernstein, it remains to bound the terms IE(SST)]||2 and ||E(STS)||, respectively.
Since S;;’s are independent, we have

(d1,d2)
W%WF{ 3 M%%ﬁ
(4,5)=(1,1) 2
1 . (d1,d2)
=X L (XL IXgeil - (o] Xu)
O Tap=a1 2
do
T X kel
=1 2
d
<1 max (iL*Q pies e,||§> < B g2 (B.5)
Po i€l \ = Poda '

where the first inequality is due to the fact that || AB||2 < ||A||2 - ||B]|2 and X, is orthonormal, the last inequality follows
from Assumption 3.2. According to the SVD of L* and Assumption 3.1, we have

—% « —=% « T,
Lz e = XL D) - 5 < X0 e - [372 < 4[5 B.6)

Therefore, plugging (B.6) into (B.5), we obtain

HOM1TTL 4o
E(SST)|, < 220 1 532,
IESS DI < =50

Similarly, we can obtain the upper bound of ||[E(S T S)||2, which implies

T T popr(ny +n2) o
max {[B(STS)]|,, [B(SS T, < FF 0

Applying Matrix Bernstein Lemma E.1, under condition that pg > cuou17?K2(ny + no) log d/(v2dyds), we have

i

where ¢, ¢,y > 0 are some constants. This further implies that with probability at least 1 — 1/d, we have || UV,
M*||2 < vo:/+/r. Finally, according to Lemma 5.14 in Tu et al. (2015), we obtain

(d1,d2)

> Sy

(4,5)=(1,1)

1
d7

O_*
> } < (di +dz) - exp(—c’logd) <
5 Vr

init

2 HUllemn M* ||F 1Or||UlnltV1mt M* ||% < 10,}/20_*
Vi ol oo ot =

where the second inequality holds because rank(UlmtV — M*) is at most 2r. O

D?(Zipi, Z*) <

init

B.2. Proof of Theorem 5.4

Before proceedmg to the main proof, we 1ntr0duce the followmg notations and facts. Recall that M* = U £*V
and Z* = [U;V']2*1/2, we denote Z* = [U"; =V |=*1/2. Note that M* and L* have the same set of singular

values, thus for any ¢ € [r], 07(Z*) = o’e(Z*) = 20;. We further note that Z*TZ* = Z*7Z* = 0, and Sym(M*) =
(Z*Z*T —Z*Z* ) /2. Define reference function G(Z) as G(Z) = | ZZ T — Z*Z*"||%. /4, then the gradient of G is given by

VG(Z)=(ZZ" - 7*7*")Z. (B.7)

Thus according to (B.3), we have

Vo(Z) :%vc:( )+ (z 72+ X7 (;Pﬂ Pﬁ) (X[ZZT - 27X T)XZ. (B.8)
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The following lemmas demonstrate the local curvature and local smoothness properties of fQ, which are proved in Sections
C.1 and C.2, respectively. In both lemmas, for any Z € R("1t72)X7 e let R = argming  [|Z — Z*R||r, and denote
H=7Z-7ZR.

Lemma B.1 (Local curvature). Under the previously stated assumptions in Theorem 5.4, for any fixed Z = [U; V] €
R(1+n2)x7 such that D(Z, Z*) < /207 /5 and || X1 Ul|2.00 < 2¢/pt07075 /d1, | XrV||2.00 < 24/ 110707 /dz, there exists

constants ¢1, co such that if |Q| > ¢; max{u(z)?“Q,‘iz7 topiren} log d, then with probability at least 1 — ¢o /d, we have

s 1 1 7% g% O—::
(Va2 H) > |2z’ ~Z Nz z T+ B - a0,
1

where Z* = [U*; —V*].

Lemma B.2 (Local smoothness). Under the previous stated assumptions as in Theorem 5.4, for any fixed Z = [U; V] €
R(m+n2)x7 quch that D(Z,Z*) < /o7 /4 and | X1 Ulj2.00 < 2/ por0ot /dy, | XV ||2.00 < 24/ 10707 /d2, there exist
constants ¢y, ¢ such that if || > ¢ poprrenlog d, then with probability at least 1 — ¢ /d, we have

IV I3 < (161 + 4)05 227 — 227 |[% + |1 Z°2°7 ZIJ% + 4ro72|H] 3,
where Z* = [U*; —V*|.
Now we are ready to prove Theorem 5.4.
Proof. Theorem 5.4 will be proved by induction. Consider the s-th iteration in Phase 2 of Algorithm 1, for any s > 1.

Suppose the previous iterate Z,_; is sufficiently close to Z*, i.e., D(Zs_1,Z*) < a\/5F, where « is defined in Theorem
5.4. In the following discussions, we are going to show that the following contraction result with respect to the s-th iterate:

D*(Z,,Z*) < (1 — "1"6> “D*(Zs—1,2*) + 36 - o} + 257 (B.9)
holds with probability at least 1 — ¢; /d, where Z; = [Ug; V] and Zg_1 = [Us_1; Vs_1].
Denote the optimal rotation with respect to Zi,is by Ripii such that Ripy = argming ¢, [|Zini — Z*R/[|#. Since the initial
iterate Ziy;; satisfies D(Zinit, Z*) < /o7 /40, we have ||Ziniy — Z*Rinit||2 < /0 /40, which implies

Vo7 <NZ Rinicl|2 = | Zinic — Z*Rinicl|2 < [|Zinicl]2 < |27 Rinitll2 + || Zinic — Z" Rinit||2 < 24/07.

Thus, according to the definition of C1,C5 in (4.2) and Assumption 3.1, we have

N roy r
L 2,00 LU 2,00 V2 < i < B | Zinic |2,
XU e € K0T e [ 20 < [

which implies that U* € C;. Similarly, we can derive that V* € (C,. In addition, based on the definition of the
constraint sets C; and Cs in (4.2), we further have ||Ul|2,00 < 24/poro}/dy and ||Vl]2,0 < 24/poro}/de. For any
s € {1,2,...,5}, we denote R, = argmingcq, _|Zs — Z*R||r as the optimal rotation with respect to Z, and we let

H, = Z, — Z*R,. Consider the s-iteration of Phase 2 in Algorithm 1, we let ﬁs =U,_1 —nVufa.(Us—1,Vs_1) and

~

V=V, 1 —nVvfa.,(Us_1,Vs_1). Thus based on the update rule, we have
D2(257 Z*) < ”Us - U*RS—lni“ =+ ”V‘: - V*Rs—1||2F
= |[Pe, (Us,6) = UR,a[7 + [ Pe, (Vs 6) = V'R [,

I Iy

where the first inequality follows from Definition 5.1, and the second inequality follows from the update rule. As for the first
term I, we have

I = |Pe, (U,) — UR,_1|[% + 2(P¢, (U, 8) — Pe, (U,), Pe, (U,) — U*R,_1)
+ |Pe, (Us, 8) — Pe, (U) 1%
< |[Pe, (Us) = U'Ra1 |3 + 26 - | Pe, (Us) = URya || + 62
< Usi1 —nVufa,(Us_1, Ve 1) = UR,_1||% +20- |Us1 —Vufa,(Us 1, Ve 1) = UR,_1||r + 62,
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where the first inequality holds because P¢, (ﬁs, d) is the §-approximate solution and Pc, (ﬁg) is the exact solution to the
same optimization problem, and the second inequality is due to the non-expansive property of projection Pc, and the fact
that U* € C;. Based on the similar technique, we can upper bound I, as follows

Iy <||[Vso1 = Vv fa,(Us—1, V1) = V' Re_1||3 + 26 - |[Vs_1 — nVvfa,(Us—1,Vs_1) = V'Re_1||r + 5%
Therefore, combining the upper bounds of I; and /5, we have
D*(Zs,2") < D*(Zs—1, Z°) = 20(V fo (Zs—1), Ho1) + 77|V o (Zs—1) | 7
23 (D21, B) = 20(F o, (B ) + 2V o, (2 ) ) 4 202

where fgs is defined in (B.3), and the inequality follows from the triangle inequality.

It is worth noting that the subsampling technique ensures the previous iterate Z4_; is independent of the samples €2, used
= |Q]/(29) < e1 max{pdr?k?, poprrn}logd,
thus we can dlrectly apply Lemmas B.1 and B.2. More spemﬁcally, w1th probability at least 1 — ¢; /d, we have

~ 1
(Vfa,(Zs—1),Hs_1) > *OHZs VAR AV AR

o
o1l + 2 [ [F — 40

where Z* = [U*; —V*]. In addition, we have
IV fo, (ZN3 < (167 + 4)01(|Ze1 2.y = Z°Z7 [} + | Z°Z T Zga |3 + 4ro s [H, o f7

Thus, by setting step size n < 1/(200r07), we obtain

7 = noy.
—=20(Vfa,(Zs-1),Hs1) + 0*[|V fa,(Zs)|F < — 5 H 1% + 807 [Hy 1 || 7,

which implies that the induction hypothesis that D(Z;_1,Z*) = [|[Hs_1| r < ay/0F, we have

D2(Zy,Z*) < (1 _ 7712’“) D*(Zy_1,Z%) + 25 - 2( 771”6 ) D(Zy_1,Z%) + 267

< ( ’71”6”) D*(Zis_1,Z%) + 36 - anJor + 267,

which completes the proof of (B.9).
Moreover, according to the assumption that D(Zin, Z*) < a/0 /2, if we choose 6 < a\/c7/ (21/2), then we have

D*(Zo,Z*) < ||Up — U*Rinit||7 + [ Vo — V*Riwie|| 7
< |1Pe, (Uinit) — U Rinie| % + |Pey (Vinit) — V* Rinie|| 5
+ 26 - ([P, (Uinit) — U Rinic||  + |Pe, (Vinit) — V* Rinicl| ) + 267
< D?*(Zinit, Z*) 4 2V/20 - D(Zigit, Z*) + 26% < o207,
where we let Rjy;; be the optimal rotation with respect to Z;y;;, and the last inequality follows from the non-expansiveness

property of projection onto convex set. Thus, we have shown that the induction hypothesis D(Zs_1,Z*) < /o7 holds for
the first iterate.

To this end, it remains to verify the induction step, or more specifically, D(Z;_1,Z*) < a/o; implies D(Zg, Z*) < a\/o 7,
for any s > 1. This step can be proved based on (B.9): with high probability, we have

D2(ZS7Z*)<< "{'6> DX(Zy 1, Z%) + 35 - a\Jor + 267

(1 - 1J6T> ~a?or 430 - an/or 4+ 20% < P,
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provided that § < co+/07/(rk) with constant ¢y sufficiently small. Finally, by induction and union bound, we obtain
N
2 * noy, 2 * 16 / 2
noy.
holds with probability at least 1 — ¢;.S/d, which completes the proof. O

B.3. Proof of Theorem 5.5

The proof of Theorem 5.5 will be similar to the proof of Theorem 5.4. The only difference is that we do not require sample
splitting in Phase 3, thus the iterates are no longer independent from the subset of samples. The following curvature and

smoothness of fo are proved for all Z € R(™1+72)x7 satisfying D(Z, Z*) < co/07/(p1n). The proofs are presented in
Sections C.3 and C.4 respectively.

Lemma B.3 (Local curvature). Under the previously stated assumptions in Theorem 5.5, for all Z = [U; V] € R(mi+n2)xr
such that D(Z,Z*) < co\/o}/(1n) with constant ¢y small enough, there exists constants ¢1,co such that if |Q] >
¢ poprrnlog d, then with probability at least 1 — ¢5/d, we have

rs 1 * g 1 7k gk O':
(Vfa(Z),H) > %IIZZT ~ 2+ 222 + < IHl[% — 20[/H]7,
1

where Z* = [U*; —=V*].
Lemma B.4 (Local smoothness). Under the previous stated assumptions as in Theorem 5.5, for all Z = [U;V] €
R(1+72)x7 guch that D(Z, Z*) < co\/a7/(p1n) with constant ¢y small enough, there exist constants ¢y, ¢y such that if
|| > 1 pop1rnlog d, then with probability at least 1 — ¢o/d, we have

IV fo(Z)|1} < 840511227 — Z°Z*T||3 + | Z° 2" T 2} + 4070y | H| 7 + 4007 |H| 3,
where Z* = [U*; —V*].

Now we are ready to prove Theorem 5.5.

Proof. Forany t € {0,1,...,T}, we denote R" = argmingq,_||Z" — Z*R||r as the optimal rotation with respect to Z°,
and we let H' = Z! — Z*R!. Note that the initial iterate of Phase 3 in Algorithm 1 satisfying D(Z°, Z*) < co+/a7 /(un).
Assume the induction hypothesis D(Z?®,Z*) < co+/0;/(un) holds for s = 1,2, ..., t. Consider the ¢-th iteration, based on
the update rule, we have
D*(Z21,27) < U™ - U'R'|L + [V = VIR!||

=|[U" = 7Vy fa(U", V') = UR'||5 + |[V' = 7Vv fo(U", V) - V'R!||,

= D*(Z",2") - 27(V Jo(Z"), H') + 7*|V fa(2") |},
where the inequality follows from Definition 5.1. According to the assumptions of Theorem 5.5, we can directly apply
Lemmas B.3 and B.4. More specifically, with probability at least 1 — ¢’ /d, we have

1
407

rs 1 * gk 7%k gk U;
(Vfa(Z'),H") > S||Z'Z' - Z° 2" |3 + = 12" 2" 2" % + = |’ | % — 20| H'|},
20 8

where Z* = [U*; —V*]. In addition, we have
IV Ja(Z')} < 8407|122 = Z° 27T |3 + | Z2° 27T 2|3 + dof oy | H' |3 + 4007 [H' [ 7.
Thus, by setting step size 7 < ¢1 /o] with ¢; < 1/840, we obtain
~27(9 o, (2), ) + 72V Fa (2 < "2 [ B[ + 50n [ B[,
which implies that under condition that D(Z*, Z*) = |[H'||r < ca\/o7 with co < 1/30, we have
DX(ZH,Z%) < (1 _ 7-106:) . D(Z!, 77,

which implies the (¢ + 1)-th iterate Z!*1 still satisfies D?(Z'*!, Z*) < co\/o7 /(un). Thus by induction, we complete the
proof. O
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B.4. Proof of Theorem 5.2

Proof. To prove the overall theoretical guarantee of Algorithm 1, we need to examine the conditions required by previous
main theorems regarding the three phases. More specifically, to ensure the O(,/07) initial ball assumption D (Zipi, Z*) <
o/} /2 in Theorem 5.4, it suffices to set § < «/8 in Theorem 5.3, which implies the sample complexity required by Phase
Lis |Qo| = O(r?s%nlog d). In addition, according to Theorem 5.4, we have

s
D*(Zs,Z7) < (1 - 1(§2 ) Q20+ a6 - TR/
rH

Thus, in order to guarantee the O(,/c/n) initial ball assumption D(Zg, Z*) < ¢g+/07/(p1n) holds in Theorem 5.5, it is
sufficient to perform S = O(rk log n) iterations in Phase 2 of Algorithm 1 and let the approximation error § = O(1/(rxn?)).
Based on Theorem 5.4, we derive the sample complexity required by Phase 2 is ¢ - max{1n, pors uor?s2 log n log d.
Together with Theorem 5.5, we conclude that the overall sample complexity of Algorithm 1.

Finally, as for the reconstruction error |[M” — M*||z, let R be the optimal rotation between ZT and Z*, then we have
[OT(VHT U VT p < UTVT = VRT) T[|p + [|(UT = U'RT)(V'RT) |
<Oz [V = VRT|[p + [V'RT||2 - [[UT = U'RT|
<30t -D(Z",Z"), (B.10)
where the second inequality is due to ||AB| r < ||A]|2 - | B||#, and the last inequality follows from the fact that || ZT —
Z*RT||r < D(Zs,Z*) < a/oF/(u1n) < y/o}. Noticing that according to Theorem 5.5, Phase 3 achieves linear rate of

convergence, which implies that with 7 = O (k log(1/¢)) iterations, we have D(ZT | Z*) < . Combining with (B.10), we
complete the proof. O

C. Proofs of the Technical Lemmas in Section B

In this section, we provide the theoretical proofs of the technical lemmas used in Section B.

C.1. Proof of Lemma B.1

To prove Lemma B.1, we need to make use of the following auxiliary lemmas. Inspired by Tu et al. (2015), we show that the
reference function G(Z) has a similar local curvature property in Lemma C.1. Based on Matrix Bernstein Inequality, Lemma
C.2 generalizes the results of Theorem 4.1 in Candes & Recht (2009) to inductive setting, while Lemma C.3 provides the
high probability bound on the remaining term.

Lemma C.1. Let Z, Z* € R(m+72)x7 and G(Z) = | ZZ" — Z*Z*"||% /4. For any Z satisfying

|Z — Z*R|3 < 02(Z*)/5, where R = argmin |Z — Z*R)|p,
REQ,

we have
* Uf(Z*) * 2 1 T srgxT (12
(VG(2),2- Z'R) = 2222 - 2RI} + 227 - 2277 |
Lemma C.2. Assume the previously stated assumptions in Lemma B.1 hold. Define subspace

T: {ﬁ*AT +BV*T7 for some A € Rngxr and B € Rnle}.

Let Py : R"M*"2 — R™M*"2 pe the Euclidean projection onto 7. Specifically, for any Z € R™*"2 we have

PrZ)=UT" " 2+2ZV'V' -UTT zVv'V'". C.1)

For any v € (0, 1), there exist constants c;, co such that if |Q] > cjuouirnlogd/~?, then for all Z € R™*"2, with
probability at least 1 — ca/d, we have

|Pr(@) - p7'Pr (X[ Pa(XePr(Z)XE) Xn) || < 71Z1r (C2)
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Moreover for all Z,Z> € T, we have
(XLZ1 X — p " Pa(X0Z1XR), XL ZoXR)| <N ZallF - | Z2|F
and for all Z € 7, we have
P |Pa(XpZXE) |5 < (1 +9)]1Z)3-
Lemma C.3. Assume the previously stated assumptions in Lemma B.1 hold. For any fixed U € R™*" V € R"2*"

satisfying || Xr U200 < 3/ poro;/di and || XrVl2,00 < 34/1oro}/ds, there exist constants ci, co such that with
probability 1 — ¢; /d, we have

1 *
> [Pa(XLUVTXR)| < IUVT 3+ 05 - ([U[3 + V1),

provided that || > ¢ max{udr?k?, popuiren}logd/+2.

Now we are ready to prove Lemma B.1.

Proof of Lemma B.1. Recall that R = argming ., [|Z — Z*R|r and H = Z — Z*R. According to the gradient of fg, in
(B.8), we have

(Vfo(Z),H) = %(VG(Z), H) + %(Z*i”z, H) + ((p~' Py — Por)(X[2Z" — 272" T|X "), XH(XZ)").

I Iz

In the sequel, we are going to bound the terms I; and /5, respectively.

Lower bound of I;. According to the assumption ||H||r < /207 /5, we have | Z — Z*R||3 < 0%(Z*)/5. Thus, we can
apply Lemma C.1 directly

1 1 o
I = 5<VG(Z),H> +3 OSVANVAVARN A
U’?(Z*) 1 * gk 7% rp %
> o HllE + g122" =272 |+ = 272 27
2(|Z+[|3
= T H + G227 - 27T+ o 227 23 (€3)

where the first equality holds because Z*TZ* = 0, the second inequality follows from Lemma C.1 and the fact that
|Z*Z*TZ||% < ||Z*||3 - |Z* T Z]||%, and the third equality holds because 02(Z*) = 207 and | Z*||3 = 207.

Upper bound of |I5|. Note that Z = [U; V] and M* = U*V*T we denote M = UV, U = U*R and V = V*R.

Besides, let Hyy € R™*", Hy € R™2*" be the top n; and bottom ny rows of H, respectively, then we have U = U+ H;
and V=V + H, . Note that UVT UV = UHT + HUVT + HUHV, and Hy VT + UH/, = UH‘T, + HUVT +
2HUH‘T/. Based on the above notations, we can reformulate 15 as follows

L= ((p7*Pq —I)(X,[UV' — UV']X}), X (Hy V' + UH])X})
= ((p7'Pq — I)(X,[UHY, + HyV X }), X (UHY, + Hy V)X })

Ioy
+3((p™"Pq — I)(XL[UHY + Hy V' |X}), X HyHY X )

Iao

+2{(p"Pq — I)(X HyH| X}), X (HyH) X ) .

I23
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Note that I~JH‘T/ + HU\N/'T falls into the subspace 7 defined in Lemma C.2. Thus according to Lemma C.2, we obtain
121 < 7| UHY + Hy VT [} < 29 M = MC[[F + 2 [l (C4)

holds with probability at least 1 — ¢ /d, provided that |Q| > ¢ uop1rnlog d/ ~?, where + is a constant such that y € (0, 1).

Here, the second inequality holds because [|A + B||%2 < 2||A||% + 2||B||% and | HyHY, || » < ||[H||%/2. As for the term

155, we have

1 ~ ~ ~ ~
|I52| < ];|<7>Q(XL[UH€ +HyVTXE), X HoH X5 | + (XL (UHY, + Hy VXL, X HyHY X )|

1 ~ S 2 -
Sg5P 1||7>Q(XL[UH$+HUVT}X;)HF+§~p HPa(X HuHY X ) |
1 ~
+ 35 UHY +HUVTHF+7”HUH I
B _ 2 2+7 < B
< 50 |[Pa(X e HuHY X )| + =5~ [UHY + Ho VT |[% + I H%, (C.5)

where constant § > 0 will be specified later. Here, the second inequality follows from the Young’s Inequality, and the
last inequality is due to Lemma C.2 and the fact that |[HyH{||r < |Hy|F - [|[Hv||r < [[H||%/2. Since we have

IXLHyull2,00 < [IXLUll2,00 + ||XLU||2’00 < 34/poroi/di, and similarly we have || XpHy ||2,00 < 34/poro}/ds,
according to Lemma C.3, we further obtain

1 2 % 1 *
5||P52(XLHUHxT/X1Tz)HF < |[HuHy |7 + yor |7 < S [H| % +yo7 [HIF (C.6)

holds with probability at least 1 — ¢; /d, provided that || > co max{udr?x?, uop1rxn}logd/y2. Thus, plugging (C.6)
into (C.5), we have

B . 2+~ S B
ol < S0 1B + 2L ITRY + B VT + 5 H
2+ . B 24 B
< X M+ Gl + (2 + 4 ) E, )

where M = UV . Similarly, according to Lemma C.3, we can upper bound |23

1
|Ip3] < 5|<PQ(XLHUH$X£),XLHUHJXEM + (X HyH) X5, X Hy Hy X))
1
];IIPMXLHUHTXT)IIF + |HyHy ||
1 %
< §\|HII%+70,-IIHII%- (C.8)

Therefore, combining (C.4),(C.7) and (C.8), we obtain the upper bound of |I2|

|I2] < |I21] + 3|122| + 2|23

32+ . 32+4) 3 3 .
< (24 22 - (34 200 B imn 4 (B 2 )voimz. o)

Finally, set 5 = 48, then combining (C.3) and (C.9), we obtain

rs 1 * gk * O-;k *
(Val2). 1) > (g - 5 ) 1227 - 22T+ N Z T2 + (G - 00 ) IR - doEnl,

where the inequality holds because |M — M*||% < ||ZZT — Z*Z*T||2./2. Thus, by choosing constant 7 to be sufficiently
small, we complete the proof. O
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C.2. Proof of Lemma B.2
Proof. Recall the gradient of fg in (B.3), we have

~ 1., — _
IVfa(Z)|F <2|p ' X Ps(X[ZZ" - z*z*T]xT)Xszm +3 |(Paiae — Poﬁ)zszwa,

Il IQ

where the inequality holds because ||A + B||% < 2(||A||% + ||B||%). In the sequel, we will upper bound I; and I,
respectively.

Upper bound of I;. Recall that Z = [U; V|, R = argming
then based on the above notations, we have

Reo, 12— Z*R||p,and H = Z — Z*R. Denote M = UV T,
— * — * T
= p7 ' X[ Po(XL[M - MY X)X R V% + [[p7 X (Pa(X. M - M¥X])) ' X, U},
_ . . * T
<7 |lp XL Po(X M - MAX ) XRV]3+ 7 |lp7 ' X (Po(X M — M*X ) XLu||§, (C.10)

111 112

where the inequality holds because both U and V have rank at most r. Consider the term I3, first, we observe

1
EX{PQ(XL M — M*]X)XzV — (M - M)V

(dq1,d2) (dy,dz2)
= Y (-1 XM -M)Xgli; - [Xo)L  [XeVao= Y Ay,
(4,5)=(1,1) (4,7)=(1,1)

where &;; = 1,if (i,7) € Q; &; = 0, otherwise. We are going to apply matrix bernstein inequality to the above summation.
Due to sample splitting, the randomness only comes from €, thus A;;’s are independent and E[A;;] = 0. Denote
U = U*R and V= V*R, and let Hy € R™*", Hy € R"2*" be the top n; and bottom ny rows of H. Then we have
M — M* = UH{, + HyV" + HyHj,. For any (i, j), we have the following upper bound of ||A;;]|2

1 *
Al < ’ XM = M*)Xg5li| - XLl - Xe V]l
1 T T T
]; X2 (OHY, + Hy V' + HyHY)X ] lloc,o0 - 1XLl|2,00 < [XEV]|2,00
10 oy
< YHoH1TNOY IH]||F,
pdids

where the last inequality is due to Assumptions 3.1, 3.2 and the fact that || X, Hy [|2.00 < X2 U]l2.00 + X2 Ull2,00 <
3v/ toroy/dy and | XgV||2,00 < 24/ pioroy /ds. To apply matrix bernstein, it remains to bound || 3, ; E[A; AT} Il2 and

1> E[A];Aq]l2. In particular, we have

(d1,d2) (dl d2)
| S mmoall,=0 X oo MOXER L[ Ka VLl Dl
(4,5)=(1,1) (4,5)=(1, 1)
Ny T12 2
HZez (XL(M—M )XRlij - ||[XRV]J'=*H2)H2
j=1
1 &2
< * T2
<5 mnd (XL (M = MO)XG - IXR VI3 )
4 CHoparoin

[IM - M

,U,()T'O'l *
X;(M-M X <
p || ||200 - pd1d2
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where the last inequality holds because ||AB||2,oc < ||A

|2,00 - || B/ p. Similarly, we have

(d1,d2) 1 (d1,d2)
| Y maTaul] <2 Y Mo MOXER, XV Xk
(i’j):(lvl) (7;73.):(1’1)

2
|5 [(Xr V] ,

1 (d1,d2)
< = IXLl o - IXRVIE o - Z (XL (M - M*)Xg]3
b (1.)=(1,1)
dpoparoin 2
SR PLE M — M|,
vy dy [ |7

where the second inequality follows from the definition of spectral norm. Therefore, according to Lemma E.1, with
probability at least 1 — ¢/d, we have

(d1,d2)

> Ay

(4,5)=(1,1)

< oM = M5 + %0y ] £,
2

under condition that || > ¢ pou1rnr/v?, where ¢, ¢’ are both constants. Hence, by triangle’s inequality, we obtain the
upper bound of I

* * * * 2 * * *
I < (M= M)V |la + 072 |M = M*||p + 707 ||H|[¢)” < 807[M — M| + o7 | HI|7, (C.1D)

where the last inequality holds because ||V|j2 < [|[V*|l2 4+ ||V — V*R||2 < 24/} and v € (0,1/2). Similarly, we obtain
the upper bound of I15

Lz < (UT (M = M*)|2 + 9072 [M = M7 + 72032 [H]| ) < 807]|M — M*[|% + o[ H] 3. (C.12)
Plugging (C.11) and (C.12) into (C.10), we have

I < 2r - (807 |M — M*|[3 + 07| H||%). (C.13)

Upper bound of /5. As for I5, we obtain
Iy = |Z*Z" " Z — (Paiag — Port)(Z*Z* T — Z2.7)Z| %
<2|Z°Z" 2|} + 2| (Pag — Por)(Z°2" T — 2Z7)||% - ||ZII3
<2|Z*Z*"Z||% + 80}||2ZT — 22+ ||Z, (C.14)

where the first inequality holds because |A — B||% < 2(]|A||% + [|B||%) and ||AB||r < ||A||F - [|B]|2, and the second
inequality holds because ||Z||2 < 24/07.

Finally, combining (C.13) and (C.14), we obtain

IV fo(Z)|13 < 32rof|M - M7||% + droy?|[H| 3 + |2° 2" ZI[% + 4071|227 - 27277 |3
< (16r +4)07(|1Z2Z" — Z°Z"||% + | Z° 2T Z| 3. + 4ro}?[HI[3,

where the second inequality holds because |[M — M*||2, < |ZZT — Z*Z*T||%./2, which completes the proof. O

C.3. Proof of Lemma B.3

Proof of Lemma B.3. Similar to the proof of Lemma B.1, we have

(Vfo(Z),H) = %(VG(Z), H) + %@*Z*Tz, H) + ((p™'Pg — Porr) (X[2ZT — Z2*2*"|XT),XH(XZ) ).

nL I
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According to Lemma C.1, we have

. 1
1> ZHE + 22T - 22T+

(C.15)

Recall the notations in the proof of Lemma B.1, we let Z = [U; V] and M* = U*V*T wedenote M = UV, U =TU*R

and V = V*R. Besides, let Hyy € R™ %", Hy € R™*" be the top n1 and bottom n5 rows of H. Then we can reformulate
15 as follows

I = ((p7'Pq — I)(X [UHy, + Hy VX }), X (UHY, + HyVX})
I
+3((p™"Po — I)(XL[UHY, + Hy VX }), X HyH X )

122
+2{(p " Po - I)(X HyH| X }), X HyH| X )

Ios

Note that I~JH$ +Hy VT falls into the subspace 7 defined in Lemma C.2. Thus according to Lemma C.2, we can still
obtain the same upper bound of I

L] < 5[ UHY + Ho V|7 < 29 M = M} + 2 |H]
holds with probability at least 1 — co/d, provided that || > ¢ pop17n log d/~2. As for the term 5o, similarly we have
1 - ~ - ~
|22l < S |{Pa(XL[UHY + Hy VTIXR), X HyHYXG)| + [(Xo(UHY + Ho V)X, XoHuHY X )|

2+v

B 2 S B
< 50 H|Pa(X e HuH X p) [ + =2~ UMY + Hu VT + S| H %,

where constant 3 > 0 will be specified later. Here, the second inequality follows from the Young’s Inequality and Lemma
C.2. According to bernstein-type inequality for Bernoulli random variables, we further obtain

1 2 1 3 N
];HPQ(XLHUHEX;)HF < §|Q| X HyHy X2, o < Hamns - [HuHY || < cgor |H][%
holds with probability at least 1 — ¢;/d, where the second inequality follows from Lemma E.2 and the incoherence

Assumptions 3.2, and the last inequality holds because |H||%2 = D?(Z,Z*) < c2o}/(u3n?). Therefore, we obtain the
upper bound of I,

It~y ~ . .
o] < 2T OB + B VT 3+ 5 - cho BT + S
2+7 . B oo . 249 B
< 22T - M+ - o B+ (25T ) I

Similarly, we can upper bound /53
1
| ILos| < *|<,PQ(XLHUH\T/X£)7XLHUH\T/XEH + (X HyHI X, X HyHX )|
1 TxT 4
];HPQ(XLHUH vXp)E + HGHY | F < oy [H|7 + *HHHF
Hence, we obtain

|15 < |I21] + 3|Taa| + 2|I23]

3(2 3 3(2 3
< (27+(;7))-M_M*||%+<2+2ﬁ> coor | H|F + ( (4;7) +5+2>~||H||§. (C.16)

Set 5 = 48, and let constants cg, v be sufficiently small. Combining (C.15) and (C.16), we complete the proof. O
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C.4. Proof of Lemma B.4

In order to prove Lemma B.4, we need to make use of the following lemma.

Lemma C.4. Let X € R%1*x™ Y ¢ R%X"2 pe the feature matrices, which are orthonormal and self-incoherent with
parameter 11, and 2 C [d;] X [d2] be an index set followed Bernoulli Model (3.1) with p = |€2|/(d1d2). For any v € (0, 1),
there exist constants ¢; and ¢y such that, under condition |Q] > ¢y puinlogd/ 72, for all Z € R™ %2

P~ X P (XZY )Y |p < (14 pun)|Z]r,
holds with probability at least 1 — ¢ /d.

Now we are ready to prove Lemma B.4.
Proof of Lemma B.4. According to the gradient of fg in (B.3), we have
r - * gk 2 1 Y = 2
IV fe(Z)|F <2|lp™' X"Pg(X[22" — 22" T|XT)XZ| . + ||(Paiss — Por) 22" 2|,
I Iz

In the following discussions, we will upper bound /; and I5 respectively. As for 1, similar to the proof of Lemma B.2, we
have

— * — * T
I = lp ' X[ Po (XL [M — MY X L) XRV|[% +|[p ' Xk (Po(X M — M*X})) XLUH?. (C.17)

Ii1 Ii2

Consider the first term ;1. Note that M — M* = HU\~7T + I~JH$ + HUH; Recall the definition of P in Lemma C.2,
we have Pr(M) + Py (M) = M, for any M € R"**"2_ where P+ (M) = (I — ﬁ*ﬁ*T)M(I - V*V*T). Thus we
obtain

I < 2|p " (X]Po(XL[UH) + Hy VT IXE)XR) V|5 + 2|0 X Po(X HoHE X L)X £V
<4|p'Pr (X Pa(XL [UH], + HU{}T]XE)XR)VHi‘

J1
+4|lp 7 Pro (XL Po(X o [UHY, + HoVTIX )X ) Hy |5 +2||p 7 XL Po(X HoHL X L) X V[,

Ja J3

where the inequality follows from ||A + B||% < 2||A||% + 2|/B||%, and the equality is due to the definition of P and
the fact that (I — V*V*T)V = 0. In the sequel, we will upper bound the terms Ji, J2 and J3 respectively. Note that

INJHE + HU\~/'T € T, according to Lemma C.2, with probability at least 1 — ¢’ /d, we have
Ji < (1+9)°|[UHy, + Hy V' [3- |V]5 < 4(1 +7)%0} - |[UHy, + Hy V|3, (C.18)
provided that || > pop1rn log d/~?, where the first inequality holds because || AB||r < ||A]|7 - ||B||2, and the second
inequality follows from the fact that || V|2 < [[V*|2 + [|[Hv ||2 < 24/0}. Consider the second term .J2, we have
Jo < |lp7 Py (X[ Po(X L [UHY, + Hy VX 3)XR) | - [Hy |7
< |p™' X[ Pa(X[UHy + Hy VX 5) X g% - [Hy |7
< (1+mny)* - |[UHY + Ho VT3 - [Hy |3 < 29%07|[UH] + Ho VT |7,
where the first inequality holds because ||AB||r < ||A]|F - ||B]| . the second inequality is due to the non-expansiveness of

Py, the third inequality follows from Lemma C.4, and the last inequality is due to ||H| g < co+/07/(1n). According to
Lemma C.4, we can upper bound the last term .J3 as follows

_ 2
J3s < ||p IXIPQ(XLHUH\T/XIT%)XRHF VI3
< (14 mny)® - [HoHY (|7 - V(3 < 2920707 H| 7,
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where the second inequality follows from Lemma C.4, and the last inequality is due to |[HyH{ || < ||H||%/2 and
|H||r < ay/0F/(u1n). Therefore, we obtain the upper bound of I74

Ly <4Jy 4 4J5 + 2J5 < 2005 |[UHY, + Hy VT |2 4 ot | H||%
< 4007 [|M — M*[|% + 1007 [H|[ + o7 o [H]|,

where we set y to be small enough in the first inequality, and the last inequality follows from || A +B||% < 2||A||% +2||B]|%.
By symmetry, we can use the same techniques to bound the term /2, which will yields the same upper bound and implies

Iy < 8007 ||M — M*||% + 2007 | Hl[% + 207 07| HI[%.
The upper bound of the remaining term I is as follows
I, <2|Z2*Z 7 Z|% + 80722 — 22T ||%,
where the detailed proof can be found in the proof of Lemma B.2. Hence, we obtain
~ 1 ~
IVfa(Z)|F < 20 + 51 < 8407227 = Z°Z7 ||} + |27 2" T 2| + dotoy | HI[F + 4007 [H] &,

which completes the proof. ]

D. Proof of Technical Lemmas

In this section, we prove the technical lemmas used in Section C.

D.1. Proof of Lemma C.1

Proof. We begin our proof with some properties regarding the optimal solution. Let H = Z — Z*R and AXB T be the
SVD of Z*T Z, then we have R = ABT. Thus,

Z'Z'R=BYXB' = (Z‘'R)"Z,
which implies that Z T Z*R is symmetric and positive definite. Moreover, we have
H'ZR=Z'"Z‘R-R'Z*"Z'R=7Z"Z'R - (Z'R)" Z'R,

which implies H' Z*R. is also symmetric. Without loss of generality, we assume R = I, then Z " Z* is positive definite,
and H' Z* is symmetric. Thus, to prove Lemma C.1, it is sufficient to prove

o7 (27)
1

1
(z“H" + HZ*T + HH")(Z" + H),H) > IEE + 20T + HZ"T + HH||Z,

which is equivalent to
0<tr ((HTH)2 +3H HH'Z* + (H'Z*)> + H'HZ""Z*

T

4

1 2(Z*
-3 (H'H)? +4H'HH'Z* +2(H'Z*)* + 2H ' HZ"'Z"] - U()HTH).
Combining terms, we have

3 1 1 2(z*
0 <tr <(HTH)2 +2H HH'Z* + 5(HTZ*)2 + 5HTHZ*TZ* _ il )HTH),

4 4

which is further equivalent to

| P - T2 O T2 L L Tegs T On(Z) o7

Note that tr (H"H)?) = [H'H||%, < |H||% - |[H||3, and tr(H"HZ*"Z*) > ¢2(Z*) - |H||%.. Therefore, in order to
prove (D.1), it is sufficient to require that

o7 (Z")
5 b
which completes the proof. O

FEL)j3 <
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D.2. Proof of Lemma C.2

Proof. For any i € [d;], denote X; ., € R1*™! as the i-th row of X. Similarly, for any j € [da], denote Y. € RIx72 a9
the j-th row of Y. Thus, for any Z € R™ *"2_ we have

X Po(XPr(Z)YT)Y = > (XPr(Z)Y',ee] )X eie] Y
(1,7)€Q

= Z <,PT(Z)>X1T,*Y]7*>XI*YJ*
(4,5)€Q

- Z (Z,Pr (X, Y; )XY, (D.2)
(1,7)€Q

where the last equality holds because (P7(A),B) = (A, Pr(B)). Besides, for any (i, j) € [di] x [da], let &; = 1, if
(,7) € £, and zero otherwise. Note that both X and Y are orthonormal, thus according to (D.2), we have

PrZ) - p Py (x% (XPT<Z>YT)Y) —p, (xT(z —p%)(xm(sz)Y)

= Y (1-p )z Pr(X] Y0 Pr(X]LY ),
(3,9)€
[d1] % [d2]

where Z : R41xd2 — R41%4z2 g the identity mapping. For any (i, j) € [d1] X [da], define linear operator S;; : R™1*"2 —
R™1X72 gych that

Si(Z) = (1 —p~ )2, Pr(X,Y 1)) Pr(X{, Y ).
Define S;; € Rd1d2xd1d2 4 the corresponding matrix to the linear operator Si; such that
Sy = (1 — p~ &) vee(Pr (X[, Y;.))vee(Pr (X[, Y;.)) |
then we can easily show that || >, ; Si;(Z2))% = | > i Sij vec(Z)||%, for any Z € R% >4 Next, we are going to apply

matrix bernstein to the summation }_; ; S;;. We note that E[S;;] = 0, and S;; is symmetric, for any (i, j) € [d1] x [da].

Since XM*Y " is pg-incoherent and M* = ﬁ*EV*T, we have ||Xﬁ*||2,<,o < por/dy, ||YV*||27OO <V por/ds.
According to the definition of P7 in (C.1), for any (i, j) € [d1] x [d2], we obtain

IPr (XL Y005 =TT XY, + XY, VV' -TT XLY,.VV' XY,.)

=% =T =% B
=0 XLY 5l + IV YL XF - 0 XYV |
——x %
<X U1 1Y 5ll3 + 1Y 5V 2 XK 13

pop1r(ng + ng)

D3
dids ; (D.3)

<XU 3 o0 - 1Y 13 o + YV 2,00+ X3 00 <

where the first equality holds because ||P7(A)||% = (Pr(A), A), the first inequality holds because for any vectors
x,y € R, [[xy " ||r < ||x||2-]|y¥]|2. and the last inequality holds because both X, Y are 11 self-incoherent. To apply matrix
bernstein inequality, we need to bound ||S;; |2 and || D E(Sfj)| ,» Tespectively. To begin with, for any (4, j) € [d1] x [d2],
according to definition of S;;, we have

popar(ni + ng)

1 1
Sijll2 < = |vec(Pr(XY;. )3 = = II1Pr(X]. Y, )7 <
| gllz_pl\ (Pr(Xi. Y )l pll T(Xi oY) I < vy ds

(D.4)
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where the first inequality holds because [(A,B)| < ||A||r - ||B||r. and the second inequality follows from (D.3). Similarly,
for any Z € R™*"2 we have

IS Eisz), =2

> vee(Pr(X LY ) - IPr(XY 0[5 - vee(Pr(X{,Y;0)) T

(2]

p 2

popar(na +ng)

= sup vec(Pr X;F*Y',* vec(Pr X;-r*Y-,,F Tvec(Z
pdid; 1Z) =1 EJ: (Pr(X; s Y )vee(Pr (X, X)) vec(Z)|
popar(na + na) ( . . )
pdidz 1Zlr=1 2_(Pr(Z) X Y XY, .

4,3

pop1m(ny + na) T T pop1r(ny + nz)
< —— 7. su Pr(X'XPr(Z)Y'Y < =7
- pdids ||z||Fp:1 [P (%) M < pdids

where the first equality follows from the definition of S;;, the first inequality follows from (D.3) and the definition of spectral
norm, the second equality holds because (P7(A), B) = (A, P7(B)), and the second inequality holds because X, Y are
orthonormal and the projection operator P is non-expansive. Thus, we obtain

popr(ny + ng)

2
HE(SU)HQ < pd1d2

(D.5)

Therefore, combining (D.4) and (D.5), according to Lemma E.1I, for any v € (0, 1), we have

2

/2
P Sij

{ ; ! (1 +~/3)popar(ny 4+ n2)/(pdidz)
under condition p > cpopyrnlog(d)/(72dyds), where ¢ is a constant. Note that for all Z € R% 42 we have
IS, - [l < S5

1,9 i,] 1,3

we complete the proof of (C.2). Furthermore, for all Z;,Z, € T, we have

227}§(n1+n2)~exp( >SC’/d,

A

(XZaYT = p  Po(XZiY ), X2ZoY )| = [(Pr(Z0) - p~ Py (X Pr(XPr(Z)Y )Y ), 22)|
< |Prz) —p e (XTPr (XPrz)Y)YT)| - Zallr
SANZallF - 122 7,

where the first equality holds because (A, Pr(B)) = (P7(A),B), the second inequality holds because (A,B) <
|A]lF - ||B]|F, and the last inequality follows from (C.2). Finally, for all Z € T, we have

pHPa(XZY T |2 < (Z - p ' X T Po(XZY )Y, Z)| + | ZI% < (1 +7)|ZI2,
which complete the proof. O

D.3. Proof of Lemma C.3

Proof. Note that we have

1 2 _
’ [Pa(XLUVTX L) = IXLUVIXEE + (07 Po(X UV X E) — X, UVX L, X, UVTXE)

= UV} +((p™'Pa — T)(XL UV X}), X UV X })
(d1,d2) &i
—ovTEe > (1) VTR
(1,5)=(1,1)

2
ij’
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where §;; = 1,1f (¢,7) € Q; &; = 0, otherwise.Thus, it is sufficient to bound the second term on the right hand side. For
simplicity, we let oi;; = (p~1&;; — 1) - [XLUVTXT} . Note that U,V are fixed, we have E[c;;] = 0. In addition, we can
upper bound |aij| by

_1
i < — IIXLUVTX 36,00 < <3 —max { | X.[l3 oo - [U[F - IXRVI oo, |

VI X RS o}

Quopiror(ng + ng)
pdids

~(I1% + Vi),

where the second inequality follows from Assumption 3.2. Next, we are going to bound the variance

1,d2) (4,4)

Var( Z Oéij) = Z Var(aij)

(4,5)=(1,1) (,)=(1,1)

1 (d1,d2) .
< ; > [XLUVTXG] y
(1,)=(1,1)
1 9M2,,,20.*2
< X UV X[ o IXLUVIXE |7 < —2—(|U||7 + | VIF)?,
P pdida

where equality holds because ;s are independent, and the last inequality follows from the assumptions || X7 Ul|2 o0 <

3/ 1oroi/di, || Xe V2,00 < 34/ oro} /ds. Therefore, applying bernstein inequality for random variables, under condition
that || > emax{ur?s?, popirsn}log d/+?, with probability at least 1 — ¢’ /d, we have

(d1,d2)

E Oél‘j

(4,)=(1,1)

<oy - (IUIF + | VI[7),

which completes the proof. O

D.4. Proof of Lemma C.4

Proof. For any i € [dq], we denote X, . € R*™ as the i-th row vector of X. Similarly, for any j € [da], we denote
Y . € R1X"2 as the j-th row vector of Y. Besides, for any (4, 5) € [d1] x [dz], let &;; = 1,if (i, j) € €2, and zero otherwise.
Note that X, Y are orthonormal, thus for any Z € R™*"2 we have

Z—-p ' X TPo(XZY )Y =X (T - p 'Po)(XZY )Y

= > (1-p &G )NXZY  ee) )X ee] Y
(i,4)€[d1] % [d2]

— Y (- )@ XY DXLY
(i,4)€[d1] % [d2]

where 7 : R%1*d2 — R41%d2 jg the identity mapping, and e; denotes the i-th standard basis. For any (4, ) € [dy] x [da],
define linear operator S;; : R™*"2 — R™ *"2_such that

Sij(Z) = (1 —p~'6)(2, XY )XY
Define S;; € Ré1d2xd1d2 g4 the corresponding matrix to the linear operator Si; such that
Sij = (1—p & )vee(X[], Y )vee(X,Y;.) T, (D.6)

then we can easily show that [ 3, ; S (D)% = 1>, ; Sij-vec(Z) 2, forany Z € R%1*42_ Obviously, we have E[S;;] = 0
and S;; is symmetric. For any (i, j) € [d1] X [d2], according to the definition of S;; in (D.6), we have

2
M1n1”2
b
pdyds

1 1
1Sijlle < Z;HVCC(XI*YJ’,*)H% = EHXLYJ', |IF *IIXIIQ oo " |

(D.7)
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where the second inequality holds because || X, Y. |lr = [|Xi |2 - ['Y;,+||2. and the last inequality follows from the fact
that X,Y are p; self-incoherent. Moreover, for any Z € R™**"2 we have

1—
| YB3, = —*
1,7

ZVGC(XI*YJ,*) : HXJ,—*YJ;*H%‘ 'VeC(Xz—'l,—*Yj,*>T

P i,J 9
2
nn
< % - sup ZVeC(XI*Yj’*)VeC(X;,r*Yj,*)TVeC(Z)
pardz yzje=111%7; ,
2
Hinineg T .
= - sup (Z, X, Y;0X] Y.
pindy e, | 2B KLY XY e
pimns pining

= - sup [ XTXZY'Y|, <
1

pdidy 1z = pdidy ’

where the first equality follows from the definition of S;; in (D.6), the first inequality follows from the fact that

HXI*YM |2 < w?nina/(didz), and the last equality holds because X, Y are both orthonormal. Therefore, accord-
ing to matrix bernstein inequality as in Lemma E.1, for any v € (0, 1), we have

IP’{ > S
2%}

under condition |Q| > cuinlogd/ 72, where c is a constant. Thus according to the definition of S;;, for all Z € R™*"2,
with probability at least 1 — ¢’ /d, we have

2,202
a2 > <d/d,
1+ ypan/3)puinine /(pdids)

> mm} < 2n1ng - exp ((
2

1Z — p~ X TP (XZY ) Y| = H Zsij(z)HF - H 3 sy ~vec(Z)H2 < H 3 sy
i i i

- 1Zlr < 2] e
By triangle’s inequality, we complete the proof. O

E. Additional Auxiliary Lemmas

In this section,we provide the bernstein inequalities used in the proofs for our main results .

Lemma E.1. (Tropp, 2012) Consider a finite sequence {Z;} of independent random matrices with dimension d; X do.
Assume that each random matrix satisfies

E(Zy) =0 and |Zg|2 <R almost surely.

J

>t <(d —l—d) exp 7/
N X .
= > (a1 2 B} R/3

Define

> E(Z] Zy)

k

)

2

0? = max { H ZE(ZkZZ)
k

Then, for all ¢ > 0, we have

(I

Lemma E.2. Assume the index set ) follows Bernoulli model (3.1). There exists constants ¢, ¢’ such that under condition
that |Q| > clog d, with probability at least 1 — ¢’ /d, we have

1
|12 = pdids| < §Pd1d27
where p = |Q|/(d1d).

Lemma E.2 can be directly derived from the bernstein-type inequality for independent random variables.



