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In this supplement, we present the detailed proofs of all the theorems in the main text.

A. Proof of Theorem 1
Proof. of Theorem 1:
(i) Since f(w) = maxgecp(r)(W,s), we can have

P

Dnin f(w) + ; ¥ ([wl;) (8)

P
= min max (w,s) + ij([w]j)
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where (9) holds due to the strong duality theorem (Borwein & Lewis, 2010), and (10) holds due to the definitions of the
Fenchel conjugate of ;.
(i1) From (8), we have

* c *,

s* € arg nglgzﬁg){W S)

< (W, s™) > (w",s),Vs € B(F)
Swhe NB(F)(S*).

From Eq. (10), we have

p

w* e arg&iﬂg}(w,sﬂ + Z:le([w]j)
i=

o [s]i € —u(IWlL), Yk € V.

The proof is complete. O

B. Proof of Lemma 1

Proof. of Lemma 1:

(1) It is the immediate conclusion of Theorem 2.

(i) Since £ C A* and G C V/A*, we can solve the problem SFM by fixing the set £ and optimizing over V/(£ U G). And
the objective function becomes F/(C) := F(£ UC) — F(€) with C C V/(€ U G). Thus, SEM can be deduced to

min  F(C):=FEuUC) - F(é).
CCV/(EUG)
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The second term of the new objective function F° (C) is added to make F (0) = 0, which is essential in submodular function
analysis, such as Lovasz extension, submodular and base polyhedra.

Below, we argue that F'(C) is a submodular function.

Forall S C V/(EUG)and T C V/(£ UG), we have

F(S)+ F(T) = (F(EUS) — ()) (F(€
F(EUS)—i—F( UT)—2F (&
> F((EUS)U(EUT) +F((E
FEUSUT)+FEUSU
= (F(EU(SUT)) - F(&)) + (F
=F(SUT)+F(SNT).

UT)~ F(€))

)
US)NEUT)) —2F(€) (11)
T)) — 2F(&)

(EU(SUT)) - F(&))

The inequality (11) comes from the submoduality of F'.
(ii1) It is the immediate conclusion of (ii).
The proof is complete. O

C. Proof of Theorem 3

To prove Theorem 3, we need the following Lemma.

Lemma 4. [Dual of minimization of submodular functions, Proposition 10.3 in (Bach et al., 2013)] Let F' be a submodular
function such that F'(0) = 0. We have:

min F(A) = max s_(V) =
ACV seB(F)

(F(v)— min [is|l,). (12)

s€EB(F)

DN | =

where [s_];, = min{[s], 0} forVk € V.

We now turn to prove Theorem 3.

Proof. of Theorem 3: X .
Since P(W) is 1-strongly convex, for any w € domP (W) and W* = arg mingcg» P (W), we can have

~ » * Ao Sk 1 ~ ~ ok
P(Ww) 2 P(w") + (g, W — W") + S ||w — w I3,

where g € (?P(W ).
Since domP(w) = RP, it holds that 0 € dP(W*). Hence, we can obtain

S = [ < P(w) — P(w7).

In addition, we notice that P(w*) > D(8) for all § € B(F). By substituting this inequality into the above inequality, we
obtain that

SI% W3 < P(W) — P(#") < P(W) — D(&) = G(w,5).
Thus,
W e B = {w lw — W < za(w,é)}. (13)

According to the equation (Opt) in Theorem 1, we have that —w™ is the optimal solution of the problem Q-D’. Therefore,
—w* € B(F). From the definition of B(F'), we have

—(w*, 1) = —w* (V) = F(V).

Thus,
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W eP = {w S (w, 1) = —F(V)}. (14)
By section 7.3 of (Bach et al., 2013)), it holds that the unique minimizer of problem Q-D’ is also a maximizer of

max s_(V).
s€B(F)

Hence, it holds that
18*]]1 < |81 forall § € B(F). (15)
From Lemma 4, we have
F(O) 2 S(F(V) ~ [8]1). forall & € B(F),
= |81 > F(V) — 2F(C), for all § € B(F). (16)
By combining (15) and (16), we acquire
F(V) = 20(C) < |81 < 8]}, forall § € B(E).
Since w* = —§*, we have
E(V) = 2F(C) < |[w*|ly < ||8]1,for all § € B(F).

Thus, we obtain

w' e Q= {w: F(V) = 25(C) < |wlh < [3ll1 }. (a7)
From (13), (14) and (17), we have w* € BN QN P.
The proof is complete. O
D. Proof of Lemma 2

Proof. of Lemma 2:
Forany j =1, ..., p, we have

D (Iwl; — [W1,)* < 2G(W,8) — (Iwl; — (IW]))%, (18)
i)
Y Iwli = —F(V) = [wl;. (19)
i)

By fixing the component [w];, we can see that (18) and (19) are a ball and a plane in RP~1, respectively. To make the
intersection of (18) and (19) non-empty, we just need to restrict the distance between the center of ball (18) and the plane
(19) smaller than the radius, i.e.,

1Yo W]+ F(V) +

[wl;
wlj| < \/Qa(w,s) = ([wl; — [W1y)?,

vb—1
which is equivalent to
plwl? + blwl; + ¢ <0, (20)
A A 2
where b = 2(2 Wl + E(V) — (p— 1)[w1j), and ¢ = (Z (w1, + F(V)) —2(p— 1)G(W,8) + (p— D)W
7 i#j

Thus we have
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Wl ¢ [fbf VB2 —dpe —b+ /b — 4;30]
J 2 ’ 2p

At last, we would point out here that since w* must be in the intersection of the ball (18) and the plane (19). Hence,
inequality (20) can be satisfied with [w*];, which implies that b? — 4pc would never be negative.
The proof is complete. U

E. Proof of Theorem 4
Proof. of Theorem 4: _
(i): According to minwepnp [W]; = [w];-nln > 0and w* € BN P, we have

[w*], > 0.

From Theorem 2, it holds that j € argmin, F(C) C A*.
(ii): Since maxwepnp [Wl; = [W]}™ < 0and w* € BN P, we have

[w*],; < 0.

From Theorem 2, we have j ¢ arg ming .y F/(C). Note that A* = £ Uargmin F'(C) and j ¢ &. Therefore j ¢ A*.
(iii) It is the immediate conclusion from (i) and (ii).
The proof is complete. U

F. Proof of Lemma 3

Proof. of Lemma 3:
(i) We just need to prove that

W™ > 0if [W]; > \/2G(W,§),
WP < 0if [W]; < —/2G(W,$).

min

We divide the proof into two parts. First, when [W]; > 1/2G/(W, 8), considering the definition of [w]}"", we have
[wIP™ = min_[wl]; > min[w]; = [W]; — /2G(W,8) > 0.

In this case, the element j can be screened by rule AES-1.
On the other hand, when [W]; < —+/2G(W, §), from the definition of [w]}“ax, we have

[w];™ = Jnax [w]; < max[w]; = [W]; + 2G(Ww,8) < 0.

In this case, the element j can be screened by rule IES-1.
(i) We note that the point v with [v]; = 0 and [v], = [W], forall k # j, k = 1,2, .., p belongs to the ball B. Thus, we
have

anin] _wll < > 90| = (1% ly = w1, < [[W])s.
weB,|w j70 i)
Now, we turn to calculate max, s (] <o [|Wl[1-

wl;<

We note that the range of [w]; is [ — \/2G(W,8) + [W];, /2G(W,8) + [w];] when w € B. Hence, the problem
MaXy e [w]. <0 |[w]||1 can be decomposed into
JAwl, <

max { max HWHl}
—/2G(w3)+[w];<a<0 * weB,[w];=a
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We assume [w]; = a with —/2G(W, 8) + [W]; < a < 0 and first consider the following problem,

max w1,
wEB,[w]jza

which can be rewritten as

max —o -+ Z [[w];]

[W]ri1i7£j i#j
st Y (Iwl —[W]))* < 26(W,8) — (o — [W],)°.
i<p.iF]

It is easy to check that the optimal solution of the problem above is

2G(W,8) — (a — [W];)?
p—1 '

(w];, = [W]; + Sign([W]i)\/

The function sign(-) : R — {—1, 1} above takes 1 if the argument is positive, otherwise takes -1. And the corresponding
optimal value is

maxwlh = ot 32wk + VB 1y/26(%,8) — (o~ 91,2
weB,|w]|. =«

j i

Now, we denote h(a) = —a + >, [[Wl;| + Vb — 11/2G(W,s) — (@ — [W];)? and turn to solve

max h(c)
—/2G(W.8)+[w];<a<0
If [W]; — \/@ < 0, then
. 2G(w, 8 . . —
max h(a) = h([W]; — w) = —[wl; + Z [[Wli| + v 2pG(w, 8)
—/2G (W ,8)+[w];<a<0 p oy

= [[wlly = 2[w]; + v/2pG (W, 8);

else if [W]j — %ﬁ"s) > (), then
max h(a) = h(0) = Y |[Wl;| + v/ — 11/2G(W,8) — [W]}
—V/2G(W,8)+[w];<a<0 oy

— Wl — W], + V5 — 1y/2G(w,8) — [WEZ.

In a consequence, we have

W1 — 2[W]; + /2pG (W, 8), if [W1, — \/@ <0
max [lwll, = ) - — |
WEB,[W]]‘SO HWHl - [W]J + \/ﬁ 2G(W7S) — [W]j? otherwise.

(iii) Recall that the point v with [v]; = 0 and [v];, = [W] forall k # j,k = 1,2, .., p lies in the ball B. Thus, we have

min [lwly <Y (91| = W]l — [W]; < [|W]s.
WEB,[W jZO it
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Now, we turn to calculate max s 1] >0 W/l
Awl;>

We note that the range of [w]; is [ — 1/2G(W,8) + [W];, \/2G(W, 8) + [W],;] when w € B. Hence, we decompose the
problem max s 1] >0 [|[W/1 into
Iwl; >

max { max ||WH1}

0<a</2G(w.8)+[w]; * weB,[w];=a
We assume [W]; = a with 0 < a < /2G(W,8) + [W]; and first solve the following problem:

max w1,
WEBv[W]jZOC

which can be rewritten as
max o+ E [[w];]
[wl, i#i Py

s.t. Z ([W]z - [VAV]j)2 < QG(W,é) - (a - [w]j)Q'

i<piF

It can be verified that the optimal solution of the problem above is

26(3.3) — (0~ [W];)?

[w]; = [W]; + Sign([w]i)\/ o1

The function sign(-) : R — {—1, 1} above takes 1 if the argument is positive, otherwise takes -1. And the corresponding
optimal value is

max [wlly =+ > [[Wh| + /5 1/2G(w,8) — (a — [W],)2.

wEB,[w]j:a i

Now, we denote h(a) = a+ 3, [[W];| + vp — 1,/2G(W,8) — (a — [W];)? and turn to solve

max h(c)
0<a</2G(w,8)+[w],
If [W]; + /26572 > 0, then
2G (W, 8
max h(a) = h(pwl; + | 28 g 4 > IWL] + V/25G(W,8)
0<a</2G(W,8)+[ W], p i

= |[W1 + 2[W]; + /2pG(W, ).
Else if [, + /222 < 0, then
ha) = h(0) = S| + VB~ 1,/26(%.8) - [wI2
] (@) = 1(0) = > [[Wi| + VP — 11/2G(W,8) — [W]]

i#£]
= [[Wll1 + [w]; + /P — 1,/2G(W,8) — [W].

Consequently, we have
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”VAVHl + 2[‘7\’]]‘ + QﬁG(W,é), if [\i,—]7 + \/@ >0,

max ||w|; =

weB,[w];>0 W1 + [wl; + Vb — 1,/2G(W,8) — [W]7, otherwise.
The proof is complete. O
G. Proof of Theorem 5

Proof. of Theorem 5:
(1): Noting that

{0 < [W]; < V2G(W,8),

max,, e [w] <o IWlh < (V) = 2F(0),

and @ = {w : P(V) = 2(C) < | wl < [§l}1 }, we have
{W7WEB, [wl; go}rmza). 1)

Since w* € BN (Y, from (21) we have [W*]; > 0. Thus, from Theorem 2 we have j € argmin F‘(C’) C A*.
(i1): Since

{—\/2G(vv,é> < [wl; <0,

MaXwen,[w],;>0 [wll: < F(V) — QF(C’),
and Q = {w L F(V) = 2F(0) < |[wl < Hg||1}, we have

{w.weB,wl; =0} na=0. 22)

Since w* € BN, from (22) we have [w*]; < 0.

From Theorem 2, we have j ¢ arg min F(C). Noting that A* = £ Uarg ming -y F(C)and j ¢ £. Therefore j ¢ A*.
(iii) It is the immediate conclusion of (i) and (ii). -
The proof is complete. O



