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In this supplement, we present the detailed proofs of all the theorems in the main text.

A. Proof of Theorem 1
Proof. of Theorem 1:
(i) Since f(w) = maxs∈B(F )〈w, s〉, we can have

min
w∈Rp

f(w) +

p∑
j=1

ψj([w]j) (8)

= min
w∈Rp

max
s∈B(F )

〈w, s〉+

p∑
j=1

ψj([w]j)

= max
s∈B(F )

min
w∈Rp

〈w, s〉+

p∑
j=1

ψj([w]j) (9)

= max
s∈B(F )

−
p∑
j=1

ψ∗j (−[s]j), (10)

where (9) holds due to the strong duality theorem (Borwein & Lewis, 2010), and (10) holds due to the definitions of the
Fenchel conjugate of ψj .
(ii) From (8), we have

s∗ ∈ arg max
s∈B(F )

〈w∗, s〉

⇔ 〈w∗, s∗〉 ≥ 〈w∗, s〉,∀s ∈ B(F )

⇔ w∗ ∈ NB(F )(s
∗).

From Eq. (10), we have

w∗ ∈ arg min
w∈Rp

〈w, s∗〉+

p∑
j=1

ψj([w]j)

⇔ [s]∗k ∈ −∂ψk([w]∗k),∀k ∈ V.

The proof is complete.

B. Proof of Lemma 1
Proof. of Lemma 1:
(i) It is the immediate conclusion of Theorem 2.
(ii) Since Ê ⊆ A∗ and Ĝ ⊆ V/A∗, we can solve the problem SFM by fixing the set Ê and optimizing over V/(Ê ∪ Ĝ). And
the objective function becomes F̂ (C) := F (Ê ∪ C)− F (Ê) with C ⊆ V/(Ê ∪ Ĝ). Thus, SFM can be deduced to

min
C⊆V/(Ê∪Ĝ)

F̂ (C) := F (Ê ∪ C)− F (Ê).
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The second term of the new objective function F̂ (C) is added to make F̂ (∅) = 0, which is essential in submodular function
analysis, such as Lovász extension, submodular and base polyhedra.
Below, we argue that F̂ (C) is a submodular function.
For all S ⊆ V/(Ê ∪ Ĝ) and T ⊆ V/(Ê ∪ Ĝ), we have

F̂ (S) + F̂ (T ) = (F (Ê ∪ S)− F (Ê)) + (F (Ê ∪ T )− F (Ê))

= F (Ê ∪ S) + F (Ê ∪ T )− 2F (Ê)

≥ F ((Ê ∪ S) ∪ (Ê ∪ T )) + F ((Ê ∪ S) ∩ (Ê ∪ T ))− 2F (Ê) (11)

= F (Ê ∪ (S ∪ T )) + F (Ê ∪ (S ∪ T ))− 2F (Ê)

= (F (Ê ∪ (S ∪ T ))− F (Ê)) + (F (Ê ∪ (S ∪ T ))− F (Ê))

= F̂ (S ∪ T ) + F̂ (S ∩ T ).

The inequality (11) comes from the submoduality of F .
(iii) It is the immediate conclusion of (ii).
The proof is complete.

C. Proof of Theorem 3
To prove Theorem 3, we need the following Lemma.

Lemma 4. [Dual of minimization of submodular functions, Proposition 10.3 in (Bach et al., 2013)] Let F be a submodular
function such that F (∅) = 0. We have:

min
A⊆V

F (A) = max
s∈B(F )

s−(V ) =
1

2

(
F (V )− min

s∈B(F )
‖s‖1

)
, (12)

where [s−]k = min{[s]k, 0} for ∀k ∈ V .

We now turn to prove Theorem 3.

Proof. of Theorem 3:
Since P̂ (ŵ) is 1-strongly convex, for any ŵ ∈ domP̂ (ŵ) and ŵ∗ = arg minŵ∈Rp̂ P̂ (ŵ), we can have

P̂ (ŵ) ≥ P̂ (w∗) + 〈ĝ, ŵ − ŵ∗〉+
1

2
‖ŵ − ŵ∗‖22,

where g ∈ ∂P̂ (ŵ∗).
Since domP̂ (ŵ) = Rp̂, it holds that 0 ∈ ∂P̂ (ŵ∗). Hence, we can obtain

1

2
‖ŵ − ŵ∗‖22 ≤ P̂ (ŵ)− P̂ (ŵ∗).

In addition, we notice that P̂ (w∗) ≥ D̂(ŝ) for all ŝ ∈ B(F̂ ). By substituting this inequality into the above inequality, we
obtain that

1

2
‖ŵ − ŵ∗‖22 ≤ P̂ (ŵ)− P̂ (ŵ∗) ≤ P̂ (ŵ)− D̂(ŝ) = G(ŵ, ŝ).

Thus,

ŵ∗ ∈ B :=
{
w : ‖w − ŵ‖ ≤

√
2G(ŵ, ŝ)

}
. (13)

According to the equation (Opt) in Theorem 1, we have that −ŵ∗ is the optimal solution of the problem Q-D’. Therefore,
−ŵ∗ ∈ B(F̂ ). From the definition of B(F̂ ), we have

−〈ŵ∗,1〉 = −ŵ∗(V̂ ) = F̂ (V̂ ).

Thus,
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ŵ∗ ∈ P :=
{
w : 〈w,1〉 = −F̂ (V̂ )

}
. (14)

By section 7.3 of (Bach et al., 2013)), it holds that the unique minimizer of problem Q-D’ is also a maximizer of

max
s∈B(F̂ )

s−(V ).

Hence, it holds that

‖ŝ∗‖1 ≤ ‖ŝ‖1 for all ŝ ∈ B(F̂ ). (15)

From Lemma 4, we have

F̂ (C) ≥ 1

2
(F̂ (V̂ )− ‖ŝ‖1), for all ŝ ∈ B(F̂ ),

⇒ ‖ŝ‖1 ≥ F̂ (V̂ )− 2F̂ (C), for all ŝ ∈ B(F̂ ). (16)

By combining (15) and (16), we acquire

F̂ (V̂ )− 2F̂ (C) ≤ ‖ŝ∗‖1 ≤ ‖ŝ‖1, for all ŝ ∈ B(F̂ ).

Since ŵ∗ = −ŝ∗, we have

F̂ (V̂ )− 2F̂ (C) ≤ ‖ŵ∗‖1 ≤ ‖ŝ‖1, for all ŝ ∈ B(F̂ ).

Thus, we obtain

ŵ∗ ∈ Ω :=
{
w : F̂ (V̂ )− 2F̂ (C) ≤ ‖w‖1 ≤ ‖ŝ‖1

}
. (17)

From (13), (14) and (17), we have ŵ∗ ∈ B ∩ Ω ∩ P .
The proof is complete.

D. Proof of Lemma 2
Proof. of Lemma 2:
For any j = 1, ..., p̂, we have ∑

i 6=j

([w]i − [ŵ]i)
2 ≤ 2G(ŵ, ŝ)− ([w]j − ([ŵ]j)

2, (18)

∑
i 6=j

[w]i = −F̂ (V̂ )− [w]j . (19)

By fixing the component [w]j , we can see that (18) and (19) are a ball and a plane in Rp̂−1, respectively. To make the
intersection of (18) and (19) non-empty, we just need to restrict the distance between the center of ball (18) and the plane
(19) smaller than the radius, i.e.,

|
∑
i 6=j [ŵ]i + F̂ (V̂ ) + [w]j |√

p̂− 1
≤
√

2G(ŵ, ŝ)− ([w]j − [ŵ]j)2,

which is equivalent to

p̂[w]2j + b[w]j + c ≤ 0, (20)

where b = 2
(∑
i 6=j

[ŵ]i + F̂ (V̂ )− (p̂− 1)[ŵ]j
)
, and c =

(∑
i6=j

[ŵ]i + F̂ (V̂ )
)2

− 2(p̂− 1)G(ŵ, ŝ) + (p̂− 1)[ŵ]2j .

Thus we have
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[w]j ∈ [
−b−

√
b2 − 4p̂c

2p̂
,
−b+

√
b2 − 4p̂c

2p̂
]

At last, we would point out here that since ŵ∗ must be in the intersection of the ball (18) and the plane (19). Hence,
inequality (20) can be satisfied with [ŵ∗]j , which implies that b2 − 4p̂c would never be negative.
The proof is complete.

E. Proof of Theorem 4
Proof. of Theorem 4:
(i): According to minw∈B∩P [w]j = [w]min

j > 0 and ŵ∗ ∈ B ∩ P , we have

[ŵ∗]j > 0.

From Theorem 2, it holds that j ∈ arg minC⊆V̂ F̂ (C) ⊆ A∗.
(ii): Since maxw∈B∩P [w]j = [w]max

j < 0 and ŵ∗ ∈ B ∩ P , we have

[ŵ∗]j < 0.

From Theorem 2, we have j /∈ arg minC⊆V̂ F̂ (C). Note that A∗ = E ∪ arg min F̂ (C) and j /∈ E . Therefore j /∈ A∗.
(iii) It is the immediate conclusion from (i) and (ii).
The proof is complete.

F. Proof of Lemma 3
Proof. of Lemma 3:
(i) We just need to prove that {

[w]min
j > 0 if [ŵ]j >

√
2G(ŵ, ŝ),

[w]max
j < 0 if [ŵ]j < −

√
2G(ŵ, ŝ).

We divide the proof into two parts. First, when [ŵ]j >
√

2G(ŵ, ŝ), considering the definition of [w]min
j , we have

[w]min
j = min

w∈B∩P
[w]j ≥ min

w∈B
[w]j = [ŵ]j −

√
2G(ŵ, ŝ) > 0.

In this case, the element j can be screened by rule AES-1.
On the other hand, when [ŵ]j < −

√
2G(ŵ, ŝ), from the definition of [w]max

j , we have

[w]max
j = max

w∈B∩P
[w]j ≤ max

w∈B
[w]j = [ŵ]j +

√
2G(ŵ, ŝ) < 0.

In this case, the element j can be screened by rule IES-1.
(ii) We note that the point v with [v]j = 0 and [v]k = [ŵ]k for all k 6= j, k = 1, 2, .., p̂ belongs to the ball B. Thus, we
have

min
w∈B,[w]j≤0

‖w‖1 ≤
∑
i6=j

|[v̂]i| = ‖ŵ‖1 − [ŵ]j < ‖ŵ‖1.

Now, we turn to calculate maxw∈B,[w]j≤0 ‖w‖1.

We note that the range of [w]j is [ −
√

2G(ŵ, ŝ) + [ŵ]j ,
√

2G(ŵ, ŝ) + [ŵ]j] when w ∈ B. Hence, the problem
maxw∈B,[w]j≤0 ‖w‖1 can be decomposed into

max
−
√

2G(ŵ,ŝ)+[ŵ]j≤α≤0

{
max

w∈B,[w]j=α
‖w‖1

}
.
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We assume [w]j = α with −
√

2G(ŵ, ŝ) + [ŵ]j ≤ α ≤ 0 and first consider the following problem,

max
w∈B,[w]j=α

‖w‖1,

which can be rewritten as

max
[w]i,i6=j

−α+
∑
i6=j

|[w]i|

s.t.
∑

i≤p̂,i 6=j

([w]i − [ŵ]j)
2 ≤ 2G(ŵ, ŝ)− (α− [ŵ]j)

2.

It is easy to check that the optimal solution of the problem above is

[w]i = [ŵ]i + sign([ŵ]i)

√
2G(ŵ, ŝ)− (α− [ŵ]j)2

p̂− 1
.

The function sign(·) : R→ {−1, 1} above takes 1 if the argument is positive, otherwise takes -1. And the corresponding
optimal value is

max
w∈B,[w]j=α

‖w‖1 = −α+
∑
i 6=j

|[ŵ]i|+
√
p̂− 1

√
2G(ŵ, ŝ)− (α− [ŵ]j)2.

Now, we denote h(α) = −α+
∑
i 6=j |[ŵ]i|+

√
p̂− 1

√
2G(ŵ, ŝ)− (α− [ŵ]j)2 and turn to solve

max
−
√

2G(ŵ,ŝ)+[ŵ]j≤α≤0

h(α)

If [ŵ]j −
√

2G(ŵ,ŝ)
p̂ < 0, then

max
−
√

2G(ŵ,ŝ)+[ŵ]j≤α≤0

h(α) = h([ŵ]j −

√
2G(ŵ, ŝ)

p̂
) = −[ŵ]j +

∑
i 6=j

|[ŵ]i|+
√

2p̂G(ŵ, ŝ)

= ‖ŵ‖1 − 2[ŵ]j +
√

2p̂G(ŵ, ŝ);

else if [ŵ]j −
√

2G(ŵ,ŝ)
p̂ ≥ 0, then

max
−
√

2G(ŵ,ŝ)+[ŵ]j≤α≤0

h(α) = h(0) =
∑
i 6=j

|[ŵ]i|+
√
p̂− 1

√
2G(ŵ, ŝ)− [ŵ]2j

= ‖ŵ‖1 − [w]j +
√
p̂− 1

√
2G(ŵ, ŝ)− [ŵ]2j .

In a consequence, we have

max
w∈B,[w]j≤0

‖w‖1 =

‖ŵ‖1 − 2[ŵ]j +
√

2p̂G(ŵ, ŝ), if [ŵ]j −
√

2G(ŵ,ŝ)
p̂ < 0

‖ŵ‖1 − [w]j +
√
p̂− 1

√
2G(ŵ, ŝ)− [ŵ]2j , otherwise.

(iii) Recall that the point v with [v]j = 0 and [v]k = [ŵ]k for all k 6= j, k = 1, 2, .., p̂ lies in the ball B. Thus, we have

min
w∈B,[w]j≥0

‖w‖1 ≤
∑
i6=j

|[v̂]i| = ‖ŵ‖1 − [ŵ]j < ‖ŵ‖1.
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Now, we turn to calculate maxw∈B,[w]j≥0 ‖w‖1.

We note that the range of [w]j is [−
√

2G(ŵ, ŝ) + [ŵ]j ,
√

2G(ŵ, ŝ) + [ŵ]j] when w ∈ B. Hence, we decompose the
problem maxw∈B,[w]j≥0 ‖w‖1 into

max
0≤α≤

√
2G(ŵ,ŝ)+[ŵ]j

{
max

w∈B,[w]j=α
‖w‖1

}
.

We assume [ŵ]j = α with 0 ≤ α ≤
√

2G(ŵ, ŝ) + [ŵ]j and first solve the following problem:

max
w∈B,[w]j=α

‖w‖1,

which can be rewritten as

max
[w]i,i6=j

α+
∑
i 6=j

|[w]i|

s.t.
∑

i≤p̂,i 6=j

([w]i − [ŵ]j)
2 ≤ 2G(ŵ, ŝ)− (α− [ŵ]j)

2.

It can be verified that the optimal solution of the problem above is

[w]i = [ŵ]i + sign([ŵ]i)

√
2G(ŵ, ŝ)− (α− [ŵ]j)2

p̂− 1
.

The function sign(·) : R→ {−1, 1} above takes 1 if the argument is positive, otherwise takes -1. And the corresponding
optimal value is

max
w∈B,[w]j=α

‖w‖1 = α+
∑
i6=j

|[ŵ]i|+
√
p̂− 1

√
2G(ŵ, ŝ)− (α− [ŵ]j)2.

Now, we denote h(α) = α+
∑
i 6=j |[ŵ]i|+

√
p̂− 1

√
2G(ŵ, ŝ)− (α− [ŵ]j)2 and turn to solve

max
0≤α≤

√
2G(ŵ,ŝ)+[ŵ]j

h(α)

If [ŵ]j +
√

2G(ŵ,ŝ)
p̂ > 0, then

max
0≤α≤

√
2G(ŵ,ŝ)+[ŵ]j

h(α) = h([ŵ]j +

√
2G(ŵ, ŝ)

p̂
) = [ŵ]j +

∑
i 6=j

|[ŵ]i|+
√

2p̂G(ŵ, ŝ)

= ‖ŵ‖1 + 2[ŵ]j +
√

2p̂G(ŵ, ŝ).

Else if [ŵ]j +
√

2G(ŵ,ŝ)
p̂ ≤ 0, then

max
0≤α≤

√
2G(ŵ,ŝ)+[ŵ]j

h(α) = h(0) =
∑
i6=j

|[ŵ]i|+
√
p̂− 1

√
2G(ŵ, ŝ)− [ŵ]2j

= ‖ŵ‖1 + [w]j +
√
p̂− 1

√
2G(ŵ, ŝ)− [ŵ]2j .

Consequently, we have
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max
w∈B,[w]j≥0

‖w‖1 =

‖ŵ‖1 + 2[ŵ]j +
√

2p̂G(ŵ, ŝ), if [ŵ]j +
√

2G(ŵ,ŝ)
p̂ > 0,

‖ŵ‖1 + [w]j +
√
p̂− 1

√
2G(ŵ, ŝ)− [ŵ]2j , otherwise.

The proof is complete.

G. Proof of Theorem 5
Proof. of Theorem 5:
(i): Noting that {

0 < [ŵ]j ≤
√

2G(ŵ, ŝ),

maxw∈B,[w]j≤0 ‖w‖1 < F̂ (V̂ )− 2F̂ (C),

and Ω =
{
w : F̂ (V̂ )− 2F̂ (C) ≤ ‖w‖1 ≤ ‖ŝ‖1

}
, we have{

w,w ∈ B, [w]j ≤ 0
}
∩ Ω = ∅. (21)

Since ŵ∗ ∈ B ∩ Ω, from (21) we have [ŵ∗]j > 0. Thus, from Theorem 2 we have j ∈ arg min F̂ (C) ⊆ A∗.
(ii): Since {

−
√

2G(ŵ, ŝ) ≤ [ŵ]j < 0,

maxw∈B,[w]j≥0 ‖w‖1 < F̂ (V̂ )− 2F̂ (C),

and Ω =
{
w : F̂ (V̂ )− 2F̂ (C) ≤ ‖w‖1 ≤ ‖ŝ‖1

}
, we have{

w,w ∈ B, [w]j ≥ 0
}
∩ Ω = ∅. (22)

Since ŵ∗ ∈ B ∩ Ω, from (22) we have [ŵ∗]j < 0.
From Theorem 2, we have j /∈ arg minC⊆V̂ F̂ (C). Noting that A∗ = E ∪ arg minC⊆V̂ F̂ (C) and j /∈ E . Therefore j /∈ A∗.
(iii) It is the immediate conclusion of (i) and (ii).
The proof is complete.


