A. Proofs

A.1. Proof of Proposition 1

Proposition 1. (Householder $Q R$ factorization) Let $B \in \mathbb{R}^{n \times n}$. There exists an upper triangular matrix R with positive diagonal elements, and vectors $\left\{u_{i}\right\}_{i=1}^{n}$ with $u_{i} \in \mathbb{R}^{i}$, such that $B=\mathcal{H}_{n}^{n}\left(u_{n}\right) \ldots \mathcal{H}_{1}^{n}\left(u_{1}\right) R$. (Note that we allow $u_{i}=0$, in which case, $H_{i}^{n}\left(u_{i}\right)=I_{n}$ as in (1))

Proof of Proposition 1. For $n=1$, note that $\mathcal{H}_{1}^{1}\left(u_{1}\right)= \pm 1$. By setting $u_{1}=0$ if $B_{1,1}>0$ and $u_{1} \neq 0$ otherwise, we have the factorization desired.
Assume that the result holds for $n=k$, then for $n=k+1$ set $u_{k+1}=B_{1}-\left\|B_{1}\right\| e_{1}$. Here B_{1} is the first column of B and $e_{1}=(1,0, \ldots, 0)^{\top}$. Thus we have

$$
\mathcal{H}_{k+1}^{k+1}\left(u_{k+1}\right) B=\binom{\left\|B_{1}\right\| \hat{B}_{1,2: k+1}}{0}
$$

where $\hat{B} \in \mathbb{R}^{k \times k}$. Note that $\mathcal{H}_{k+1}^{k+1}\left(u_{k+1}\right)=I_{k+1}$ when $u_{k+1}=0$ and the above still holds. By assumption we have $\hat{B}=\mathcal{H}_{k}^{k}\left(u_{k}\right) \ldots \mathcal{H}_{1}^{k}\left(u_{1}\right) \hat{R}$. Notice that $\mathcal{H}_{i}^{k+1}\left(u_{i}\right)=\left(\begin{array}{ll}{ }^{1} & \\ \mathcal{H}_{i}^{k}\left(u_{i}\right)\end{array}\right)$, so we have that

$$
\mathcal{H}_{1}^{k+1}\left(u_{1}\right) \ldots \mathcal{H}_{k}^{k+1}\left(u_{k}\right) \mathcal{H}_{k+1}^{k+1}\left(u_{k+1}\right) B=\left(\begin{array}{cc}
\left\|B_{1}\right\| \tilde{B}_{1,2: k+1} \\
0 & \hat{R}
\end{array}\right)=R
$$

is an upper triangular matrix with positive diagonal elements. Thus the result holds for any n by the theory of mathematical induction.

A.2. Proof of Theorem 1

Proof. Observe that the image of \mathcal{M}_{1} is a subset of $\mathbf{O}(n)$, and we now show that the converse is also true. Given $A \in \mathbf{O}(n)$, by Proposition 1, there exists an upper triangular matrix R with positive diagonal elements, and an orthogonal matrix Q expressed as $Q=\mathcal{H}_{n}^{n}\left(u_{n}\right) \ldots \mathcal{H}_{1}^{n}\left(u_{1}\right)$ for some set of Householder vectors $\left\{u_{i}\right\}_{i=1}^{n}$, such that $A=Q R$. Since A is orthogonal, we have $A^{\top} A=A A^{\top}=I_{n}$, thus:

$$
A^{\top} A=R^{\top} Q^{\top} Q R=R^{\top} R=I_{n} ; Q^{\top} A A^{\top} Q=Q^{\top} Q R R^{\top} Q^{\top} Q=R R^{\top}=I_{n}
$$

Thus R is orthogonal and upper triangular matrix with positive diagonal elements. So $R=I_{n}$ and $A=Q=$ $\mathcal{H}_{n}^{n}\left(u_{n}\right) \ldots \mathcal{H}_{1}^{n}\left(u_{1}\right)$.

A.3. Proof of Theorem 2

Proof. It is easy to see that the image of $\mathcal{M}_{1,1}$ is a subset of $\mathbb{R}^{n \times n}$. For any $W \in \mathbb{R}^{n \times n}$, we have its $\mathrm{SVD}, W=U \Sigma V^{\top}$, where $\Sigma=\operatorname{diag}(\sigma)$. By Theorem 1, for any orthogonal matrix $U, V \in \mathbb{R}^{n \times n}$, there exists $\left\{u_{i}\right\}_{i=1}^{n}\left\{v_{i}\right\}_{i=1}^{n}$ such that $U=\mathcal{M}_{1}\left(u_{1}, \ldots, u_{n}\right)$ and $V=\mathcal{M}_{1}\left(v_{1}, \ldots, v_{n}\right)$, then we have:

$$
\begin{aligned}
W & =\mathcal{H}_{n}^{n}\left(u_{n}\right) \ldots \mathcal{H}_{1}^{n}\left(u_{1}\right) \Sigma \mathcal{H}_{1}^{n}\left(v_{1}\right) \ldots \mathcal{H}_{n}^{n}\left(v_{n}\right) \\
& =\mathcal{M}_{1,1}\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, \sigma\right)
\end{aligned}
$$

A.4. Proof of Theorem 3

Proof. Let $A \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. By Theorem 1, there exist $\left\{a_{i}\right\}_{i=1}^{n}$, such that $A=\mathcal{M}_{1}\left(a_{1}, \ldots, a_{n}\right)$. Since A^{\top} is also orthogonal, for the same reason, there exist $\left\{b_{i}\right\}_{i=1}^{n}$, such that $A^{\top}=\mathcal{M}_{1}\left(b_{1}, \ldots, b_{n}\right)$. Thus we have:

$$
A=\mathcal{H}_{n}\left(a_{n}\right) \ldots \mathcal{H}_{1}\left(a_{1}\right)=\mathcal{H}_{1}\left(b_{1}\right) \ldots \mathcal{H}_{n}\left(b_{n}\right)
$$

Observe that one of $k_{2} \geq k_{1}-1$ and $k_{1} \geq k_{2}-1$ must be true. If $k_{2} \geq k_{1}-1$, set

$$
\begin{align*}
u_{k}=a_{k}, k & =n, n-1, \ldots, k_{1} \\
v_{k_{2}+k_{1}-k-1}=a_{k}, k & =k_{1}-1, \ldots, 1, \tag{18}\\
v_{t} & =\mathbf{0}, t
\end{align*}=k_{2}+k_{1}-2, \ldots, n, ~ \$
$$

and then we have:

$$
\begin{align*}
\mathcal{M}_{k_{1}, k_{2}}\left(u_{k_{1}}, \ldots, u_{n}, v_{k_{2}}, \ldots, v_{n}, \mathbf{1}\right) & =\mathcal{H}_{n}\left(u_{n}\right) \ldots \mathcal{H}_{k_{1}}\left(u_{k_{1}}\right) I_{n} \mathcal{H}_{k_{2}}\left(v_{k_{2}}\right) \ldots \mathcal{H}_{n}\left(v_{n}\right) \\
& =\mathcal{H}_{n}\left(a_{n}\right) \ldots \mathcal{H}_{k_{1}}\left(a_{k_{1}}\right) I_{n} \mathcal{H}_{k_{1}-1}\left(a_{k_{1}-1}\right) \ldots \mathcal{H}_{1}\left(a_{1}\right) \\
& =A \tag{19}
\end{align*}
$$

Else, assign:

$$
\begin{align*}
v_{k}=b_{k}, k & =n, n-1, \ldots, k_{2} \\
u_{k_{2}+k_{1}-k-1}=b_{k}, k & =k_{2}-1, \ldots, 1, \tag{20}\\
u_{t} & =\mathbf{0}, t=k_{2}+k_{1}-2, \ldots, n
\end{align*}
$$

and then we have:

$$
\begin{align*}
\mathcal{M}_{k_{1}, k_{2}}\left(u_{k_{1}}, \ldots, u_{n}, v_{k_{2}}, \ldots, v_{n}, \mathbf{1}\right) & =\mathcal{H}_{1}\left(b_{1}\right) \ldots \mathcal{H}_{k_{2}-1}\left(b_{k_{2}-1}\right) I_{n} \mathcal{H}_{k_{2}}\left(b_{k_{2}}\right) \ldots \mathcal{H}_{n}\left(b_{n}\right) \\
& =A \tag{21}
\end{align*}
$$

A.5. Proof of Theorem 4

Proof. It is easy to see that the image of $\mathcal{M}_{*, *}^{m, n}$ is a subset of $\mathbb{R}^{m \times n}$. For any $W \in \mathbb{R}^{m \times n}$, we have its $\mathrm{SVD}, W=U \Sigma V^{\top}$, where Σ is an $m \times n$ diagonal matrix. By Theorem 1, for any orthogonal matrix $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$, there exists $\left\{u_{i}\right\}_{i=1}^{m}\left\{v_{i}\right\}_{i=1}^{n}$ such that $U=\mathcal{H}_{m}^{m}\left(u_{m}\right) \ldots \mathcal{H}_{1}^{m}\left(u_{1}\right)$ and $V=\mathcal{H}_{n}^{n}\left(v_{n}\right) \ldots \mathcal{H}_{1}^{n}\left(v_{1}\right)$. By Lemma 1, if $m<n$ we have:

$$
\begin{aligned}
W & =\mathcal{H}_{n}^{m}\left(u_{n}\right) \ldots \mathcal{H}_{1}^{m}\left(u_{1}\right) \Sigma \mathcal{H}_{1}^{n}\left(v_{1}\right) \ldots \mathcal{H}_{n}^{n}\left(v_{n}\right) \\
& =\mathcal{H}_{n}^{m}\left(u_{n}\right) \ldots \mathcal{H}_{1}^{m}\left(u_{1}\right) \Sigma \mathcal{H}_{n-m+1}^{n}\left(v_{n-m+1}\right) \ldots \mathcal{H}_{n}^{n}\left(v_{n}\right) .
\end{aligned}
$$

Similarly, for $n<m$, we have:

$$
\begin{aligned}
W & =\mathcal{H}_{n}^{m}\left(u_{n}\right) \ldots \mathcal{H}_{1}^{m}\left(u_{1}\right) \Sigma \mathcal{H}_{1}^{n}\left(v_{1}\right) \ldots \mathcal{H}_{n}^{n}\left(v_{n}\right) \\
& =\mathcal{H}_{n}^{m}\left(u_{n}\right) \ldots \mathcal{H}_{m-n+1}^{m}\left(u_{m-n+1}\right) \Sigma \mathcal{H}_{1}^{n}\left(v_{1}\right) \ldots \mathcal{H}_{n}^{n}\left(v_{n}\right)
\end{aligned}
$$

A.6. Proof of Theorem 5

Notations: Recall from Definition 1 that L_{0} is the expected error with margin $\gamma=0$, and we write \hat{L}_{γ} as the empirical error when margin equals γ with m samples, i.e.,

$$
\hat{L}_{\gamma}\left(f_{w}\right)=\frac{1}{m} \sum_{i=1}^{m}\left[f_{w}\left(x_{i}\right)\left[y_{i}\right] \leq \gamma+\max _{j \neq y_{i}} f_{w}\left(x_{i}\right)[j]\right]
$$

We are looking at a recurrent neural network with T time steps:

$$
\begin{aligned}
h^{(t)} & =\phi\left(W h^{(t-1)}+M x^{(t)}\right), h^{(0)}=0, t=1,2, \cdots T \\
\hat{y}^{(t)} & =Y h^{(t)}
\end{aligned}
$$

where ϕ is the activation function. The dimensions are as follows: $x^{(t)} \in \mathbb{R}^{n_{i}}, \hat{y}^{(t)} \in \mathbb{R}^{n_{y}}$, and $h^{(t)} \in \mathbb{R}^{n}$. Therefore $W \in \mathbb{R}^{n \times n}, M \in \mathbb{R}^{n_{i} \times n}, Y \in \mathbb{R}^{n \times n_{y}}$. To incorporate the different parameters W, M, Y into the neural network, we write $w=\operatorname{vec}(\{W, Y, M\})$ and use subscript w to denote dependence on the parameter w. For instance, $h_{w}^{(t)}$ denotes the activation that takes $w=\operatorname{vec}(\{W, Y, M\})$ as parameters, and similar notation also holds for the output $\hat{y}_{w}^{(t)}$. We use $\|\cdot\|$ to denote l_{2} norm for vectors and spectral norm for matrices when there is no ambiguity.

To get a generalization bound for RNN, we need to use the following lemma from (Neyshabur et al., 2017).

Lemma 2. (Neyshabur et al., 2017) Let $f_{w}(x): \mathcal{X} \rightarrow \mathbb{R}^{k}$ be any predictor (not necessarily a neural network) with parameters w, and P be any distribution on the parameters that is independent of the training data. Then, for any $\gamma, \delta>0$, with probability $\geq 1-\delta$ over the training set of size m, for any w, and any random perturbation u s.t. $\mathbb{P}_{u}\left[\max _{x \in \mathcal{X}}\left\|f_{w+u}(x)-f_{w}(x)\right\|_{\infty}<\frac{\gamma}{4}\right] \geq \frac{1}{2}$, we have:

$$
L_{0}\left(f_{w}\right) \leq \hat{L}_{\gamma}\left(f_{w}\right)+4 \sqrt{\frac{K L(w+u \| P)+\ln \frac{6 m}{\delta}}{m-1}}
$$

Here $K L(P \| Q)$ is the Kullback-Leibler divergence of two continuous random variables P and Q :

$$
K L(P \| Q):=\int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} d x
$$

where p and q denote the density of P and Q. In order for the random variable u to satisfy the probability property in Lemma 2, we study the change in output with respect to perturbation u.
Lemma 3. Write $w=\operatorname{vec}(\{W, Y, M\})$, and perturbation $u=\operatorname{vec}(\{\delta W, \delta Y, \delta M\})$ such that $\|\delta W\| \leq \frac{1}{T}\|W\|,\|\delta Y\| \leq$ $\frac{1}{T}\|Y\|,\|\delta M\| \leq \frac{1}{T}\|M\|$. For a recurrent neural network (17) with T time steps that satisfies Assumption 1, the perturbation in the activation is bounded by

$$
\begin{equation*}
\left\|h_{w+u}^{(T)}-h_{w}^{(T)}\right\| \leq B T e(T\|M\|\|\delta W\|+\|\delta M\|) \max \left\{\|W\|^{T-1}, 1\right\} \tag{22}
\end{equation*}
$$

while the perturbation in the output satisfies:

$$
\left\|\hat{y}_{w+u}^{(T)}-\hat{y}_{w}^{(T)}\right\| \leq T B \max \left\{\|W\|^{T-1}, 1\right\} \cdot(\|Y\|\|\delta W\|\|M\| T e+\|Y\|\|\delta M\| e+\|\delta Y\|\|M\|)
$$

Here e is the natural logarithm base.
Proof of Lemma 3. First we bound the norm of $h_{w}^{(t)}$,

$$
\begin{align*}
& \left\|h_{w}^{(t)}\right\|=\left\|\phi\left(W h_{w}^{(t-1)}+M x^{(t)}\right)\right\| \\
& \leq\left\|W h_{w}^{(t-1)}+M x^{(t)}\right\| \quad \text { (by Assumption 1.2) } \\
& \leq\|W\|\left\|h_{w}^{(t-1)}\right\|+\|M\|\left\|x^{(t)}\right\| \quad \text { (by triangle inequality) } \tag{23}\\
& \leq\|W\|\left(\|W\|\left\|h_{w}^{(t-2)}\right\|+\|M\|\left\|x^{(t-1)}\right\|\right)+\|M\|\left\|x^{(t)}\right\| \\
& \text { (applying (23) to }\left\|h_{w}^{(t-1)}\right\| \text {) } \\
& \leq \cdots \\
& \leq\|W\|^{t}\left\|h_{w}^{(0)}\right\|+\|M\| \sum_{j=0}^{t-1}\|W\|^{t-1-j}\left\|x^{(j+1)}\right\| \\
& =\|M\| \sum_{j=0}^{t-1}\|W\|^{t-1-j}\left\|x^{(j+1)}\right\| \quad \quad\left(\text { since } h_{w}^{(0)}=0\right) \\
& \leq B\|M\| \sum_{j=0}^{t-1}\|W\|^{t-1-j} \quad \text { (by Assumption 1.1) } \\
& \Longrightarrow\left\|h_{w}^{(t)}\right\| \leq B\|M\| t \max \left\{\|W\|^{t-1}, 1\right\} \tag{24}
\end{align*}
$$

Denoting $\Delta_{t}=\left\|h_{w+u}^{(t)}-h_{w}^{(t)}\right\|$ for short, in order to prove (22), we now prove the following tighter result by induction,

$$
\begin{equation*}
\Delta_{t} \leq B t\left(1+\frac{1}{T}\right)^{t-1}(\|\delta W\|\|M\| T+\|\delta M\|) \max \left\{\|W\|^{t-1}, 1\right\}, \forall t \leq T \tag{25}
\end{equation*}
$$

Clearly $\Delta_{0}=0$ satisfies the inequality. Suppose Δ_{t-1} satisfies the assumption, then,

$$
\begin{aligned}
\Delta_{t} & =\left\|\phi\left((W+\delta W) h_{w+u}^{(t-1)}+(M+\delta M) x^{(t)}\right)-\phi\left(W h_{w}^{(t-1)}+M x^{(t)}\right)\right\| \\
& \leq\left\|\left((W+\delta W) h_{w+u}^{(t-1)}+(M+\delta M) x^{(t)}\right)-\left(W h_{w}^{(t-1)}+M x^{(t)}\right)\right\| \\
& =\left\|(W+\delta W)\left(h_{w+u}^{(t-1)}-h_{w}^{(t-1)}\right)+\delta W h_{w}^{(t-1)}+\delta M x^{(t)}\right\| \\
& \leq\left(\|W\|+\|\delta W\| \Delta_{t-1}+\|\delta W\|\left\|h_{w}^{(t-1)}\right\|+\|\delta M\|\left\|x^{(t)}\right\| \quad\right. \text { (by triangle inequality) } \\
& \leq\left(1+\frac{1}{T}\right)\|W\| \Delta_{t-1}+\|\delta W\|\left\|h_{w}^{(t-1)}\right\|+\|\delta M\| B
\end{aligned}
$$

(by Assumption 1.1 and requirement of $\|\delta W\|$)
Then by induction and the bound of the activations, we have:

$$
\begin{aligned}
\Delta_{t} \leq & \left(1+\frac{1}{T}\right)\|W\|\left(B(t-1)\left(1+\frac{1}{T}\right)^{t-2}(\|\delta W\|\|M\| T+\|\delta M\|) \max \left\{\|W\|^{t-2}, 1\right\}\right) \quad \text { (by induction) } \\
& +\|\delta W\|\left(B(t-1)\|M\| \max \left\{\|W\|^{t-2}, 1\right\}\right)+B\|\delta M\| \\
= & B(t-1) T\left(1+\frac{1}{T}\right)^{t-1}\|\delta W\|\|M\|\|W\| \max \left\{\|W\|^{t-2}, 1\right\}+B(t-1)\|\delta W\|\|M\| \max \left\{\|W\|^{t-2}, 1\right\} \\
& +\left(1+\frac{1}{T}\right)^{t-1}\|W\| B(t-1) \max \left\{\|W\|^{t-2}, 1\right\}\|\delta M\|+B\|\delta M\| \\
= & B(t-1)\|\delta W\|\|M\| \max \left\{\|W\|^{t-2}, 1\right\}\left(\left(1+\frac{1}{T}\right)^{t-1} T\|W\|+1\right) \\
& +B\|\delta M\|\left(\left(1+\frac{1}{T}\right)^{t-1}\|W\|(t-1) \max \left\{\|W\|^{t-2}, 1\right\}+1\right) \\
\leq & B(t-1)\|\delta W\|\|M\| \max \left\{\|W\|^{t-2}, 1\right\}\left(\left(1+\frac{1}{T}\right)^{t-1} T+1\right) \max \{\|W\|, 1\} \\
& +B\|\delta M\|\left(\left(1+\frac{1}{T}\right)^{t-1}(t-1) \max \left\{\|W\|^{t-2}, 1\right\}+1\right) \max \{\|W\|, 1\} \quad \text { (both } 1,\|W\| \leq \max \{\|W\|, 1\} \text {) } \\
\leq & B\|\delta W\|\|M\| t T\left(1+\frac{1}{T}\right)^{t-1} \max \left\{\|W\|^{t-1}, 1\right\} \\
& +B\|\delta M\| t\left(1+\frac{1}{T}\right)^{t-1} \max \left\{\|W\|^{t-1}, 1\right\} \\
= & \left.B t\left(1+\frac{1}{T}\right)^{t-1}(T\|\delta W\|\|M\|+\|\delta M\|) \max \left\{\|W\|^{t-1}, 1\right\} \quad \quad \text { (since }(t-1) a+1 \leq t a \text { for } a \geq 1\right)
\end{aligned}
$$

Since $\left(1+\frac{1}{T}\right)^{T-1} \leq e$, therefore $\Delta_{T} \leq B T e(T\|M\|\|\delta W\|+\|\delta M\|) \max \left\{\|W\|^{T-1}, 1\right\}$. Meanwhile for the perturbation of output \hat{y},

$$
\begin{aligned}
& \left\|\hat{y}_{w+u}^{(T)}-\hat{y}_{w}^{(T)}\right\| \\
= & \left\|(Y+\delta Y) h_{w+u}^{(T)}-Y h_{w}^{(T)}\right\| \\
= & \left\|(Y+\delta Y)\left(h_{w+u}^{(T)}-h_{w}^{(T)}\right)+(Y+\delta Y) h_{w}^{(T)}-Y h_{w}^{(T)}\right\| \\
\leq & \|(Y+\delta Y)\| \Delta_{T}+\left\|\delta Y h_{w}^{(T)}\right\| \quad \quad \text { (by triangle inequality) } \\
\leq & \|Y\|\left(1+\frac{1}{T}\right) B T\left(1+\frac{1}{T}\right)^{T-1}(T\|\delta W\|\|M\|+\|\delta M\|) \max \left\{\|W\|^{T-1}, 1\right\} \\
\quad & \quad \text { (by perturbation bound (25)) } \\
& +\|\delta Y\| T B\|M\| \max \left\{\|W\|^{T-1}, 1\right\} \quad \text { (by activation bound (24)) } \\
\leq & T B \max \left\{\|W\|^{T-1}, 1\right\}(\|Y\|\|\delta W\|\|M\| T e+\|Y\|\|\delta M\| e+\|\delta Y\|\|M\|) \quad \\
& \left.\quad \text { (since }\left(1+\frac{1}{T}\right)^{T} \leq e\right)
\end{aligned}
$$

Finally we are able to prove Theorem 5:
Proof of Theorem 5. In order to finish the proof, we first calculate the maximum allowed perturbation u that satisfies the requirement in Lemma 2, and we define the prior P and calculate the KL divergence of P and $w+u$.

Let $\beta=\max \left\{\|W\|_{2}^{T-1}, 1\right\} \max \left\{\|Y\|_{2}, 1\right\} \max \left\{\|M\|_{2}, 1\right\}$. We choose the distribution of the prior $P=\mathcal{N}\left(0, \sigma^{2} I\right)$ and consider the random perturbation $u=\operatorname{vec}(\{\delta W, \delta Y, \delta M\})$ with the same zero mean Gaussian distribution, where σ will be assigned later according to β. More precisely, since the prior cannot depend on the β which is associated with the learned parameters W, M and Y, we will set σ based on some discrete choices of $\tilde{\beta}$ that approximates β. For each value of $\tilde{\beta}$ of our choice, we will compute the PAC-Bayes bound, establishing the generalization guarantee for all w for which $\frac{1}{e} \beta \leq \tilde{\beta} \leq e \beta$, and ensuring that each relevant value of β is covered by some $\tilde{\beta}$ on the grid. We will then take a union bound over all $\tilde{\beta}$ of our choice.
For a random matrix $X \in \mathbb{R}^{n_{1} \times n_{2}}$ with individual entries following normal distribution, (Tropp et al., 2005) provides the following bound of its spectral norm:

$$
\begin{equation*}
\mathbb{P}_{X \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[\|X\|_{2}>t\right] \leq 2 n e^{-t^{2} / 2 n \sigma^{2}}, \forall n \geq n_{1}, n_{2} \tag{26}
\end{equation*}
$$

Therefore for $\delta W, \delta M, \delta Y$, the probability of their spectral norm being greater than t is bounded by $2 h e^{-t^{2} / 2 h \sigma^{2}}$, where $h=\max \left\{n, n_{i}, n_{y}\right\}$. Therefore with probability $\geq \frac{1}{2},\|\delta W\|_{2},\|\delta Y\|_{2},\|\delta M\|_{2} \leq \sigma \sqrt{2 h \ln (12 h)}$.
Plugging into Lemma 3 we have with probability at least $\frac{1}{2}$,

$$
\begin{aligned}
& \max _{\left\|x^{(t)}\right\| \leq B, \forall t \leq T}\left\|\hat{y}_{w+u}-\hat{y}_{w}\right\| \\
\leq & T B \max \left\{\|W\|^{T-1}, 1\right\}(\|Y\|\|\delta W\|\|M\| T e+\|Y\|\|\delta M\| e+\|\delta Y\|\|M\|) \\
\leq & T B \max \left\{\|W\|^{T-1}, 1\right\} \max \{\|Y\|, 1\} \max \{\|M\|, 1\}(\|\delta W\| T e+\|\delta M\| e+\|\delta Y\|) \\
\leq & T B \sqrt{2 h \ln (12 h)} \tilde{\beta} \phi(T e+e+1) \\
\leq & \frac{\gamma}{4},
\end{aligned}
$$

where we choose $\sigma=\frac{\gamma}{12 \sqrt{2 h \ln (12 h)} T B(T e+e+1) \tilde{\beta}}$. Therefore now the perturbation u satisfies assumptions in Lemma 2 .
We next compute the KL-divergence of distributions for P and u for the sake of Lemma 2.

$$
\begin{aligned}
& K L(w+u \| P) \leq \frac{\|w\|^{2}}{2 \sigma^{2}} \\
& \leq \mathcal{O}\left(\frac{B^{2} T^{4} h \ln (h) \max \left\{\|W\|^{2 T-2}, 1\right\} \max \left\{\|M\|_{2}^{2}, 1\right\} \max \left\{\|Y\|_{2}^{2}, 1\right\}}{\gamma^{2}}\left(\|W\|_{F}^{2}+\|M\|_{F}^{2}+\|Y\|_{F}^{2}\right)\right)
\end{aligned}
$$

Hence, with probability $\geq 1-\delta$ and for all w such that, $\frac{1}{e} \beta \leq \tilde{\beta} \leq e \beta$, we have:

$$
\begin{equation*}
L_{0}\left(\hat{y}_{w}\right) \leq \hat{L}_{\gamma}\left(\hat{y}_{w}\right)+\mathcal{O}\left(\sqrt{\frac{B(w)+\ln \frac{m}{\delta}}{m}}\right) \tag{27}
\end{equation*}
$$

where $B(w)=\frac{B^{2} T^{4} h \ln (h) \max \left\{\|W\|^{2 T-2}, 1\right\} \max \left\{\|M\|_{2}^{2}, 1\right\} \max \left\{\|Y\|_{2}^{2}, 1\right\}}{\gamma^{2}}\left(\|W\|_{F}^{2}+\|M\|_{F}^{2}+\|Y\|_{F}^{2}\right)$.
Since $\tilde{\beta}$ should be independent of the learned models. We finally take a union bound over different choices of the parameter. We will choose discrete set of $\tilde{\beta}$ such that they cover the real W, M, Y that satisfies $\frac{1}{e} \beta \leq \tilde{\beta} \leq e \beta$. Firstly we notice for some range of β inequality (27) holds trivially, when either term of its RHS is greater or equal to 1 , since the expected margin loss is less or equal to 1 .
$\hat{y}^{(T)}=Y h_{w}^{(T)}$, therefore if $\beta \leq \frac{\gamma}{2 B T}$,

$$
\begin{array}{rlr}
\|\hat{y}\|_{\infty} & \leq\|\hat{y}\|_{2} \quad \text { (by definition of } \ell_{\infty} \text { norm and } \ell_{2} \text { norm) } \\
& \leq\|Y\|\left\|h_{w}^{(T)}\right\| \quad \text { (by definition of spectral norm) } \\
& \leq\|Y\| B\|M\| T \max \left\{\|W\|^{t-1}, 1\right\}
\end{array}
$$

(by activation bound (24))

$$
\leq B T \beta<\frac{\gamma}{2}
$$

Therefore $\hat{L}_{\gamma}=1$ from definition of margin loss and the bound is satisfied trivially. Meanwhile, when $\beta \geq \frac{\gamma \sqrt{m}}{2 B T}$, then the second term of $(27) \geq 1$ and it also holds trivially. Therefore, we only need to consider $\tilde{\beta}$ such that $\tilde{\beta} \in\left[\frac{\gamma}{2 B T}, \frac{\gamma \sqrt{m}}{2 B T}\right]$. Therefore we could respectively set $\tilde{\beta}$ to be $\frac{\gamma}{2 B T}+s e \frac{\gamma}{2 B T}, s=0,1,2, \cdots$, and the size of the cover we need to consider is only $\frac{\sqrt{m}}{e}$. Therefore we replace δ by $e \frac{\delta}{\sqrt{m}}$ in (27) and take a union bound over all the $\tilde{\beta}$ on the grid to complete the proof.

B. Details of Forward and Backward Propagation Algorithms

```
Algorithm 1 Local forward/backward propagation
    Input: \(h^{(t-1)}, \frac{\partial L}{\partial \tilde{h}^{(t)}}, U=\left(u_{n}|\ldots| u_{n-m_{1}+1}\right)\),
    \(\Sigma, V=\left(v_{n}|\ldots| v_{n-m_{2}+1}\right)\)
    Output: \(\tilde{h}^{(t)}=W h^{(t-1)}, \frac{\partial L}{\partial U}, \frac{\partial L}{\partial V}, \frac{\partial L}{\partial \tilde{\sigma}}, \frac{\partial L}{\partial h^{(t-1)}}\)
    // Begin forward propagation
    \(h_{n+1}^{(v)} \leftarrow h^{(t-1)}\)
    for \(k=n, n-1, \ldots, n-m_{2}+1\) do
        \(h_{k}^{(v)} \leftarrow \operatorname{Hprod}\left(h_{k+1}^{(v)}, v_{k}\right) \quad / /\) Compute \(\hat{V}^{\top} h\)
    end for
    \(h_{k_{1}-1}^{(u)} \leftarrow \Sigma h_{k_{2}}^{(v)} \quad / /\) Compute \(\Sigma \hat{V}^{\top} h\)
    for \(k=n-m_{1}+1, \ldots, n\) do
        \(h_{k}^{(u)} \leftarrow \operatorname{Hprod}\left(h_{k-1}^{(u)}, u_{k}\right) \quad / /\) Compute \(\hat{U} \Sigma \hat{V}^{\top} h\)
    end for
    \(\tilde{h}^{(t)} \leftarrow h_{n}^{(u)}\)
    //Begin backward propagation
    \(g \leftarrow \frac{\partial L}{\partial \tilde{\hat{h}}(t)}\)
    for \(k=n, n-1, \ldots, n-m_{1}+1\) do
        \(g, G_{*, n-k+1}^{(u)} \leftarrow \operatorname{Hgrad}\left(h_{k}^{(u)}, u_{k}, g\right) \quad / /\) Compute \(\frac{\partial L}{\partial u_{k}}\)
    end for
    \(\bar{\Sigma} \leftarrow \operatorname{diag}\left(g \circ h_{k_{2}}^{(v)}\right), g \leftarrow \Sigma g \quad / /\) Compute \(\frac{\partial L}{\partial \Sigma}\)
    \(g^{(\hat{\sigma})} \leftarrow \frac{\partial \operatorname{diag}(\Sigma)}{\partial \hat{\sigma}} \circ \operatorname{diag}(\bar{\Sigma}) \quad / /\) Compute \(\frac{\partial L}{\partial \hat{\sigma}}\)
    for \(k=n-m_{2}+1, \ldots, n\) do
        \(g, G_{*, n-k+1}^{(v)} \leftarrow \operatorname{Hgrad}\left(h_{k+1}^{(u)}, v_{k}, g\right) \quad / /\) Compute \(\frac{\partial L}{\partial v_{k}}\)
```

 end for
 \(\frac{\partial L}{\partial U} \leftarrow G^{(u)}, \frac{\partial L}{\partial V} \leftarrow G^{(v)}, \frac{\partial L}{\partial \hat{\sigma}} \leftarrow g^{(\hat{\sigma})}, \frac{\partial L}{\partial h^{(t-1)}} \leftarrow g\)

C. More Experimental Details

C.1. Time Series Classification

In this experiment, we focus on the time series classification problem, where time series are fed into RNN sequentially, which then tries to predict the right class upon receiving the sequence end (Hüsken \& Stagge, 2003). The dataset we choose is the largest public collection of class-labeled time-series with widely varying length, namely, the UCR timeseries collection from (Chen et al., 2015). We use the training and testing sets directly from the UCR time series archive http://www.cs.ucr.edu/~eamonn/time_series_data/, and randomly choose 20% of the training set as validation data. We provide the statistical descriptions of the datasets and experimental results in Table 4.

In all experiments, we used hidden dimension $n_{h}=32$, and chose total number of reflectors for oRNN and Spectral-RNN to be $m=16$ (for Spectral-RNN $m_{1}=m_{2}=8$). We choose proper depth t as well as input size n_{i}. Given sequence length L, since $t n_{i}=L$, we choose n_{i} to be the maximum divisor of L that satisfies depth $\leq \sqrt{L}$. To have a fair comparison of how the proposed principle itself influences the training procedure, we did not use dropout in any of these models. As illustrated in the optimization process in Figure 6, this resulted in some overfitting (see (a) CBF), but on the other hand it shows that Spectral-RNN is able to prevent overfitting. This supports our claim that since generalization is bounded by the spectral norm of the weights (Bartlett et al., 2017), Spectral-RNN will potentially generalize better than other schemes. This phenomenon is more drastic when the depth is large (e.g. ArrowHead(251 length) and FaceAll(131 length)), since regular RNN, and even LSTM, have no control over the spectral norms. Also note that there are substantially fewer parameters in oRNN and Spectral-RNN as compared to LSTM.

Figure 6. Performance comparisons of the RNN based models on three UCR datasets.

Table 4. Test accuracy (number of parameters) on UCR datasets. For each dataset, we present the testing accuracy when reaching the smallest validation error. The highest precision is in bold, and lowest two are colored gray.

