
Supplementary Material: Tropical Geometry of Deep Neural Networks

A. Illustration of Our Neural Network
Figure A.1 summarizes the architecture and notations of the feedforward neural network discussed in this paper.
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Figure A.1. General form of an ReLU feedforward neural network ν : Rd → Rp with L layers.

B. Tropical Power
As in Section 2, we write xa = x�a; aside from this slight abuse of notation, ⊕ and � denote tropical sum and product, +
and · denote standard sum and product in all other contexts. Tropical power evidently has the following properties:

• For x, y ∈ R and a ∈ R, a ≥ 0,

(x⊕ y)a = xa ⊕ ya and (x� y)a = xa � ya.

If a is allowed negative values, then we lose the first property. In general (x⊕ y)a 6= xa ⊕ ya for a < 0.

• For x ∈ R,
x0 = 0.

• For x ∈ R and a, b ∈ N,
(xa)b = xa·b.

• For x ∈ R and a, b ∈ Z,
xa � xb = xa+b.

• For x ∈ R and a, b ∈ Z,
xa ⊕ xb = xa � (xa−b ⊕ 0) = xa � (0⊕ xa−b).
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C. Examples
C.1. Examples of Tropical Curves and Dual Subdivision of Newton Polygon

Let f ∈ Pol(2, 1) = T[x1, x2], i.e., a bivariate tropical polynomial. It follows from our discussions in Section 3 that the
tropical hypersurface T (f) is a planar graph dual to the dual subdivision δ(f) in the following sense:

(i) Each two-dimensional face in δ(f) corresponds to a vertex in T (f).

(ii) Each one-dimensional edge of a face in δ(f) corresponds to an edge in T (f). In particular, an edge from the Newton
polygon ∆(f) corresponds to an unbounded edge in T (f) while other edges correspond to bounded edges.

Figure 2 illustrates how we may find the dual subdivision for the tropical polynomial f(x1, x2) = 1� x2
1 ⊕ 1� x2

2 ⊕ 2�
x1x2 ⊕ 2� x1 ⊕ 2� x2 ⊕ 2. First, find the convex hull

P(f) = Conv{(2, 0, 1), (0, 2, 1), (1, 1, 2), (1, 0, 2), (0, 1, 2), (0, 0, 2)}.

Then, by projecting the upper envelope of P(f) to R2, we obtain δ(f), the dual subdivision of the Newton polygon.

C.2. Polytopes of a Two-Layer Neural Network

We illustrate our discussions in Section 6.2 with a two-layer example. Let ν : R2 → R be with n0 = 2 input nodes, n1 = 5
nodes in the first layer, and n2 = 1 nodes in the output:

ω = ν(1)(x) = max




−1 1

1 −3
1 2
−4 1

3 2


[
x1

x2

]
+


1
−1

2
0
−2

 , 0

 ,

ν(2)(ω) = max{ω1 + 2ω2 + ω3 − ω4 − 3ω5, 0}.

We first express ν(1) and ν(2) as tropical rational maps,

ν(1) = F (1) �G(1), ν(2) = f (2) � g(2),

where

y := F (1)(x) = H(1)(x)⊕G(1)(x),

z := G(1)(x) =


x1

x3
2

0
x4

1

0

 , H(1)(x) =


1� x2

(−1)� x1

2� x1x
2
2

x2

(−2)� x3
1x

2
2

 ,
and

f (2)(x) = g(2)(x)⊕ h(2)(x),

g(2)(x) = y4 � y3
5 � z1 � z2

2 � z3

= (x2 ⊕ x4
1)� ((−2)� x3

1x
2
2 ⊕ 0)3 � x1 � (x3

2)2,

h(2)(x) = y1 � y2
2 � y3 � z4 � z3

5

= (1� x2 ⊕ x1)� ((−1)� x1 ⊕ x3
2)2 � (2� x1x

2
2 ⊕ 0)� x4

1.

We will write F (1) = (f
(1)
1 , . . . , f

(1)
5 ) and likewise for G(1) and H(1). The monomials occurring in g(1)

j (x) and h(1)
j (x) are

all of the form cxa11 xa22 . Therefore P(g
(1)
j ) and P(h

(1)
j ), j = 1, . . . , 5, are points in R3.

Since F (1) = G(1) ⊕H(1), P(f
(1)
j ) is a convex hull of two points, and thus a line segment in R3. The Newton polygons

associated with f (1)
j , equal to their dual subdivisions in this case, are obtained by projecting these line segments back to the

plane spanned by a1, a2, as shown on the left in Figure C.1.
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Figure C.1. Left: P(f
(1)
j ) and dual subdivision of ∆(f

(1)
j ), j = 1, . . . , 5. Right: P(g(2)) and dual subdivision of ∆(g(2)). In both

figures, dual subdivisions have been translated along the −c direction (downwards) and separated from the polytopes for visibility.
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Figure C.2. Left: The polytope associated with h(2) and its dual subdivision. Right: P(f (2)) and dual subdivision of ∆(f (2)). In both
figures, dual subdivisions have been translated along the −c direction (downwards) and separated from the polytopes for visibility.

The line segments P(f
(1)
j ), j = 1, . . . , 5, and points P(g

(1)
j ), j = 1, . . . , 5, serve as building blocks for P(h(2)) and

P(g(2)), which are constructed as weighted Minkowski sums:

P(h(2)) = P(f
(1)
4 ) + 3P(f

(1)
5 ) + P(g

(1)
1 ) + 2P(g

(1)
2 ) + P(g

(1)
3 ),

P(g(2)) = P(f
(1)
1 ) + 2P(f

(1)
2 ) + P(f

(1)
3 ) + P(g

(1)
4 ) + 3P(g

(1)
5 ).

P(g(2)) and the dual subdivision of its Newton polygon are shown on the right in Figure C.1. P(h(2)) and the dual
subdivision of its Newton polygon are shown on the left in Figure C.2. P(f (2)) is the convex hull of the union of P(g(2))
and P(h(2)). The dual subdivision of its Newton polygon is obtained by projecting the upper faces of P(f (2)) to the plane
spanned by a1, a2. These are shown on the right in Figure C.2.

D. Proofs
D.1. Proof of Corollary 3.4

Proof. Let V1 and V2 be the sets of vertices on the upper and lower envelopes of P respectively. By Theorem 3.3, P has

n1 := 2

d∑
j=0

(
m− 1

j

)
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vertices in total. By construction, we have |V1 ∪ V2| = n1. It is well-known that zonotopes are centrally symmetric and so
there are equal number of vertices on the upper and lower envelopes, i.e., |V1| = |V2|. Let P ′ := π(P ) be the projection
of P into Rd. Since the projected vertices are assumed to be in general positions, P ′ must be a d-dimensional zonotope
generated by m nonparallel line segments. Hence, by Theorem 3.3 again, P ′ has

n2 := 2

d−1∑
j=0

(
m− 1

j

)
vertices. For any vertex v ∈ P , π(v) is a vertex of P ′ if and only if v belongs to both the upper and lower envelopes,
i.e., v ∈ V1 ∩ V2. Therefore the number of vertices on P ′ equals |V1 ∩ V2|. By construction, we have |V1 ∩ V2| = n2.
Consequently the number of vertices on the upper envelope is

|V1| =
1

2
(|V1 ∪ V2| − |V1 ∩ V2|) + |V1 ∩ V2| =

1

2
(n1 − n2) + n2 =

d∑
j=0

(
m

j

)
.

D.2. Proof of Proposition 5.1

Proof. Writing A = A+ −A−, we have

ρ(l+1)(x) =
(
A+ −A−

)(
F (l)(x)−G(l)(x)

)
+ b

=
(
A+F

(l)(x) +A−G
(l)(x) + b

)
−
(
A+G

(l)(x) +A−F
(l)(x)

)
= H(l+1)(x)−G(l+1)(x),

ν(l+1)(x) = max
{
ρ(l+1)(y), t

}
= max

{
H(l+1)(x)−G(l+1)(x), t

}
= max

{
H(l+1)(x), G(l+1)(x) + t

}
−G(l+1)(x)

= F (l+1)(x)−G(l+1)(x).

D.3. Proof of Theorem 5.4

Proof. It remains to establish the “only if” part. We will write σt(x) := max{x, t}. Any tropical monomial bixαi is clearly
such a neural network as

bix
αi = (σ−∞ ◦ ρi)(x) = max{αT

ix+ bi,−∞}.

If two tropical polynomials p and q are represented as neural networks with lp and lq layers respectively,

p(x) =
(
σ−∞ ◦ ρ(lp)

p ◦ σ0 ◦ . . . σ0 ◦ ρ(1)
p

)
(x),

q(x) =
(
σ−∞ ◦ ρ(lq)

q ◦ σ0 ◦ . . . σ0 ◦ ρ(1)
q

)
(x),

then (p⊕ q)(x) = max{p(x), q(x)} can also be written as a neural network with max{lp, lq}+ 1 layers:

(p⊕ q)(x) = σ−∞
(
[σ0 ◦ ρ1](y(x)) + [σ0 ◦ ρ2](y(x))− [σ0 ◦ ρ3](y(x))

)
,

where y : Rd → R2 is given by y(x) = (p(x), q(x)) and ρi : R2 → R, i = 1, 2, 3, are linear functions defined by

ρ1(y) = y1 − y2, ρ2(y) = y2, ρ3(y) = −y2.

Thus, by induction, any tropical polynomial can be written as a neural network with ReLU activation. Observe also that
if a tropical polynomial is the tropical sum of r monomials, then it can be written as a neural network with no more than
dlog2 re+ 1 layers.

Next we consider a tropical rational function (p� q)(x) = p(x)− q(x) where p and q are tropical polynomials. Under the
same assumptions, we can represent p� q as

(p� q)(x) = σ−∞
(
[σ0 ◦ ρ4](y(x))− [σ0 ◦ ρ5](y(x)) + [σ0 ◦ ρ6](y(x))− [σ0 ◦ ρ7](y(x))

)
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where ρi : R2 → R2, i = 4, 5, 6, 7, are linear functions defined by

ρ4(y) = y1, ρ5(y) = −y1, ρ6(y) = −y2, ρ7(y) = y2.

Therefore p� q is also a neural network with at most max{lp, lq}+ 1 layers.

Finally, if f and g are tropical polynomials that are respectively tropical sums of rf and rg monomials, then the discussions
above show that (f � g)(x) = f(x)− g(x) is a neural network with at most max{dlog2 rfe, dlog2 rge}+ 2 layers.

D.4. Proof of Proposition 5.5

Proof. It remains to establish the “if” part. Let Rd be divided into N polyhedral region on each of which ν restricts to a
linear function

`i(x) = aT

ix+ bi, ai ∈ Zd, bi ∈ R, i = 1, . . . , L,

i.e., for any x ∈ Rd, ν(x) = `i(x) for some i ∈ {1, . . . , L}. It follows from (Tarela & Martinez, 1999) that we can find N
subsets of {1, . . . , L}, denoted by Sj , j = 1, . . . , N , so that ν has a representation

ν(x) = max
j=1,...,N

min
i∈Sj

`i.

It is clear that each `i is a tropical rational function. Now for any tropical rational functions p and q,

min{p, q} = −max{−p,−q} = 0� [(0� p)⊕ (0� q)] = [p� q]� [p⊕ q].

Since p� q and p⊕ q are both tropical rational functions, so is their tropical quotient. By induction, mini∈Sj
`i is a tropical

rational function for any j = 1, . . . , N , and therefore so is their tropical sum ν.

D.5. Proof of Proposition 5.6

Proof. For a one-layer neural network ν(x) = max{Ax + b, t} = (ν1(x), . . . , νp(x)) with A ∈ Rp×d, b ∈ Rp, x ∈ Rd,
t ∈ (R ∪ {−∞})p, we have

νk(x) =

(
bk �

d⊙
j=1

x
akj

j

)
⊕ tk =

(
bk �

d⊙
j=1

x
akj

j

)
⊕
(
tk �

d⊙
j=1

x0
j

)
, k = 1, . . . , p.

So for any k = 1, . . . , p, if we write b̄1 = bk, b̄2 = tk, ā1j = akj , ā2j = 0, j = 1, . . . , d, then

νk(x) =
2⊕
i=1

b̄i

d⊙
j=1

x
āij
j

is clearly a tropical signomial function. Therefore ν is a tropical signomial map. The result for arbitrary number of layers
then follows from using the same recurrence as in the proof in Section D.2, except that now the entries in the weight matrix
are allowed to take real values, and the maps H(l)(x), G(l)(x), F (l)(x) are tropical signomial maps. Hence every layer can
be written as a tropical rational signomial map ν(l) = F (l) �G(l).

D.6. Proof of Proposition 6.1

We prove a slightly more general result.

Proposition D.1 (Level sets). Let f � g ∈ Rat(d, 1) = T(x1, . . . , xd).

(i) Given a constant c > 0, the level set

B := {x ∈ Rd : f(x)� g(x) = c}

divides Rd into at most N (f) connected polyhedral regions where f(x)� g(x) > c, and at most N (g) such regions
where f(x)� g(x) < c.
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(ii) If c ∈ R is such that there is no tropical monomial in f(x) that differs from any tropical monomial in g(x) by c, then
the level set B is contained in a tropical hypersurface,

B ⊆ T (max{f(x), g(x) + c}) = T (c� g ⊕ f).

Proof. We show that the bounds on the numbers of connected positive (i.e., above c) and negative (i.e., below c) regions are
as we claimed in (i). The tropical hypersurface of f divides Rd into N (f) convex regions C1, . . . , CN (f) such that f is
linear on each Ci. As g is piecewise linear and convex over Rd, f � g = f − g is piecewise linear and concave on each Ci.
Since the level set {x : f(x)− g(x) = c} and the superlevel set {x : f(x)− g(x) ≥ c} must be convex by the concavity
of f − g, there is at most one positive region in each Ci. Therefore the total number of connected positive regions cannot
exceed N (f). Likewise, the tropical hypersurface of g divides Rd into N (g) convex regions on each of which f � g is
convex. The same argument shows that the number of connected negative regions does not exceed N (g).

We next address (ii). Upon rearranging terms, the level set becomes

B =
{
x ∈ Rd : f(x) = g(x) + c

}
.

Since f(x) and g(x) + c are both tropical polynomial, we have

f(x) = b1x
α1 ⊕ · · · ⊕ brxαr ,

g(x) + c = c1x
β1 ⊕ · · · ⊕ csxβs ,

with appropriate multiindices α1, . . . , αr, β1, . . . , βs, and real coefficients b1, . . . , br, c1, . . . , cs. By the assumption on
the monomials, we have that x0 ∈ B only if there exist i, j so that αi 6= βj and bixαi

0 = cjx
βj

0 . This completes the proof
since if we combine the monomials of f(x) and g(x) + c by (tropical) summing them into a single tropical polynomial,
max{f(x), g(x) + c}, the above implies that on the level set, the value of the combined tropical polynomial is attained by
at least two monomials and therefore x0 ∈ T (max{f(x), g(x) + c}).

Proposition 6.1 follows immediately from Proposition D.1 since the decision boundary {x ∈ Rd : ν(x) = s−1(c)} is a level
set of the tropical rational function ν.

D.7. Proof of Theorem 6.3

The linear regions of a tropical polynomial map F ∈ Pol(d,m) are all convex but this is not necessarily the case for a
tropical rational map F ∈ Rat(d, n). Take for example a bivariate real-valued function f(x, y) whose graph in R3 is a
pyramid with base {(x, y) ∈ R2 : x, y ∈ [−1, 1]} and zero everywhere else, then the linear region where f vanishes is
R2 \ {(x, y) ∈ R2 : x, y ∈ [−1, 1]}, which is nonconvex. The nonconvexity invalidates certain geometric arguments that
only apply in the convex setting. Nevertheless there is a way to subdivide each of the nonconvex linear regions into convex
ones to get ourselves back into the convex setting. We will start with the number of convex linear regions for tropical rational
maps although later we will deduce the required results for the number of linear regions (without imposing convexity).

We first extend the notion of tropical hypersurface to tropical rational maps: Given a tropical rational map F ∈ Rat(d,m),
we define T (F ) to be the boundaries between adjacent linear regions. When F = (f1, . . . , fm) ∈ Pol(d,m), i.e., a tropical
polynomial map, this set is exactly the union of tropical hypersurfaces T (fi), i = 1, . . . ,m. Therefore this definition of
T (F ) extends Definition 3.1.

For a tropical rational map F , we will examine the smallest number of convex regions that form a refinement of T (F ). For
brevity, we will call this the convex degree of F ; for consistency, the number of linear regions of F we will call its linear
degree. We define convex degree formally below. We will write F |C to mean the restriction of map F to C ⊆ Rd.

Definition D.1. The convex degree of a tropical rational map F ∈ Rat(d, n) is the minimum division of Rd into convex
regions over which F is linear, i.e.

Nc(F ) := min
{
n : C1 ∪ · · · ∪ Cn = Rd, Ci convex, F |Ci

linear
}
.

Note that C1, . . . , CNc(F ) either divide Rd into the same regions as T (F ) or form a refinement.
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For m ≤ d, we will denote by Nc(F | m) the maximum convex degree obtained by restricting F to an m-dimensional affine
subspace in Rd, i.e.,

Nc(F | m) := max
{
Nc(F |Ω) : Ω ⊆ Rd is an m-dimensional affine space

}
.

For any F ∈ Rat(d, n), there is at least one tropical polynomial map that subdivides T (F ), and so convex degree is well-
defined (e.g., if F = (p1� q1, . . . , pn� qn) ∈ Rat(d, n), then we may choose P = (p1, . . . , pn, q1, . . . , qn) ∈ Pol(d, 2n)).
Since the linear regions of a tropical polynomial map are always convex, we have N (F ) = Nc(F ) for any F ∈ Pol(d, n).

Let F = (f1, . . . , fn) ∈ Rat(d, n) and α = (a1, . . . , an) ∈ Zn. Consider the tropical rational function1

Fα := αTF = a1f1 + · · ·+ anfn =

n⊙
j=1

f
aj
j ∈ Rat(d, 1).

For some α, Fα may have fewer linear regions than F , e.g, α = (0, . . . , 0). As such, we need the following notion.
Definition D.2. α = (a1, . . . , an) ∈ Zn is said to be a general exponent of F ∈ Rat(d, n) if the linear regions of Fα and
the linear regions of F are identical.

We show that general exponent always exists for any F ∈ Rat(d, n) and may be chosen to have all entries nonnegative.
Lemma D.2. Let F ∈ Rat(d, n). Then

(i) N (Fα) = N (F ) if and only if α is a general exponent;

(ii) F has a general exponent α ∈ Nn.

Proof. It follows from the definition of tropical hypersuface that T (Fα) and T (F ) comprise respectively the points
x ∈ Rd at which Fα and F are not differentiable. Hence T (Fα) ⊆ T (F ), which implies that N (Fα) < N (F ) unless
T (Fα) = T (F ). This concludes (i).

For (ii), we need to show that there always exists an α ∈ Nn such that Fα divides its domain Rd into the same set of linear
regions as F . In other words, for every pair of adjacent linear regions of F , the (d − 1)-dimensional face in T (F ) that
separates them is also present in T (Fα) and so T (Fα) ⊇ T (F ).

Let L and M be adjacent linear regions of F . The differentials of F |L and F |M must have integer coordinates, i.e.,
dF |L, dF |M ∈ Zn×d. Since L and M are distinct linear regions, we must have dF |L 6= dF |M (or otherwise L and M can
be merged into a single linear region). Note that the differentials of Fα|L and Fα|M are given by αTdF |L and αTdF |M .

To ensure the (d− 1)-dimensional face separating L and M still exists in T (Fα), we need to choose α so that αTdF |L 6=
αTdF |M . Observe that the solution to (dF |L − dF |M )Tα = 0 is contained in a one-dimensional subspace of Rn.

Let A(F ) be the collection of all pairs of adjacent linear regions of F . Since the set of α that degenerates two adjacent
linear regions into a single one, i.e.,

S :=
⋃

(L,M)∈A(F )

{
α ∈ Nn : (dF |L − dF |M )Tα = 0)

}
,

is contained in a union of a finite number of hyperplanes in Rn, S cannot cover the entire lattice of nonnegative integers Nn.
Therefore the set Nn ∩ (Rn \ S) is nonempty and any of its element is a general exponent for F .

Lemma D.2 shows that we may study the linear degree of a tropical rational map by studying that of a tropical rational
function, for which the results in Section 3.1 apply.

We are now ready to prove a key result on the convex degree of composition of tropical rational maps.
Theorem D.3. Let F = (f1, . . . , fm) ∈ Rat(n,m) and G ∈ Rat(d, n). Define H = (h1, . . . , hm) ∈ Rat(d,m) by

hi := fi ◦G, i = 1, . . . ,m.

Then
N (H) ≤ Nc(H) ≤ Nc(F | d) · Nc(G).

1This is in the sense of a tropical power but we stay consistent to our slight abuse of notation and write Fα instead of F�α.
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Proof. Only the upper bound requires a proof. Let k = Nc(G). By the definition of Nc(G), there exist convex sets
C1, . . . , Ck ⊆ Rd whose union is Rd and on each of which G is linear. So G|Ci

is some affine function ρi. For any i,

Nc(F ◦ ρi) ≤ Nc(F | d),

by the definition of Nc(F | d). Since F ◦G = F ◦ ρi on Ci, we have

Nc(F ◦G) ≤
k∑
i=1

Nc(F ◦ ρi).

Hence

Nc(F ◦G) ≤
k∑
i=1

Nc(F ◦ ρi) ≤
k∑
i=1

Nc(F | d) = Nc(F | d) · Nc(G).

We now apply our observations on tropical rational functions to neural networks. The next lemma follows directly from
Corollary 3.4.

Lemma D.4. Let σ(l) ◦ ρ(l) : Rnl−1 → Rnl where σ(l) and ρ(l) are the affine transformation and activation of the lth layer
of a neural network. If d ≤ nl, then

Nc(σ(l) ◦ ρ(l) | d) ≤
d∑
i=0

(
nl
i

)
.

Proof. Nc(σ(l) ◦ ρ(l) | d) is the maximum convex degree of a tropical rational map F = (f1, . . . , fnl
) : Rd → Rnl of the

form
fi(x) := σ

(l)
i ◦ ρ

(l) ◦ (b1 � xα1 , . . . , bnl−1
� xαnl−1 ), i = 1, . . . , nl.

For a general affine transformation ρ(l),

ρ(l)(b1 � xα1 , . . . , bnl−1
� xαnl−1 ) =

(
b′1 � xα

′
1 , . . . , b′nl

� xα
′
nl

)
=: G(x)

for some α′1, . . . , α
′
nl

and b′1, . . . , b
′
nl

, and we denote this map by G : Rd → Rnl . So fi = σ
(l)
i ◦G. By Theorem D.3, we

have Nc(σ(l) ◦ ρ(l) | d) = Nc(σ(l) | d) · Nc(G) = Nc(σ(l) | d); note that Nc(G) = 1 as G is a linear function.

We have thus reduced the problem to determining a bound on the convex degree of a single layer neural network with nl
nodes ν = (ν1, . . . , νnl

) : Rd → Rnl . Let γ = (c1, . . . , cnl
) ∈ Nnl be a nonnegative general exponent for ν. Note that

nl⊙
j=1

ν
cj
j =

nl⊙
j=1

[( d⊙
i=1

bi � xa
+
ji

)
⊕
( d⊙
i=1

xa
−
ji

)
� tj

]cj
−

nl⊙
j=1

( d⊙
i=1

xa
−
ji

)cj
.

Since the last term is linear in x, we may drop it without affecting the convex degree of the entire expression. It remains to
determine an upper bound for the number of linear regions of the tropical polynomial

h(x) =

nl⊙
j=1

[( d⊙
i=1

bi � xa
+
ji

)
⊕
( d⊙
i=1

xa
−
ji

)
� tj

]cj
,

which we will obtain by counting vertices of the polytope P(h). By Propositions 3.1 and 3.2 the polytope P(h) is given by
a weighted Minkowski sum

nl∑
j=1

cjP
[( d⊙

i=1

bi � xa
+
ji

)
⊕
( d⊙
i=1

xa
−
ji

)
� tj

]
.

By Proposition 3.2 again,

P
[( d⊙

i=1

bi � xa
+
ji

)
⊕
( d⊙
i=1

xa
−
ji

)
� tj

]
= Conv

(
V(P(f)) ∪ V(P(g))

)
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where

f(x) =

d⊙
i=1

bi � xa
+
ji and g(x) =

( d⊙
i=1

xa
−
ji

)
� tj

are tropical monomials. Therefore P(f), P(g) are just points in Rd+1 and Conv
(
V(P(f)) ∪ V(P(g))

)
is a line in Rd+1.

Hence P(h) is a Minkowski sum of nl line segments in Rd+1, i.e., a zonotope, and Corollary 3.4 completes the proof.

Using Lemma D.4, we obtain a bound on the number of linear regions created by one layer of a neural network.

Theorem D.5. Let ν : Rd → RnL be an L-layer neural network satisfying assumptions (a)–(c) with F (l), G(l),H(l), and
ν(l) as defined in Proposition 5.1. Let nl ≥ d for all l = 1, . . . , L. Then

Nc(ν(1)) = N (G(1)) = N (H(1)) = 1, Nc(ν(l+1)) ≤ Nc(ν(l)) ·
d∑
i=0

(
nl+1

i

)
.

Proof. The l = 1 case follows from the fact that G(1)(x) = A
(1)
− x and H(1)(x) = A

(1)
+ x+ b(1) are both linear, which in

turn forces Nc(ν(1)) = 1 as in the proof of Lemma D.4. Since ν(l) = (σ(l) ◦ ρ(l)) ◦ ν(l−1), the recursive bound follows
from Theorem D.3 and Lemma D.4.

Theorem 6.3 follows from applying Theorem D.5 recursively.

References
Tarela, J. and Martinez, M. Region configurations for realizability of lattice piecewise-linear models. Mathematical and

Computer Modelling, 30(11-12):17–27, 1999.


