
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Material for
Noisy Natural Gradient as Variational Inference

1. Natural Gradient for Multivariate
Gaussian

Suppose we have a model parameterized by θ which lives
in a subspace S (such as the set of symmetric matrices).
The natural gradient ∇̃θh is motivated in terms of a trust
region optimization problem, that finding the optimal θ in a
neighborhood of θ0 defined with KL divergence,

argmin
θ∈S

α(∇θh)
>θ +DKL(pθ ‖ pθ0

)

≈ argmin
θ∈S

α(∇θh)
>θ +

1

2
(θ − θ0)

>F(θ − θ0)

Then the optimal solution to this optimization problem is
given by θ − αF−1∇θh. Here F = ∇2

θ DKL(pθ ‖ pθ0
))

is the Fisher matrix and α is the learning rate. Note that
h(θ) and DKL(pθ ‖ pθ0

) are defined only for θ,θ0 ∈ S , but
these can be extended to the full space however we wish
without changing the optimal solution.

Now let assume the model is parameterized by multivariate
Gaussian (µ,Σ). The KL-divergence between N (µ,Σ)
and N0(µ0,Σ0) are:

DKL(N ‖N0) =
1

2

[
log
|Σ0|
|Σ|
− d+ tr(Σ−10 Σ)

]
+ (µ− µ0)

>Σ−10 (µ− µ0)

(1)

Hence, the Fisher matrix w.r.t µ and Σ are

Fµ = ∇2
µDKL = Σ−1

FΣ = ∇2
ΣDKL =

1

2
Σ−1 ⊗Σ−1

(2)

Then, by the property of vec-operator (B> ⊗A)vec(X) =
vec(AXB), we get the natural gradient updates

∇̃µh = Σ∇µh

∇̃Σh = 2Σ∇ΣhΣ
(3)

An analogous derivation gives us ∇̃Λh = 2Λ∇ΛhΛ. Con-
sidering Σ = Λ−1, we have dΣ = −ΣdΛΣ, which gives
us the convenient formulas

∇̃Σh = −2∇Λh

∇̃Λh = −2∇Σh
(4)

Recall in variational inference, the gradient of ELBO L
towards µ and Σ are given as

∇µL = E [∇w log p(D |w) + λ∇w log p(w)]

∇ΣL =
1

2
E
[
∇2

w log p(D |w) + λ∇2
w log p(w)

]
+
λ

2
Σ−1

(5)
Based on eq. (5) and eq. (4), the natural gradient is given
by:

∇̃µL = Λ−1E [∇w log p(D |w) + λ∇w log p(w)]

∇̃ΛL = −E
[
∇2

w log p(D |w) + λ∇2
w log p(w)

]
− λΛ

(6)

2. Matrix Variate Gaussian
Recently Matrix Variate Gaussian (MVG) distribution are
also used in Bayesian neural networks (Louizos & Welling,
2016; Sun et al., 2017). A matrix variate Gaussian dis-
tributions models a Gaussian distribution for a matrix
W ∈ Rn×p,

p(W|M,U,V)

=
exp(12 tr[V

−1(W −M)>U−1(W −M)])

(2π)np/2|V|n/2|U|p/2
(7)

In which M ∈ Rn×p is the mean, U ∈ Rn×n is the covari-
ance matrix among rows and V ∈ Rp×p is the covariance
matrix among columns. Both U and V are positive definite
matrices to be a covariance matrix. Connected with Gaus-
sian distribution, vectorization of W confines a multivariate
Gaussian distribution whose covariance matrix is Kronecker
product of V and U.

vec(W) ∼ N (vec(M),V ⊗U) (8)

3. Implementation Details
3.1. Regression Implementation Details

The datasets were randomly splitted into training and test
sets, with 90% of the data for training and the remaining for
testing. To reduce the randomness, we repeated the splitting
process for 20 times (except two largest datasets, i.e., Year
and Protein, where we repeated 5 times and 1 times, respec-
tively.) For all datasets except two largest ones, we used neu-
ral networks with 50 hidden units. For two largest datasets,

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Noisy Natural Gradient as Variational Inference

we used 100 hidden units. Besides, we also introduced a
Gamma prior, p(τ) = Gam(a0 = 6, b0 = 6) for the preci-
sion of the Gaussian likelihood and included the posterior
q(τ) = Gam(ατ , βτ) into variational objective. The vari-
ational posterior we used is q(w, λ) = q(w)q(τ), q(τ) =
Gamma(ατ , βτ), then the expected likelihood Lr can be
computed as

Lr = Eq(w)Eq(τ) log p(y|x,w, τ)

= Eq(w)Eq(τ) logN (y|ŷ(x,w),
1

τ
)

=
1

2
Eq(w)Eq(τ)[log τ − τ(y − ŷ(x,w))2 − log 2π]

= Eq(w)[ψ(α
τ)− log βτ − ατ

βτ
(y − ŷ(x,w))2 − log 2π]

(9)
Where ψ represents digamma function. Therefore, ELBO
can be computed with

L = Lr −DKL(q(w)‖p(w))−DKL(q(τ)‖p(τ)) (10)

With ELBO as above, we can directly compute the gradi-
ents towards variational parameters α, β using automatic
differentiation.

In training, the input features and training targets were nor-
malized to be zero mean and unit variance. We removed the
normalization on the targets in test time. For each dataset,
we set α̃ = 0.01 and β̃ = 0.001 unless state otherwise. We
set batch size 10 for 5 small datasets with less than 2000
data points, 500 for Year and 100 for other fours. Besides,
we decay the learning rate by 0.1 in second half epochs.

3.2. Classification Implementation Details

Throughout classification experiments, we used VGG16
architecture but reduced the number of filters in each convo-
lutional layer by half.

In training, we adopted learning rate selection strategy
adopted by Ba et al. (2016). In particular, given a parameter
update vector v, the KL divergence between the predictive
distributions before and after the update is given by the
Fisher norm:

DKL(q ‖ p) ≈
1

2
v>Fv (11)

Observe that choosing a step size of α̃ will produce an
update with squared Fisher norm α̃2v>Fv. Motivated by
the idea of trust region, we chose α in each iteration such
that the squared Fisher norm is at most some value c:

α̃ = min

(
α̃max,

√
c

v>Fv

)
(12)

We used an exponential decay schedule ck = c0ζ
k, where

c0 and ζ were tunable parameters (c0 is 0.001 or 0.01 for

noisy K-FAC in our CIFAR-10 experiments when models
trained without/with Batch Normalization (Ioffe & Szegedy,
2015), ζ is 0.95; c0 is 0.0001 for noisy Adam), and k
was incremented periodically (every epoch in our CIFAR-
10 experiments). In practice, computing v>Fv involves
curvature-vector products after each update which intro-
duces significant computational overhead, so we instead
used the approximate Fisher F̃ that we used to compute
natural gradient. The maximum step size α̃max was set to be
0.01.

To reduce computational overhead of K-FAC (also noisy
K-FAC) introduced by updating approximate Fisher matrix
F̃ and inverting it, we set Tstats = 10 and Tinv = 200. That
means our curvature statistics are somewhat more stale,
but we found that it didn’t significantly affect per-iteration
optimization performance. β̃ was set to 0.01 and 0.003 for
noisy K-FAC and noisy Adam, respectively.

We noticed that it was favorable to tune regularization pa-
rameter λ and prior variance η. We used a small regular-
ization parameter λ when data augmentation was adopted.
E.g., we set λ = 0.1 when models were trained with data
augmentation while λ = 0.5 otherwise. We speculate that
using data augmentation leads to more training examples
(larger N), so it’s reasonable to use a smaller λ. Moreover,
we set η to 0.1 when models were trained without Batch
Normalization.

3.3. Active Learning Implementation Details

Following the experimental protocol in PBP (Hernández-
Lobato & Adams, 2015), we splited each dataset into train-
ing and test sets with 20 and 100 data points. All remaining
data were included in pool sets. In all experiments, we used
a neural network with one hidden layer and 10 hidden units.

After fitting our model in training data, we evaluated the
performance in test data and further added one data point
from pool set into training set. The selection was based on
the method described by which was equivalent to choose the
one with highest predictive variance. This process repeated
10 times, that is, we collected 9 points from pool sets. For
each iteration, we re-trained the whole model from scratch.

Beyond that, as uncertainty estimation is of fundamental
importance in active learning, we also performed experi-
ments to evaluate the uncertainty estimation of our method
directly, which was measured according to the Pearson’s
correlation of predictive variance compared to HMC (Neal
et al., 2011). Recall Pearson’s correlation,

ρ(X,Y) =
E[(X − µX)(Y − µY)]

σXσY
(13)

is a measure of linear correlation between two variables X
and Y . Pearson’s corrleation ranges from 0 to 1, with big-
ger value representing stronger correlations. We compared

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Noisy Natural Gradient as Variational Inference

several algorithms, including PBP, NNG-FFG, NNG-MVG,
NNG-BlkTri.

We trained NNG-FFG, NNG-MVG and NNG-BlkTri for
20000 epochs, PBP for 40 epochs and HMC with 20 chains,
100000 iterations. For all the models, we used 1000 sampled
weights for predicting on the testing set, thus we could
compute the model’s predicative variance for every data
point in the test set. Finally, we computed the Pearson’s
correlation between different models and HMC in terms
of predicative variance. In all experiments, we used α̃ =
0.01, β̃ = 0.01 and no extra damping term.

3.4. Reinforcement Learning Implementation Details

In all three tasks, CartPoleSwingup, MountainCar and Dou-
blePendulum, we used one-layer Bayesian Neural Network
with 32 hidden units for both BBB and NNG-MVG. And we
used rectified linear unit (RELU) as our activation function.
The number of samples drawn from variational posterior
was fixed to 10 in the training process. For TRPO, the batch
size was set to be 5000 and the replay pool has a fixed num-
ber of 100,000 samples. In both BBB and NNG-MVG, the
dynamic model was updated in each epoch with 500 itera-
tions and 10 batch size. For the policy network, one-layer
network with 32 tanh units was used.

For all three tasks, we sparsified the rewards in the following
way. A reward of +1 is given in CartPoleSwingup when
cos(θ) > 0.8, with θ the pole angle; when the car escapes
the valley in MountainCar; and when D < 0.1, with D the
distance from the target in DoublePendulum.

To derive the intrinsic reward in Houthooft et al. (2016), we
just need to analyze a single layer since we assume layer-
wise independence in NNG-MVG. The intrinsic reward for
each layer is given by (Note: L below is the ELBO with
q(φ) as prior.)

DKL

(
q(φ′) ‖ q(φ)

)
=

1

2
α̃2

[
vec {∇µL}
vec {∇ΣL}

]T [
F−1µ

F−1Σ

] [
vec {∇µL}
vec {∇ΣL}

] (14)

Where α̃ is the step-size. As shown in eq. (2), the Fisher
matrix for µ is given by Fµ = Σ−1, thus the first term
in eq. (14) is easy to get by exploiting Kronecker struc-
ture. However, FΣ = 1

2Σ−1 ⊗ Σ−1 where Σ itself is
a gigantic matrix which makes computation of the sec-
ond term intractable. Fortunately, the approximate vari-
ational posterior is a matrix variate Gaussian whose covari-
ance is a Kronecker product, i.e.MN (W;M,Σ1,Σ2) =
N (vec(W); vec(M),Σ2⊗Σ1), where W is of sizem×n
and µ = vec(M).

Using ∇ΣL = ∇Σ2L ⊗Σ1 + Σ2 ⊗∇Σ1L and substitute

0 20000 40000 60000 80000 100000
Iterations

2.0

1.8

1.6

1.4

1.2

1.0

0.8
Training ELBO - Protein

BBB
NNG-FFG
NNG-MVG

0 20000 40000 60000 80000 100000
Iterations

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Training ELBO - Kin8nm

BBB
NNG-FFG
NNG-MVG

Figure 1: Training curves for all three methods. For each
method, we tuned the learning rate for updating the posterior
mean. Note that BBB and NNG-FFG use the same form of
q, while NNG-MVG uses a more flexible q distribution.

FΣ with 1
2Σ−1 ⊗Σ−1, we get the following identity

vec {∇ΣL}T FΣ vec {∇ΣL} =[
vec {∇Σ1L}
vec {∇Σ2

L}

]T [
FΣ1 F
FT FΣ2

] [
vec {∇Σ1L}
vec {∇Σ2

L}

] (15)

where Fisher matrices FΣ1
and FΣ2

FΣ1 =
n

2

(
Σ−11 ⊗Σ−11

)
FΣ2 =

m

2

(
Σ−12 ⊗Σ−12

) (16)

By further ignoring off-diagonal block F in eq. (15), we can
decompose vec {∇ΣL}T F−1Σ vec {∇ΣL} into two terms,

vec {∇Σ1
L}T F−1Σ1

vec {∇Σ1
L}

=
2

n
vec {∇Σ1

L}T vec
(
Σ−11 ∇Σ1

LΣ−11

) (17)

and

vec {∇Σ2L}
T

F−1Σ2
vec {∇Σ2L}

=
2

m
vec {∇Σ2

L}T vec
(
Σ−12 ∇Σ2

LΣ−12

) (18)

Now, each term can be computed efficient since Σ1 and Σ2

are small matrices.

4. Additional Results
We also run PBP MV (Sun et al., 2017) and VMG (Louizos
& Welling, 2016) on regression datasets from UCI collec-
tion (Asuncion & Newman, 2007). Results are shown in

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Noisy Natural Gradient as Variational Inference

Table 1. Note that VMG introduced pseudo input-output
pairs to enhance the flexibility of posterior distribution.

Table 1: Averaged test RMSE and log-likelihood for the
regression benchmarks.

TEST RMSE TEST LOG-LIKELIHOOD
DATASET PBP MV VMG PBP MV VMG

BOSTON 3.137±0.155 2.810±0.110 -2.666±0.081 -2.540±0.080
CONCRETE 5.397±0.130 4.700±0.140 -3.059±0.029 -2.980±0.030
ENERGY 0.556±0.016 1.160±0.030 -1.151±0.016 -1.450±0.030
KIN8NM 0.088±0.001 0.080±0.001 1.053±0.012 1.140±0.010
NAVAL 0.002±0.000 0.000±0.000 4.935±0.051 5.840±0.000
POW. PLANT 4.030±0.036 3.880±0.030 -2.830±0.008 -2.780±0.010
PROTEIN 4.490±0.012 4.140±0.010 -2.917±0.003 -2.840±0.000
WINE 0.641±0.006 0.610±0.010 -0.969±0.013 -0.930±0.020
YACHT 0.676±0.054 0.770±0.060 -1.024±0.025 -1.290±0.020
YEAR 9.450±NA 8.780±NA -3.392±NA -3.589 ±NA

While optimization was not the primary focus of this work,
we compared NNG with the baseline BBB (Blundell et al.,
2015) in terms of convergence. Training curves for two
regression datasets are shown in Figure 1 . We found that
NNG-FFG trained in fewer iterations than BBB, while lev-
eling off to similar ELBO values, even though our BBB
implementation used Adam, and hence itself exploited diag-
onal curvature. Furthermore, despite the increased flexibility
and larger number of parameters, NNG-MVG took roughly
2 times fewer iterations to converge, while at the same time
surpassing BBB by a significant margin in terms of the
ELBO.

References
Asuncion, A. and Newman, D. Uci machine learning repos-

itory, 2007.

Ba, J., Grosse, R., and Martens, J. Distributed second-order
optimization using kronecker-factored approximations.
2016.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural networks. arXiv preprint
arXiv:1505.05424, 2015.

Hernández-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of bayesian neural net-
works. In International Conference on Machine Learning,
pp. 1861–1869, 2015.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck,
F., and Abbeel, P. Vime: Variational information maxi-
mizing exploration. In Advances in Neural Information
Processing Systems, pp. 1109–1117, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456, 2015.

Louizos, C. and Welling, M. Structured and efficient vari-
ational deep learning with matrix gaussian posteriors.
In International Conference on Machine Learning, pp.
1708–1716, 2016.

Neal, R. M. et al. Mcmc using hamiltonian dynamics. Hand-
book of Markov Chain Monte Carlo, 2(11), 2011.

Sun, S., Chen, C., and Carin, L. Learning structured weight
uncertainty in bayesian neural networks. In Artificial
Intelligence and Statistics, pp. 1283–1292, 2017.

