
A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery

A. Proof of Theorem 3.8

In order to proof Theorem 3.8, we need to make use of the following lemma, which is derived from the restricted strong
convexity and smoothness property of Fn. The proof of Lemma A.1 is presented in Section C.

Lemma A.1. Assume the sample loss function Fn satisfies Conditions 3.5 and 3.6. Then for all matrices Y 2 Rd1⇥d2 with
rank at most 2r and W 2 Rd1⇥d2 with rank at most 4r, we have

µkWk2F  vec(W)>r2Fn(Y)vec(W)  LkWk2F .

Moreover, for all matrices W1, W2 2 Rd1⇥d2 with rank at most 2r, we have

��2vec(W1)
>r2Fn(Y)vec(W2)� (L+ µ)hW1,W2i

��  L� µ

2
(kW1k2F + kW2k2F ).

Now we are ready to prove Theorem 3.8.

Proof of Theorem 3.8. Recall Z = [U;V] is the local minimizer of constrained optimization problem (3.1). Since
rhi(Z) = 2eie>i Z are linearly independent for all i 2 [d1 + d2], thus there exists � � 0 such that (Z,�) is a KKT
pair, which satisfies the conditions listed in Lemma 3.3. Denote X = UV> and eZ = [U;�V]. Then according to the
Lagrangian function for optimization problem (3.1), we can calculate its gradient with respect to Z as follows

rZL(Z,�) = rZFn(UV>) +
�

4
rZ

⇥
kU>U�V>Vk2F

⇤
+

d1+d2X

i=1

�irhi(Z)

=


rFn(X)V
rFn(X)>U

�
+ �eZeZ>Z+ 2

d1+d2X

i=1

�ieie
>
i Z. (A.1)

Moreover, for any matrix � 2 R(d1+d2)⇥r, denote � = [�U ;�V ], where �U 2 Rd1⇥r, �V 2 Rd2⇥r, then we have

vec(�)>r2
ZL(Z,�)vec(�) = vec(U�>

V +�UV
>)>r2Fn(X)vec(U�>

V +�UV
>)

+ 2hrFn(X),�U�
>
V i+ �h�, e�eZ>Z+ eZ e�>Z+ eZeZ>�i+ 2

d1+d2X

i=1

�iheie>i ,��>i. (A.2)

Let R be the optimal rotation with respect to Z and Z⇤, i.e., R = argmineR2Qr
kZ�Z⇤ eRkF , where Qr is the set of r-by-r

orthogonal matrices. For any i 2 [d1 + d2], if hi(Z) = 0, then we have

hrhi(Z),Z
⇤R� Zi = 2heie>i Z,Z⇤Ri � 2heie>i Z,Zi  2kZi,⇤k2 · kZ⇤

i,⇤k2 � 2kZi,⇤k22  0,

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality holds because kZi,⇤k2 = ↵,
kZ⇤

i,⇤k2  kZ⇤k2,1  ↵. Thus according to Lemma 3.4, we obtain

vec(Z⇤R� Z)>r2
ZL(Z,�)vec(Z⇤R� Z) � 0. (A.3)

Denote � = Z� Z⇤R, then according to (A.2), we further obtain the equivalent form of (A.3)

vec(U�>
V +�UV

>)>r2Fn(X)vec(U�>
V +�UV

>)| {z }
I1

+ 2hrFn(X),�U�
>
V i+ 2

Pd1+d2

i=1 �iheie>i ,��>i
| {z }

I2

+ �h�, e�eZ>Z+ eZ e�>Z+ eZeZ>�i| {z }
I3

� 0.
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Consider I1 first. Since U�>
V +�UV> = X�X⇤ +�U�>

V , thus we have

I1 = vec(X�X⇤)>r2Fn(X)vec(X�X⇤) + vec(�U�
>
V )

>r2Fn(X)vec(�U�
>
V )

+ 2vec(X�X⇤)>r2Fn(X)vec(�U�
>
V )

= �vec(X�X⇤)>r2Fn(X)vec(X�X⇤) + vec(�U�
>
V )

>r2Fn(X)vec(�U�
>
V )

+ 2vec(X�X⇤)>r2Fn(X)vec(U�>
V +�UV

>)

 �µkX�X⇤k2F + Lk�U�
>
V k2F + 2vec(X�X⇤)>r2Fn(X)vec(U�>

V +�UV
>)| {z }

I11

, (A.4)

where the inequality follows from Lemma A.1. Next, we are going to prove that I11 is close to 2hrFn(X) �
rFn(X⇤),U�>

V +�UV>i. More specifically, according to Lemma A.1, we have

��I11 � (L+ µ)hX�X⇤
,U�>

V +�UV
>i
��  L� µ

2
(kX�X⇤k2F + kU�>

V +�UV
>k2F ). (A.5)

Besides, according to the integral form of the mean value theorem, we have
��2hrFn(X)�rFn(X

⇤),U�>
V +�UV

>i � (L+ µ)hX�X⇤
,U�>

V +�UV
>i
��


��
Z 1

0
2vec(X�X⇤)>r2Fn(tX+ (1� t)X⇤)vec(U�>

V +�UV
>)dt

� (L+ µ)hX�X⇤
,U�>

V +�UV
>i
��


Z 1

0

L� µ

2
(kX�X⇤k2F + kU�>

V +�UV
>k2F )dt

=
L� µ

2
(kX�X⇤k2F + kU�>

V +�UV
>k2F ), (A.6)

where the second inequality follows from Lemma A.1. Combining (A.5) and (A.6), we obtain
��I11 � 2hrFn(X)�rFn(X

⇤),U�>
V +�UV

>i
��  (L� µ) · (kX�X⇤k2F + kU�>

V +�UV
>k2F ), (A.7)

which implies that I11 is close to 2hrFn(X)�rFn(X⇤),U�>
V +�UV>i, as long as (L�µ) is small enough. Noticing

that �� is a feasible direction for problem (3.1), according to Lemma 3.2, we have

hrG(Z),�i = hrZFn(UV>) + �eZeZ>Z,�i

= hrFn(X),U�>
V +�UV

>i+ �heZeZ>Z,�i  0. (A.8)

Therefore, we further obtain the upper bound of I11 as follows

I11  2hrFn(X)�rFn(X
⇤),U�>

V +�UV
>i+ (L� µ) · (kX�X⇤k2F + kU�>

V +�UV
>k2F )

 �2�heZeZ>Z,�i+ 2
��hrFn(X

⇤),U�>
V +�UV

>��+ (L� µ) · (kX�X⇤k2F + kU�>
V +�UV

>k2F )

 �2�heZeZ>Z,�i+ (L� µ) · (kX�X⇤k2F + kU�>
V +�UV

>k2F )
+ 2

p
2rkrFn(X

⇤)k2 · kU�>
V +�UV

>k2F , (A.9)

where the first inequality follows from (A.7), the second inequality follows from (A.8), and the last inequality holds because
|hA,Bi|  kAk2 · kBk⇤ and (U�>

V +�UV>) has rank at most 2r. Hence, combining (A.4) and (A.9), we obtain the
upper bound of I1 as follows

I1  (3L� 4µ)kX�X⇤k2F + (3L� 2µ)k�U�
>
V k2F � 2�heZeZ>Z,�i

+ 2
p
2rkrFn(X

⇤)k2 · kU�>
V +�UV

>k2F , (A.10)
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where the inequality follows from the fact that U�>
V +�UV> = X�X⇤+�U�>

V , and kA+Bk2F  2kAk2F +2kBk2F .
Furthermore, we turn to upper bound I2. To begin with, we have

I2 = 2hrFn(X),X⇤ �X+U�>
V +�UV

>i+ 2
d1+d2X

i=1

�iheie>i ,Z⇤Z⇤> � ZZ> + Z�> +�Z>i

 2 hrFn(X),X⇤ �Xi| {z }
I21

+2
d1+d2X

i=1

�i[Z
⇤Z⇤> � ZZ>]ii

| {z }
I22

+2
⌦
rZFn(UV>) + 2

d1+d2X

i=1

�ieie
>
i Z,�

↵

| {z }
I23

.

According to the restricted strong convexity Condition 3.5, we can upper bound I21 as follows

I21 = �hrFn(X)�rFn(X
⇤),X�X⇤i � hrFn(X

⇤),X�X⇤i
 �µkX�X⇤k2F + |hrFn(X

⇤),X�X⇤i|. (A.11)

Denote index set I = {i 2 [d1 + d2]
�� hi(Z) = 0}, then according to the complimentary slacknees condition in Lemma 3.3,

we have �ihi(Z) = 0, 8i 2 [d1 + d2], which implies that �i = 0, if i /2 I. Therefore, we have

I22 =
X

i2I
�i([Z

⇤Z⇤>]ii � [ZZ>]ii) 
X

i2I
�i(kZ⇤

i,⇤k22,1 � ↵
2)  0. (A.12)

According to the stationarity condition in Lemma 3.3, we have I23 = ��heZeZ>Z,�i. Combining (A.11) and (A.12), we
obtain

I2  �2µkX�X⇤k2F + 2|hrFn(X
⇤),X�X⇤i|� 2�heZeZ>Z,�i

 �2µkX�X⇤k2F + 2
p
2rkrFn(X

⇤)k2 · kX�X⇤kF � 2�heZeZ>Z,�i, (A.13)

where the last inequality is due to |hA,Bi|  kAk2 · kBk⇤ and the fact that (X �X⇤) has rank at most 2r. Therefore,
combining (A.10) and (A.13), we have

I1 + I2  (3L� 6µ)kX�X⇤k2F + (3L� 2µ)k�U�
>
V k2F � 4�heZeZ>Z,�i

+ 2
p
2rkrFn(X

⇤)k2 · (kU�>
V +�UV

>kF + kX�X⇤kF ). (A.14)

Finally, we are going to upper bound the remaining term I3 � 4�heZeZ>Z,�i. Recall eZ = [U;�V], and denote e� =
[�U ;��V ]. According to the definition of I3, we have

I3 � 4�heZeZ>Z,�i = �h e�eZ>Z+ eZ e�>Z+ eZeZ>�� 4eZeZ>Z,�i

=
�

2
heZ e�> + e�eZ>

,Z�> +�Z>i+ �heZeZ>
,��>i � 2�heZeZ>

,�Z+ Z�>i. (A.15)

Denote eZ⇤ = [U⇤;�V⇤]. Given the fact that eZ⇤>Z⇤ = 0, we have

heZeZ>
,��>i = heZeZ> � eZ⇤eZ⇤>

,��>i+ heZ⇤eZ⇤>
,��>i

= heZeZ> � eZ⇤eZ⇤>
,��>i+ heZ⇤eZ⇤>

,ZZ>i. (A.16)

Similarly, we have

heZeZ>
,�Z+ Z�>i = heZeZ> � eZ⇤eZ⇤>

,�Z+ Z�>i+ 2heZ⇤eZ⇤>
,ZZ>i. (A.17)

Thus, plugging (A.16) and (A.17) into (A.15), we obtain

I3 � 4�heZeZ>Z,�i = �

2
heZ e�> + e�eZ>

,Z�> +�Z>i| {z }
I31

+� heZeZ> � eZ⇤eZ⇤>
,��>i| {z }

I32

� 2� heZeZ> � eZ⇤eZ⇤>
,�Z+ Z�>i| {z }

I33

�3� heZ⇤eZ⇤>
,ZZ>i| {z }

I34

. (A.18)
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Moreover, we have
�

2
I31 � �I33 =

�

2
heZeZ> � eZ⇤eZ⇤> + e� e�>

,�Z> + Z�>i � �heZeZ> � eZ⇤eZ⇤>
,�Z> + Z�>i

=
�

2
h e� e�>

,��>i+ �

2
h e� e�>

,ZZ> � Z⇤Z⇤>i � �

2
heZeZ> � eZ⇤eZ⇤>

,�Z> + Z�>i

=
�

2
h e� e�>

,��>i � �

2
heZeZ> � eZ⇤eZ⇤>

,ZZ> � Z⇤Z⇤>i, (A.19)

where the third equality holds because h e� e�>
,ZZ> � Z⇤Z⇤>i = h��>

, eZeZ> � eZ⇤eZ⇤>i. Besides, we have

�I32 � �I33 = ��heZeZ> � eZ⇤eZ⇤>
,ZZ> � Z⇤Z⇤>i. (A.20)

Since I34 = keZ⇤>Zk2F � 0, thus plugging (A.19) and (A.20) into (A.18), we obtain the upper bound of I3�4�heZeZ>Z,�i

I3 � 4�heZeZ>Z,�i  �

2
h e� e�>

,��>i � 3�

2
heZeZ> � eZ⇤eZ⇤>

,ZZ> � Z⇤Z⇤>i

=
�

2
k��>k2F � 2�k�U�

>
V k2F � 3�

2
kZZ> � Z⇤Z⇤>k2F + 6�kX�X⇤k2F . (A.21)

Finally, combining (A.14) and (A.21), we conclude

0  (3L� 6µ+ 6�)kX�X⇤k2F + (3L� 2µ� 2�)k�U�
>
V k2F +

�

2
k��k2F � 3�

2
kZZ> � Z⇤Z⇤>k2F

+ 2
p
2rkrFn(X

⇤)k2 · (kU�>
V +�UV

>kF + kX�X⇤kF )

 (3L� 6µ+ 6� + �) · kX�X⇤k2F + (3L� 2µ� 2� + �) · k�U�
>
V k2F +

�

2
k��k2F

� 3�

2
kZZ> � Z⇤Z⇤>k2F +

10r

�
krFn(X

⇤)k22, (A.22)

where the second inequality holds because of triangle inequality and 2ab  �a
2 + b

2
/�, for any � > 0. Choose � and �

such that 3L� 6µ+ 6� + � � 0 and 3L� 2µ� 2� + � � 0, then according to (A.22), we have

0  1

2
(3L� 6µ+ 3� + �) · kZZ> � Z⇤Z⇤>k2F +

1

2
(3L� 2µ� � + �) · k��>k2F +

10r

�
krFn(X

⇤)k22

 1

2
(9L� 10µ+ � + 3�) · kZZ> � Z⇤Z⇤>k2F +

10r

�
krFn(X

⇤)k22,

where the first inequality holds because 2kX�X⇤k2F  kZZ>�Z⇤Z⇤>k2F and 2k�U�>
V k2F  k��>k2F , and the second

inequality is due to Lemma D.1 and the fact that 3L � 2µ � � + � � 0. Therefore, under condition that L/µ < 18/17,
set � = (18µ � 17L)/12, and choose � such that µ � L/2  � < min{(22µ � 19L)/4, (3L � 2µ)/2}, we have
9L� 10µ+ � + 3� < 0. Thus, we conclude

kX�X⇤k2F  1

2
kZZ> � Z⇤Z⇤>k2F  �rkrFn(X

⇤)k22  �r✏2(n, �),

with probability at least 1� �, where � is a constant depending on L,µ and �, and the last inequality follows from Condition
3.7. Thus we complete the proof.

B. Proofs for Specific Examples

In this section, we present proofs for the specific models including matrix completion and one-bit matrix completion. In the
following discussions, we denote d = max{d1, d2} for simplicity.

B.1. Proof for Matrix Completion

In order to prove the results for noisy matrix completion, we need to make use of the following lemmas, which are
tailored for noisy matrix completion. In the following discussions, we let |⌦| = n, and Ajk = eje>k , where ej 2
Rd1 , ek 2 Rd2 are basis vectors. Define A as the corresponding linear transformation operator such that A(�) =
[hAj(1)k(1),�i, . . . , hAj(n)k(n),�i]>, where

�
j(i), k(i)

�
2 ⌦ for any i 2 [n].
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Lemma B.1. (Negahban & Wainwright, 2012) There are universal constants {ci}6i=1 such that if n � c1rd log d, and for
all � 2 Rd1⇥d2 that satisfy the following condition

r
d1d2

r

k�k1,1
k�kF

· k�k⇤
k�kF

 1

c2

p
n/(d log d), (B.1)

with probability at least 1� c3/d, we have
����
kA(�)k2p

n
� k�kFp

d1d2

����  c4
k�kFp
d1d2

✓
1 +

c5
p
d1d2k�k1,1p
nk�kF

◆
.

Lemma B.2. (Negahban & Wainwright, 2012) Consider noisy matrix completion with uniform sampling model. Suppose
the noisy entry Ejk follows i.i.d. zero mean distribution with variance ⌫2. Then, with probability at least 1� c6/d, we have

����
1

p

X

(j,k)2⌦

EjkAjk

����
2

 c7⌫

s
d log d

p
,

where c6, c7 are universal constants, and p = n/(d1d2).

Proof of Corollary 4.1. In order to prove Corollary 4.1, we need to verify the restricted strong convexity and smoothness
conditions in Condition 3.5, 3.6 for Fn(X). Moreover, we need to establish Condition 3.7.

To begin with, we recast the objective loss function for matrix completion as Fn(X) = (2p)�1
P

(j,k)2⌦

�
hAjk,Xi�Yjk

�2.
Thus for all matrices X1,X2 2 Rd1⇥d2 with rank at most r we have

Fn(X1)� Fn(X2)� hrFn(X2),X2 �X1i = (2p)�1kA(�)k22,

where � = X1 �X2. Next, we establish the restricted strong convexity and smoothness conditions for Fn(X) based on
Lemma B.1.

Case 1: If � violates condition (B.1), we have

k�k2F  c0

�p
d1d2k�k1

�
k�k⇤

r
d log d

nr

 2c0↵
0
p
2d1d2k�kF

r
d log d

n
,

where ↵
0 = �r�

⇤
1/
p
d1d2, which comes from the incoherence condition of low rank matrices X1 and X2. Hence we can

obtain

k�k2F  c1↵
02 d log d

p
. (B.2)

Case 2: If � satisfies condition (B.1), by Lemma B.1, we have
����
kA(�)k2p

p
� k�kF

���� 
1

90
k�kF

✓
1 +

c3
p
d1d2k�k1,1p
nk�kF

◆
.

If c3
p
d1d2k�k1,1/(

p
nk�kF ) � 1/25, we have

k�k2F  c5
↵
02

p
. (B.3)

Otherwise, if c3
p
d1d2k�k1,1/(

p
nk�kF )  1/25, we have

42

43
k�k2F  kA(�)k22

p
 44

43
k�k2F .
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Thus we obtain the restricted strong convexity and smoothness conditions for Fn(X) with parameters µ = 42/43, L =
44/43. Next, for Condition 3.7, we have rFn(X⇤) = p

�1
P

(j,k)2⌦ Ejkeje>k . Since each Ejk follows i.i.d. Gaussian
distribution with variance ⌫

2
/(d1d2). Therefore, according to Lemma B.2, we can obtain krFn(X⇤)k2  c5⌫

p
d log d/n

holds with probability at least 1� c6/d. In addition, combining this result with the additional error bounds (B.2) and (B.3),
with probability at least 1� c6/d, we can establish Condition 3.7 with parameter ✏2 = c7 max

�
⌫
2
, r

2
�
2
�
2
1

 
d log d/n.

Therefore, for matrix completion (2.5), we set ↵2 = ↵
0 in all constraints hi(Z)  0, i = 1, . . . , d1 + d2. Then we can

apply our general framework to matrix completion, and for any local minima Z of matrix completion (2.5), we obtain the
following standardized estimation error between UV> and X⇤

kUV> �X⇤k2F  c7 max{⌫2, r�2
�
2
1}

rd log d

n
,

which completes the proof.

B.2. Proof for One-Bit Matrix Completion

For one-bit matrix completion, we also consider the uniform sampling model as discussed in matrix completion. In the
following discussion, let ⌦ denote the observed index set with cardinality |⌦| = n, and Ajk = eje>k with corresponding
transformation operator A. In addition, we define the following two quantities µ�0 , L�0 , which control the quadratic lower
and upper bounds of the second-order Taylor expansion of the sample loss function.

µ�0  min

✓
inf

|x|�0

⇢
f
02(x)

f2(x)
� f

00(x)

f(x)

�
, inf
|x|�0

⇢
f
02(x)

(1� f(x))2
+

f
00(x)

1� f(x)

�◆
, (B.4)

L�0 � max

✓
sup

|x|�0

⇢
f
02(x)

f2(x)
� f

00(x)

f(x)

�
, sup
|x|�0

⇢
f
02(x)

(1� f(x))2
+

f
00(x)

1� f(x)

�◆
. (B.5)

Note that when f(·) and �
0 are given, µ�0 and L�0 are fixed constants, which do not depend on the dimension of the

unknonw low-rank matrix.

Proof of Corollary 4.3. In order to prove Corollary 4.3, we need to verify the restricted strong convexity and smoothness
conditions in Conditions 3.5, 3.6 for Fn(X). Furthermore, we need to establish Condition 3.7. Note that we impose the
constraint D to ensure the estimator X satisfies incoherence condition (2.4) such that kXk1,1  r��1/

p
d1d2. Thus we

should consider the twice differentiable function f(x) = g(x/⌧), where ⌧ = ⌫/
p
d1d2 is a scale parameter. For example,

one common used function is the Probit function f(x) = �(x/�) with � = ⌫/
p
d1d2, where � denotes the cumulative

distribution function of standard Gaussian distribution. And this is equivalent to observation model (2.6) with Zjk i.i.d.
following normal distribution with variance ⌫

2
/(d1d2).

We can rewrite the objective function for one-bit matrix completion as follows

Fn(X) : = � 1

n

X

(j,k)2⌦

�
1
��

Yjk = 1
� 

log
�
g(hAjk,Xi/⌧)

�
+ 1

��
Yjk = �1

� 
log

�
1� g(hAjk,Xi/⌧)

� 
.

Therefore, we obtain

r2Fn(X) =
1

p⌫2

X

(j,k)2⌦

Bjk(X)vec(Ajk)vec(Ajk)
>
, (B.6)

where Bjk(X) is defined as

Bjk(X) =

✓
g
02(hAjk,Xi/⌧)
g2(hAjk,Xi/⌧) � g

00(hAjk,Xi/⌧)
g(hAjk,Xi/⌧)

◆
1
�
Yjk = 1

 

+

✓
g
00(hAjk,Xi/⌧)

1� g(hAjk,Xi/⌧) �
g
02(hAjk,Xi/⌧)

(1� g(hAjk,Xi/⌧)2

◆
1
�
Yjk = �1

 
.

Therefore, using mean value theorem, for all matrices X1,X2 2 Rd1⇥d2 with rank at most r, we can obtain

Fn(X1) = Fn(X2) + hrFn(X2),X2 �X1i+
1

2
(x2 � x1)

>r2Fn(W)(x2 � x1),
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where W = X1 + t(X2 �X1) for some t 2 [0, 1], and x1 = vec(X1), x2 = vec(X2). Thus according to (B.6), we have

(x2 � x1)
>r2Fn(W)(x2 � x1) =

1

p⌫2

X

(j,k)2⌦

Bjk(W)hvec(Ajk)
>(x2 � x1), vec(Ajk)

>(x2 � x1)i

=
1

p⌫2

X

(j,k)2⌦

Bjk(W)hAjk,�i2,

where � = X2 �X1. This implies

c1
kA(�)k22

p
 1

p⌫2

X

(j,k)2⌦

Bjk(W)hAjk,�i2  c2
kA(�)k22

p
,

where the inequalities come from the definition of µ�0 , L�0 . Next, for the term kA(�)k22/p, we can follow the same proofs
as in matrix completion. Therefore, if n � c3rd log d, with probability at least 1� c4/d, we can obtain the restricted strong
convexity and smoothness conditions for Fn(X) with parameters µ = µ�042/(43⌫2), L = L�044/(43⌫2). Moreover, we
will have an additional statistical error bound that kX�X⇤k2F  c6↵

02
d log d/p, where ↵

0 = �r�
⇤
1/
p
d1d2.

Next, for Condition 3.7, we have rFn(X⇤) =
�
n⌫/

p
d1d2

��1P
(j,k)2⌦ bjkAjk, where we have

bjk = �g
0(hAjk,X⇤i/⌧)
g(hAjk,X⇤i/⌧) 1{Yjk = 1}+ g

0(hAjk,X⇤i/⌧)
1� g(hAjk,X⇤i/⌧) 1{Yjk = �1}.

Thus accordding to Lemma B.2, we can obtain krFn(X⇤)k2  c7�↵0
p
d log d/n holds with probability at least 1� c8/d,

where c7, c8 are some constants.

Therefore, for one-bit matrix completion problem (2.8), we set ↵2 = ↵
0 in all constraints hi(U)  0, i = 1, . . . , d1 + d2.

Then we can apply our general framework to one-bit matrix completion, and for any local minima Z of one-bit matrix
completion problem (2.8), we can obtain the following estimation error between UV> and X⇤

kUV> �X⇤k2F  c9 max{�2
�0 , r�

2
�
2
1}

rd log d

n
,

which completes the proof.

C. Proof of Lemma A.1

Proof. According to the restricted strong convexity and smoothness Conditions 3.5 and 3.6, for all matrices Y1,Y2 2
Rd1⇥d2 with rank at most 6r, we have

µkY2 �Y1k2F  hrFn(Y2)�rFn(Y1),Y2 �Y1i  LkY2 �Y1k2F . (C.1)

According to the definition of Hessian, we have

vec(W)>r2Fn(Y)vec(W) =

⌧
W, lim

t!0

rFn(Y + tW)�rFn(Y)

t

�

= lim
t!0

h(Y + tW)�Y,rFn(Y + tW)�rFn(Y)i/t2. (C.2)

For all matrices Y 2 Rd1⇥d2 with rank at most 2r, and matrices W 2 Rd1⇥d2 with rank at most 4r, we have Y + tW has
rank at most 6r, thus applying (C.1) to (C.2), we obtain

µkWk2F  vec(W)>r2Fn(Y)vec(W)  LkWk2F . (C.3)

Since W1,W2 has rank at most 2r, we have W1 + W2,W1 � W2 has rank at most 4r. Thus, by substituting W by
W1 +W2 and W1 �W2 in (C.3) respectively, we obtain

µkW1 +W2k2F  vec(W1 +W2)
>r2Fn(Y)vec(W1 +W2)  LkW1 +W2k2F ,

µkW1 �W2k2F  vec(W1 �W2)
>r2Fn(Y)vec(W1 �W2)  LkW1 �W2k2F .

Therefore, by taking difference, we further obtain
��4vec(W1)

>r2Fn(Y)vec(W2)� 2(L+ µ)hW1,W2i
��  (L� µ) · (kW1k2F + kW2k2F ),

which completes the proof.
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D. Auxiliary Lemma

Lemma D.1. (Ge et al., 2017) Let Z,Z⇤ be two d⇥ r matrices. Let R be the optimal rotation with respect to Z and Z⇤

such that R = argmineR2Qr
kZ � Z⇤ eRkF . Then we have that Z>Z⇤R is positive semidefinite. Moreover, we have the

following inequality

k(Z� Z⇤R)(Z� Z⇤R)>k2F  2kZZ> � Z⇤Z⇤k2F .


