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Abstract
We consider the fully decentralized multi-agent
reinforcement learning (MARL) problem, where
the agents are connected via a time-varying and
possibly sparse communication network. Specifi-
cally, we assume that the reward functions of the
agents might correspond to different tasks, and
are only known to the corresponding agent. More-
over, each agent makes individual decisions based
on both the information observed locally and the
messages received from its neighbors over the net-
work. To maximize the globally averaged return
over the network, we propose two fully decentral-
ized actor-critic algorithms, which are applicable
to large-scale MARL problems in an online fash-
ion. Convergence guarantees are provided when
the value functions are approximated within the
class of linear functions. Our work appears to be
the first theoretical study of fully decentralized
MARL algorithms for networked agents that use
function approximation.

1. Introduction
In reinforcement learning (Sutton & Barto, 1998), the agent
aims to behave optimally in the presence of uncertainty by
interacting with the environment, which is usually modeled
as a Markov Decision Process (MDP). In this work, we study
the problem of multi-agent reinforcement learning (MARL),
where a common environment is influenced by the joint
actions of multiple agents. Specifically, at each state, each
agent takes an action, and these actions together determine
the next state of the environment and the reward of each
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agent. In addition, the agents are allowed to observe only
its own reward, which may vary for different agents. We are
interested in the collaborative setting, where the agents have
a common goal of jointly maximizing the globally averaged
return of all agents in the environment.

For collaborative MARL problems, it is pivotal to specify
the protocol of collaboration among the agents. One tempt-
ing choice is to have a central controller which receives the
rewards of all agents, and determines the action for each
agent. With information of all the agents available to the con-
troller, the problem reduces to an MDP and can be readily
solved by single-agent reinforcement learning algorithms.
However, in many real-world scenarios, a central controller
simply does not exist or may be costly to install. Moreover,
the central controller needs to communicate with each agent
to exchange the information, which incessantly increases
the communication overhead at the single controller. This
may degrade the scalability of the multi-agent system as
well as its robustness to malicious attacks.

In contrast, we consider a decentralized protocol where the
agents are connected by a possibly time-varying and sparse
communication network, which serves as the channel for
the agents to exchange information in absence of any cen-
tral controller. At each time step, each agent executes an
individual action based on both the local information and
the message sent from its neighbors, with the joint goal
of maximizing the average rewards of all agents over the
network. We refer to this protocol as fully decentralized
MARL with networked agents. By saying fully decentral-
ized, we primarily emphasize that: i) no central controller
exists; ii) the information available to each agent is local;
iii) the control execution is local. Moreover, the networked
architecture finds broad applications in practical multi-agent
systems, such as unmanned vehicles (Fax & Murray, 2004),
robotics (Corke et al., 2005), power grid (Dall’Anese et al.,
2013), and mobile sensor networks (Cortes et al., 2004).

With only local reward and action, classical reinforcement
learning algorithms can hardly maximize the networked-
wide averaged return determined by the joint actions of all
agents. Thus, we propose two decentralized actor-critic algo-
rithms based on a novel policy gradient theorem for MARL.
Specifically, the actor step is performed individually by each
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agent, without the need to infer the policies of others. For
the critic step, on the other hand, each agent shares its esti-
mate of the value function with its neighbors on the network,
so that a consensual estimate is achieved, which is further
used in the subsequent actor step. In this regard, the local
information at each agent diffuses across the network to help
achieve the network-wide optimality. Our algorithms enjoy
the advantages of scalability to large population of agents,
robustness against malicious attacks, and communication
efficiency, as standard distributed/decentralized algorithms
over networked multi-agent systems (Nedic & Ozdaglar,
2009; Agarwal & Duchi, 2011; Chen & Sayed, 2012).

Furthermore, one long-standing challenge in RL is the huge
capacity of the state-action spaces. This problem becomes
more pronounced in MARL, since the number of joint ac-
tions grows exponentially with the number of agents in the
system. To address this challenge, we apply function approx-
imation to both the policy and value functions. Therefore,
our algorithms can be readily applied to large-scale MARL
problems where both the number of states and the number
of agents are massive. More importantly, we show that our
algorithms converge when linear function approximation is
used, which provides theoretical support for the proposed
fully decentralized MARL framework.

Main Contribution. Our contribution is three-fold. First,
we formulate the fully decentralized MARL problem with
networked agents, and prove a policy gradient theorem
adapted to this setting. Second, we propose two decen-
tralized actor-critic algorithms with function approximation,
which are applicable to large-scale MARL problems. Third,
when linear function approximation is applied, we estab-
lish convergence guarantees for the proposed algorithms. It
appears that our work provides the first fully decentralized
MARL algorithms, with provable convergence guarantees.

Related Work. Our algorithms belong to the class of actor-
critic algorithms. There is rich literature on single-agent
actor-critic algorithms, which are based on the policy gra-
dient theorem (Sutton et al., 2000). The first actor-critic
algorithm is proposed in Sutton et al. (2000); Konda &
Tsitsiklis (2000), which also study the convergence of the
algorithm with linear function approximation. Based on
natural gradient descent, Peters & Schaal (2008); Bhatnagar
et al. (2009) study the natural actor-critic algorithm. Conver-
gence of natural actor-critic algorithms with linear function
approximation are further studied in Bhatnagar et al. (2008;
2009). Recently, with deep neural networks as function
approximators, various actor-critic algorithms have been
proposed. See Lillicrap et al. (2016); Wang et al. (2016);
Gruslys et al. (2017); Gu et al. (2017) and the references
therein for details. A more related and popular work is Mnih
et al. (2016), which proposes an asynchronous actor-critic
algorithm, A3C. Unlike our MARL framework, however,

the A3C algorithm essentially deals with single-agent RL
but with multiple parallel workers/processors, where no in-
teraction occurs among the workers. Moreover, a central
controller is needed to coordinate the asynchronous update
of the workers. In contrast, our actor-critic algorithms re-
quire no central controller in implementation.

A more relevant line of research is on MARL. Most existing
work is based on the framework of Markov games, which is
first studied in Littman (1994; 2001); Lauer & Riedmiller
(2000); Hu & Wellman (2003). This general framework
applies to the setting with both collaborative and competitive
agents. However, these early algorithms are developed only
for tabular cases, which are not tractable with large numbers
of states and actions. Moreover, for the collaborative setting
in this framework, notably team games, Wang & Sandholm
(2003); Arslan & Yüksel (2017) take the reward of all agents
to be identical, which greatly simplifies the problem since
the value function can be estimated locally with no need of
information exchange among agents. More recently, several
MARL algorithms using deep neural networks have gained
increasing attention. See Foerster et al. (2016); Gupta et al.
(2017); Lowe et al. (2017); Omidshafiei et al. (2017) for
details. However, most of them focus on showing empirical
results, without convergence guarantees. Moreover, none
of them exploit the communication among agents, since
they assume either a central controller exists to coordination
the agents (Foerster et al., 2016; Lowe et al., 2017), or
the reward of all agents are common (Gupta et al., 2017;
Omidshafiei et al., 2017). Thus, these algorithms do not
apply to our fully decentralized framework directly. We
defer a detailed comparison with existing MARL models
and algorithms to §F in the appendix.

Notation. We denote the cardinality of a finite set A by
|A|. For simplicity, we use limt, supt, and

∑
t to represent

limt→∞, supt→∞, and
∑
t≥0, respectively. We denote by

I and 1 the identity matrix and all-one vector of proper
dimensions, respectively. We also use [N ] to denote the
set of integers {1, · · · , N} and N to denote the set of non-
negative integers.

2. Background
In this section, we introduce the background and formula-
tion of the MARL problem with networked agents.

2.1. Networked Multi-Agent MDP

Consider a system of N agents operating in a common
environment, denoted by N = [N ]. We focus on the de-
centralized setting where no central controller exists in the
system that either collects rewards or makes the decisions
for the agents. Instead, the agents are located on a possibly
time-varying communication network, which is character-
ized by an undirected graph Gt = (N , Et), where Et is the
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set of communication links connecting the agents at time
t ∈ N. We then define the following multi-agent Markov
decision process with networked agents.

Definition 2.1 (Networked Multi-Agent MDP). A net-
worked multi-agent MDP is characterized by a tuple
(S, {Ai}i∈N , P, {Ri}i∈N , {Gt}t≥0) where S is the global
state space shared by all the agents in N , Ai is the action
space of agent i, and {Gt}t≥0 is a time-varying communi-
cation network. In addition, let A =

∏N
i=1Ai be the joint

action space of all agents. Then, Ri : S × A → R is the
local reward function of agent i, and P : S×A×S → [0, 1]
is the state transition probability of the MDP. Moreover, we
assume that the states are globally observable whereas the
rewards are observed only locally.

At time t, each agent i chooses its own action ait given state
st, following a local policy πi : S × Ai → [0, 1], where
πi(s, ai) represents the probability of choosing action ai at
state s. Thus, the joint policy of all agents π : S × A →
[0, 1] satisfies π(s, a) =

∏
i∈N π

i(s, ai). We note that our
model is fully decentralized since both the reward is received
locally and the action is executed individually by each agent.

For any agent i, we assume that the local policy is parameter-
ized by πiθi , where θi ∈ Θi is the parameter, and Θi ⊆ Rmi
is a compact set. We pack the parameters together as
θ = [(θ1)>, · · · , (θN )>]> ∈ Θ, where Θ =

∏N
i=1 Θi. The

joint policy is thus given by πθ(s, a) =
∏
i∈N π

i
θi(s, ai).

We make a standard regularity assumption on the networked
MDP and the policy function.

Assumption 2.2. We assume that for any i ∈ N , s ∈ S,
and ai ∈ Ai, the policy function πiθi(s, a

i) > 0 for any
θi ∈ Θi. Also, πiθi(s, a

i) is continuously differentiable with
respect to the parameter θi over Θi. In addition, for any
θ ∈ Θ, let P θ be the transition matrix of the Markov chain
{st}t≥0 induced by policy πθ, that is, for any s, s′ ∈ S

P θ(s′ | s) =
∑
a∈A

πθ(s, a) · P (s′ | s, a). (2.1)

We assume that the Markov chain {st}t≥0 is irreducible
and aperiodic under any πθ, with the stationary distribution
denoted by dθ.

Assumption 2.2 is standard in the work on actor-critic (AC)
algorithms with function approximation (Konda & Tsitsiklis,
2000; Bhatnagar et al., 2009). It implies that the Markov
chain of the state-action pair {(st, at)}t≥0 has a stationary
distribution dθ(s) · πθ(s, a) for any s ∈ S and a ∈ A.

In addition, the collective objective of the agents is to col-
laboratively find a policy πθ that maximizes the globally
averaged long-term return over the network based solely on
local information. Let rit+1 denote the reward received by
agent i at time t. Then the goal of all agents is as follows

max
θ

J(θ) = lim
T

1

T
E
( T−1∑
t=0

1

N

∑
i∈N

rit+1

)
=

∑
s∈S,a∈A

dθ(s)πθ(s, a) ·R(s, a), (2.2)

where R(s, a) = N−1 ·
∑
i∈N R

i(s, a) is the globally av-
eraged reward function. Let rt = N−1 ·

∑
i∈N r

i
t; then, we

have R(s, a) = E[rt+1 | st = s, at = a]. Thus, the global
relative action-value function under policy πθ becomes

Qθ(s, a) =
∑
t

E
[
rt+1 − J(θ) | s0 = s, a0 = a, πθ

]
, (2.3)

and the global relative state-value function Vθ(s) is defined
as Vθ(s) =

∑
a∈A πθ(s, a)Qθ(s, a). For simplicity, we

will hereafter refer to Vθ and Qθ as state-value function
and action-value function only. Furthermore, the advantage
function can be defined as Aθ(s, a) = Qθ(s, a)− Vθ(s).

This architecture of multi-agent systems with networked
agents finds broad applications in distributed cooperative
control problems, including formation control of unmanned
vehicles (Fax & Murray, 2004), cooperative navigation of
robots (Corke et al., 2005), and load management in energy
networks (Dall’Anese et al., 2013), etc. We extend these
existing models to an explicit MDP model, where the col-
lective objective is beyond reaching a stable state (Fax &
Murray, 2004), or solving a static distributed optimization
problem (Dall’Anese et al., 2013). Our framework also
extends the existing framework on collaborative MARL,
where the agents either are coordinated by a central con-
troller (Gupta et al., 2017), or share a common team reward
(Wang & Sandholm, 2003). See a detailed comparison of
our model to the existing ones on multi-agent systems and
collaborative MARL in §F in the appendix.

3. Actor-Critic with Networked Agents
In this section, we propose two actor-critic algorithms for
the multi-agent RL with networked agents. We first establish
a policy gradient theorem for MARL, which characterizes
the gradient of J(θ) defined in (2.2) in closed form.

Theorem 3.1 (Policy Gradient Theorem for MARL). For
any θ ∈ Θ, let πθ be a policy and J(θ) be the globally
averaged return defined in (2.2). Let Qθ and Aθ be the
corresponding action-value function and advantage function,
respectively. Moreover, for any i ∈ N , we define the local
advantage function Aiθ : S ×A → R as

Aiθ(s, a) = Qθ(s, a)− Ṽ iθ (s, a−i), (3.1)

where Ṽ iθ (s, a−i) =
∑
ai∈Ai π

i
θi(s, a

i)·Qθ(s, ai, a−i). We
denote by a−i the actions of all agents except for i. Then
the gradient of J(θ) with respect to θi is given by

∇θiJ(θ) = Es∼dθ,a∼πθ
[
∇θi log πiθi(s, a

i) ·Aθ(s, a)
]

= Es∼dθ,a∼πθ
[
∇θi log πiθi(s, a

i) ·Aiθ(s, a)
]
. (3.2)
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The proof for Theorem 3.1 is deferred to §B.1 in the ap-
pendix. The theorem shows that the policy gradient with
respect to each θi can be obtained locally using the corre-
sponding score function∇θi log πiθi , provided that agent i
has an unbiased estimate of the advantage functions Aiθ or
Aθ. However, with only local information, these functions
cannot be well estimated since the estimation requires the re-
wards {rit}i∈N of all agents. This motivates our consensus-
based MARL algorithms that leverage the communication
network to diffuse the local information, fostering collabo-
ration among agents.

3.1. Algorithms

We first propose an algorithm based on the local advantage
function Aiθ defined in (3.1), which requires estimating the
action-value function Qθ of policy πθ. To this end, we
consider Q(·, ·;ω) : S × A → R, a family of functions
parametrized by ω ∈ RK , where K � |S| · |A|. We
assume that each agent i maintains its own parameter ωi

and uses Q(·, ·;ωi) as a local estimate of Qθ. Moreover,
since Qθ in (2.3) involves the globally averaged reward rt,
to aggregate the local information, each agent i shares the
local parameter ωi with its neighbors on the network, in
order to reach a consensual estimate of Qθ. In this way,
each agent is able to improve the current policy via the
policy gradient theorem.

Accordingly, we propose an actor-critic algorithm that con-
sists of two steps, the actor step and the critic step. In the
critic step, an update based on temporal difference (TD)
learning is performed at each agent to estimate Q(·, ·;ωi),
followed by a linear combination of its neighbor’s parame-
ter estimates. Such a parameter sharing step is also known
as the consensus update, which involves a weight matrix
Ct = [ct(i, j)]N×N , where ct(i, j) is the weight on the
message transmitted from agent j to agent i at time t. The
construction of Ct depends on the topology of Gt; see §4
for details. Thus, the critic step iterates as follows

µit+1 = (1− βω,t) · µit + βω,t · rit+1,

ω̃it = ωit + βω,t · δit · ∇ωQt(ωit),

ωit+1 =
∑
j∈N

ct(i, j) · ω̃jt ,

(3.3)

where µit tracks the long-term return of agent i, βω,t > 0
is the stepsize, and Qt(ω) = Q(st, at;ω) for any ω. More-
over, define the local action-value TD-error δit in (3.3) as

δit = rit+1 − µit +Qt+1(ωit)−Qt(ωit). (3.4)

As for the actor step, motivated by (3.2) in Theorem 3.1,
each agent i improves its policy via

θit+1 = θit + βθ,t ·Ait · ψit, (3.5)

where βθ,t > 0 is the stepsize. Moreover, Ait and ψit are
defined as
Ait = Qt(ω

i
t)−

∑
ai∈Ai

πiθit
(st, a

i) ·Q(st, a
i, a−it ;ωit),

ψit = ∇θi log πiθit
(st, a

i
t). (3.6)

Note that both Ait and ψit can be computed at each agent i,
in a fully decentralized fashion.

The update in (3.3) for ωit resembles the so-termed diffu-
sion update in Chen & Sayed (2012) for solving distributed
optimization/estimation problems. However, it differs in
two main aspects: i) the update direction δit · ∇ωQt(ωit)
is not the stochastic gradient direction of any well-defined
objective function, thus the update is not equivalent to solv-
ing any distributed optimization problem; ii) diminishing
stepsizes are adopted for possibly almost sure convergence,
whereas mean square convergence was established in Chen
& Sayed (2012). Thus, the proof techniques there do not
apply to the analysis of update (3.3). Moreover, we note
that the updates (3.3)-(3.5) preserve the privacy of agents,
in the sense that no information about the individual reward
function or the policy is required for such network-wide
collaboration. This inherits one of the advantages of fully
decentralized algorithms. We refer to the steps (3.3)-(3.5)
as Algorithm 1, whose pseudocode is provided in §A in the
appendix.

For online implementation of Algorithm 1, the joint actions
at+1 is needed to evaluate the action-value TD-error δit.
Moreover, since agent i also needs to store the estimates
ωit ∈ RK and θit ∈ Rmi , the total memory complexity
of agent i is O(N + mi + K). On the contrary, in the
tabular case, each agent i need to maintain a Q-table of
dimension |S| · |A|× |S| · |A| as in Kar et al. (2013), where
|A| =

∏
i∈N |Ai| grows exponentially with the number of

agents N in the system.

Note that Algorithm 1 requires action at+1 to compute the
update at time t. In the following, we propose an AC al-
gorithm which only uses the transition at time t, namely,
the sample (st, at, st+1), based on estimating the global ad-
vantage function Aθ. In fact, one can estimate Aθ with the
global state-value TD-error, since the latter is an unbiased
estimate of the former, i.e., for any s ∈ S, a ∈ A

E
[
δt
∣∣ st = s, at = a, πθ

]
= Aθ(s, a), (3.7)

where δt = rt+1 − J(θ) + Vθ(st+1) − Vθ(st) is the
global state-value TD-error. To this end, we first estimate
J(θ) and Vθ with a scalar µ and a parametrized function
V (·; v) : S → R, respectively, where parameter v ∈ RL
and L � |S|. Similar to Algorithm 1, each agent i shares
its own estimates vi and µi with its neighbors, such that a
consensual estimate of the global Vθ is obtained eventually.

Let Vt(v) = V (st; v) for any v ∈ RL, and βv,t > 0 be
the stepsize. Also, with slight abuse of notation, we use
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δit to denote the local state-value TD-error of agent i (in
contrast to (3.4)). Then the estimates vit and µit are updated
as follows

µ̃it = (1− βv,t) · µit + βv,t · rit+1,

µit+1 =
∑
j∈N

ct(i, j) · µ̃jt ,

δit = rit+1 − µit + Vt+1(vit)− Vt(vit),
ṽit = vit + βv,t · δit · ∇vVt(vit),

vit+1 =
∑
j∈N

ct(i, j) · ṽjt .

(3.8)

Note that δit cannot be used in (3.7) to estimate the global
advantage function, since it uses rit+1 rather than rt+1 in
the update.

Therefore, we propose to estimate the globally averaged re-
ward functionR in the critic step as well. LetR(·, ·;λ) : S×
A → R be the class of parametrized functions, where
λ ∈ RM is the parameter with M � |S| · |A|. To obtain
the estimate R(·, ·;λ), we seek to minimize the following
weighted mean-square error

min
λ

∑
s∈S,a∈A

d̃θ(s, a)
[
R(s, a;λ)−R(s, a)

]2
, (3.9)

where recall that R(s, a) =
∑
i∈N R

i(s, a) ·N−1 and we
let d̃θ(s, a) = dθ(s) · πθ(s, a). The optimization problem
(3.9) can be equivalently characterized as

min
λ

∑
i∈N

∑
s∈S,a∈A

d̃θ(s, a)
[
R(s, a;λ)−Ri(s, a)

]2
. (3.10)

Note that the objective (3.10) has the same form with separa-
ble objectives over agents as in the distributed optimization
literature (Nedic & Ozdaglar, 2009; Boyd et al., 2011; Chen
& Sayed, 2012). This motivates the following updates for
λit to minimize the objective (3.10)

λ̃it = λit + βv,t · [rit+1 −Rt(λit)] · ∇λRt(λit),

λit+1 =
∑
j∈N

ct(i, j) · λ̃jt , (3.11)

where Rt(λ) = R(st, at;λ) for any λ ∈ RM . The update
in (3.11) forms the critic step of the AC algorithm together
with (3.8). We note that the rewards of other agents are
not transmitted directly to each agent, and the estimate
R(·, ·;λ) cannot recover the individual reward function of
others. Hence, as in Algorithm 1, the consensual estimate
of globally averaged reward function R does not harm the
privacy of agents on their rewards and policies.

Unlike most existing work in distributed optimization, the
samples obtained to estimate the gradient of (3.10) are cor-
related by the Markov chain {(st, at)}t≥0. We will instead
resort to stochastic approximation (SA) to analyze the con-
vergence of this update.

The estimate R(·, ·;λit) is then used to evaluate the global
state-value TD-error δt. Accordingly, the actor step be-
comes{

δ̃it = Rt(λ
i
t)− µit + Vt+1(vit)− Vt(vit),

θit+1 = θit + βθ,t · δ̃it · ψit. (3.12)

where βθ,t > 0 is the stepsize and ψit is as defined in (3.6).
We refer to the steps (3.8), (3.11), and (3.12) as Algorithm
2, and provide its pseudocode in §A in the appendix. Similar
to Algorithm 1, the online implementation of Algorithm 2
requires the memory complexity ofO(N+L+M+mi) for
each agent i, which results in a great reduction in contrast
to the tabular case when N is large. Also note that both
algorithms are applicable to general function approximators
including neural networks. In addition, when linear function
is applied, we provide convergence guarantees in §4.

4. Theoretical Results
In this section, we establish theoretical results for the pro-
posed algorithms. The proofs for the results are deferred
to §B in the appendix. We start with the following four
assumptions which apply to both algorithms.

Assumption 4.1. The update of the policy parameter θit
includes a local projection operator, Γi : Rmi → Θi ⊂
Rmi , that projects any θit onto the compact set Θi. Also,
we assume that Θ =

∏N
i=1 Θi is large enough to include at

least one local minimum of J(θ).

This projection is a common technique for stabilizing the
stochastic approximation algorithms (Kushner & Yin, 2003),
and is a standard assumption in many analyses for actor-
critic algorithms (Bhatnagar et al., 2009; Degris et al., 2012;
Prasad et al., 2014). Note that the projection is merely for
analysis purposes and may not be necessary in experiments.

Assumption 4.2. The instantaneous reward rit is uniformly
bounded for any i ∈ N and t ≥ 0.

We note that the boundedness assumption on the rewards is
rather mild and is satisfied by the MDP model with finite
state and action spaces. We then make the assumption that
the stepsizes βω,t, βv,t, and βθ,t satisfy the following stan-
dard condition, such that the critic step operates much faster
than the actor step, creating a two-time-scale algorithm as
standard single-agent AC algorithms.
Assumption 4.3. The stepsizes βω,t, βv,t, and βθ,t satisfy∑

t

βω,t =
∑
t

βv,t =
∑
t

βθ,t =∞,∑
t

β2
ω,t + β2

v,t + β2
θ,t <∞.

In addition, βθ,t = o(βω,t) = o(βv,t), and limt βω,t+1 ·
β−1ω,t = limt βv,t+1 · β−1v,t = 1.
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Furthermore, we make the following assumption on the
design of the weight matrix {Ct} for the consensus updates
in both algorithms.

Assumption 4.4. The sequence of nonnegative random ma-
trices {Ct} satisfies

(a.1) Ct is row stochastic and E(Ct) is column stochastic,
i.e., Ct1 = 1 and 1>E(Ct) = 1>. Furthermore,
there exists a constant η ∈ (0, 1) such that, for any
ct(i, j) > 0, we have ct(i, j) ≥ η.

(a.2) Ct respects the communication graph Gt, i.e.,
ct(i, j) = 0 if (i, j) /∈ Et. Moreover, the spectral
norm of E[C>t · (I−11>/N) ·Ct] is smaller than one.

(a.3) Given the σ-algebra generated by the random variables
before time t, Ct is conditionally independent of rit+1

for any i ∈ N .

We take the matrix Ct to be random for the sake of generality.
The randomness can be attributed to either the randomness
of the time-varying graph Gt, e.g., random link failures in
sensor networks (Kar & Moura, 2010), or the randomness of
the consensus algorithms, e.g., randomized gossip schemes
(Boyd et al., 2006). The condition (a.1) is standard in devel-
oping consensus algorithms, which guarantees convergence
of the update for each agent to a common vector, and the
limit limt CtCt−1 · · ·C0 exists (Nedic & Ozdaglar, 2009).
Note that row stochasticity constraint Ct1 = 1 is local,
since it simply requires each agent to make the weights as-
signed to the updates coming from its neighbors summing
up to one. The condition (a.2) is related to the connectivity
of the communication network Gt. It follows from Boyd
et al. (2006); Aysal et al. (2009) that for the gossip type of
communication schemes, (a.2) holds if and only if the un-
derlying communication graph is connected. The condition
(a.3) means that Ct and rit+1 are independent conditioned
on the past. This is common for practical multi-agent sys-
tems, since the random communication link failures and
the gossip schemes are usually independent of the past and
irrelevant to the rewards received by the agents.

One particular choice of the weights in Ct that relies on
only local information of the agents is known as Metropolis
weights (Xiao et al., 2005)

ct(i, j) =
{

1 + max[dt(i), dt(j)]
}−1

, ∀(i, j) ∈ Et,

ct(i, i) = 1−
∑

j∈Nt(i)

ct(i, j), ∀i ∈ N ,

whereNt(i) = {j ∈ N : (i, j) ∈ Et} is the set of neighbors
of agent i at time t, and dt(i) = |Nt(i)| is the degree of
agent i. Other common choices of Ct that satisfy the condi-
tions (a.1)-(a.2) in Assumption 4.4 include pairwise gossip
(Boyd et al., 2006), broadcast gossip (Aysal et al., 2009),
and network dropouts (Bianchi et al., 2013).

4.1. Convergence of Algorithm 1

To show the convergence, we make the following additional
assumption on the action-value functions.

Assumption 4.5. For each agent i, the function Q(s, a;ω)
is parametrized asQ(s, a;ω) = ω>φ(s, a) where φ(s, a) =
[φ1(s, a), · · · , φK(s, a)]> ∈ RK is the feature associated
with (s, a). The feature vector φ(s, a) is uniformly bounded
for any s ∈ S, a ∈ A. Furthermore, the feature matrix Φ ∈
R|S|·|A|×K has full column rank, where the k-th column of
Φ is [φk(s, a), s ∈ S, a ∈ A]> for any k ∈ [K]. Also, for
any u ∈ RK , Φu 6= 1.

For theoretical analysis, we focus here on the algorithm with
linear function approximation. Note that the TD-learning-
based policy evaluation may fail to converge with nonlinear
function approximation (Tsitsiklis & Van Roy, 1997). To
the best of our knowledge, all existing online AC algorithms
with theoretical convergence guarantees are built upon lin-
ear function approximation, e.g., Konda & Tsitsiklis (2000);
Bhatnagar et al. (2009); Bhatnagar (2010). The assump-
tion on the feature matrix Φ is standard and has also been
made in Tsitsiklis & Van Roy (1997; 1999); Bhatnagar et al.
(2009) to ensure that the critic step converges to a unique
asymptotically stable point.

We use the two-time-scale stochastic approximation tech-
nique (Borkar, 2008) to analyze the convergence of Algo-
rithm 1. In particular, we first analyze the convergence of
the critic step at the faster time scale, assuming the joint
policy πθ is fixed. Then we analyze the convergence of the
policy parameter θt upon the convergence of the critic step.

For notational simplicity, we define P θ(s′, a′ | s, a) =
P (s′ | s, a)πθ(s

′, a′)1, Ds,a
θ = diag[dθ(s) · πθ(s, a), s ∈

S, a ∈ A], and R = [R(s, a), s ∈ S, a ∈ A]> ∈ R|S|·|A|.
We then define the operator TQθ : R|S|·|A| → R|S|·|A| for
any action-value vector Q ∈ R|S|·|A| as

TQθ (Q) = R− J(θ) · 1+ P θQ. (4.1)

With these notations, we establish the convergence of the
critic step (3.3) and (3.4) given policy πθ as follows.

Theorem 4.6. Under Assumptions 2.2 and 4.2-4.5, for any
given policy πθ, with the sequences {µit} and {ωit} gener-
ated from (3.3) and (3.4), we have limt

∑
i∈N µ

i
t ·N−1 =

J(θ) and limt ω
i
t = ωθ almost surely (a.s.) for any i ∈ N ,

where J(θ) is the globally averaged return as defined in
(2.2), and ωθ is the unique solution to

Φ>Ds,a
θ

[
TQθ (Φωθ)− Φωθ

]
= 0. (4.2)

1With slight abuse of notation, the expression P θ has the same
form as the transition probability matrix of the Markov chain
{st}t≥0 under policy πθ (see the definition in (2.1)). These two
matrices can be easily differentiated by the context.
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We note that the solution to (4.2) is the limiting point of the
TD(0) algorithm (Tsitsiklis & Van Roy, 1999), except that
here we approximate the action-value function Qθ rather
than the state-value function Vθ. This point is also known as
the minimizer of the Mean Square Projected Bellman Error
(MSPBE) (Dann et al., 2014). Thus, Theorem 4.6 states that
each agent is able to obtain a good approximation of the
globally averaged action-value function, i.e., ωit → ωθ for
all i ∈ N , even with merely local rewards and information
received from neighbors. This approximation of global
value function is then adopted in the actor step to estimate
the policy gradient for each agent.

To show convergence of the actor step, we define the quanti-
ties Ait,θ and ψit,θ as

Ait,θ = φ>t ωθ −
∑
ai∈Ai

πiθi(st, a
i) · φ(st, a

i, a−it )>ωθ,

ψit,θ =∇θi log πiθi(st, a
i
t), (4.3)

where we denote φt = φ(st, at). Define a vector Γ̂i(·) as

Γ̂i[g(θ)] = lim
0<η→0

{
Γi[θi + η · g(θ)]− θi

}/
η (4.4)

for any θ ∈ Θ and g : Θ → R
∑
i∈N mi a continuous

function. In case the limit above is not unique, let Γ̂i[g(θ)]
be the set of all possible limit points of (4.4). Then we
state the convergence of Algorithm 1 with linear function
approximation as follows.

Theorem 4.7. Under Assumptions 2.2 and 4.1-4.5, the se-
quence {θit} obtained from (3.5) converges a.s. to a point in
the set of the asymptotically stable equilibria of

θ̇i = Γ̂i
[
Est∼dθ,at∼πθ

(
Ait,θ · ψit,θ

)]
, ∀ i ∈ N . (4.5)

Note that Theorem 4.7 is in the same spirit as the conver-
gence results for single-agent AC algorithms with linear
function approximation (Bhatnagar et al., 2009; Bhatna-
gar, 2010). Since the linear features here are not restricted
to compatible features as in Tsitsiklis & Van Roy (1997);
Sutton et al. (2000), convergence to the stationary point of
Est∼dθ,at∼πθ

(
Ait,θ · ψit,θ

)
= 0 in the set Θi is the best one

can hope for any AC algorithms with general linear function
approximators, even for the single-agent setting (Bhatnagar
et al., 2009; Degris et al., 2012).

4.2. Convergence of Algorithm 2

Similar to Algorithm 1, we need an additional assumption
for the convergence of Algorithm 2.

Assumption 4.8. For each agent i, the function V (s; v)
and R(s, a;λ) are parametrized as V (s; v) = v>ϕ(s)
and R(s, a;λ) = λ>f(s, a), respectively. Here
ϕ(s) = [ϕ1(s), · · · , ϕK(s)]> ∈ RL and f(s, a) =
[f1(s, a), · · · , fM (s, a)]> ∈ RM are the features associ-
ated with s and (s, a). The feature vectors ϕ(s) and f(s, a)

are uniformly bounded for any s ∈ S, a ∈ A. Furthermore,
let the feature matrix Φ ∈ R|S|×L have [ϕ`(s), s ∈ S]>

as its `-th column for any ` ∈ [L], and the feature matrix
F ∈ R|S|·|A|×M have [fm(s, a), s ∈ S, a ∈ A]> as its m-
th column for any m ∈ [M ]. Then, both Φ and F have full
column rank, and for any u ∈ RL, Φu 6= 1.

Recall P θ(s′ | s) =
∑
a∈A P (s′ | s, a)πθ(s, a) defined in

(2.1) and let Ds
θ = diag[dθ(s), s ∈ S]. Also let Rθ =

[Rθ(s), s ∈ S]> ∈ R|S| withRθ(s) =
∑
a πθ(s, a)R(s, a).

We thus define the operator TVθ : R|S| → R|S| for any state-
value vector V ∈ R|S| as

TVθ (V ) = Rθ − J(θ) · 1+ P θV. (4.6)

We now state the convergence of the critic step (3.8) and
(3.11) as follows.

Theorem 4.9. Under Assumptions 2.2, 4.2-4.4, and 4.8, for
any given policy πθ, with sequences {λit}, {µit}, and {vit}
generated from (3.8) and (3.11), we have limt µ

i
t = J(θ),

limt λ
i
t = λθ, and limt v

i
t = vθ a.s. for any i ∈ N , where

J(θ) is the globally averaged return under joint policy πθ,
λθ and vθ are the unique solution to

F>Ds,a
θ

(
R− Fλθ

)
= 0, (4.7)

Φ>Ds
θ

[
TVθ (Φvθ)− Φvθ

]
= 0. (4.8)

Similarly, the solution vθ in (4.8) is exactly the limiting
point of the TD(0) algorithm of policy evaluation for state-
value functions, as if the rewards of all others are observable
to each agent. Moreover, the solution λθ in (4.7) corre-
sponds to the unique minimizer of the problem (3.9) under
Assumption 4.8. Both vθ and λθ are used to define the TD-
error δ̃it,θ upon the convergence of the critic step, notably,

δ̃it,θ = f>t λθ − J(θ) + ϕ>t+1vθ − ϕ>t vθ, (4.9)

where we define ft = f(st, at) and ϕt = ϕ(st). Recalling
that ψit,θ = ∇θi log πiθi(st, a

i
t), we have the following theo-

rem on the convergence of Algorithm 2 with linear function
approximation.

Theorem 4.10. Under Assumptions 2.2, 4.1-4.4, and 4.8,
the sequence {θit} obtained from (3.12) converges a.s. to a
point in the set of the asymptotically stable equilibria of

θ̇i = Γ̂i
[
Est∼dθ,at∼πθ

(
δ̃it,θ · ψit,θ

)]
, ∀ i ∈ N . (4.10)

Similarly to Theorem 4.7, the convergent point of (4.10) is
the best one can hope for, when linear function approxima-
tion for both R and Vθ is adopted.

5. Numerical Results
We first evaluate our algorithms with linear function approx-
imation. We consider an environment with |S| = 20 states
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Figure 1. The policies, i.e., the probability distribution πθ(s, a) at a randomly selected state s. In (a), we plot the policy obtained from
Central-1 and Algorithm 1 at state 2. In (b), we plot the policy obtained from Central-2 and Algorithm 2 at state 18.

and N = 20 networked agents. The performances of the
fully decentralized algorithms are compared with those of
the centralized algorithms, in which the rewards rit of all
agents are available to a central controller and the joint pol-
icy πθ is also updated there. The two centralized algorithms
for comparison with Algorithms 1 and 2 are referred to as
Central-1 and Central-2, respectively. Due to space limita-
tion, we defer the details on the model and the algorithms
to §E.1 in the appendix.

It is observed that the proposed fully decentralized AC al-
gorithms successfully converge as we proved. In particular,
Figure 1 shows that the resulting policies from Algorithms
1 and 2 resemble those achieved by the centralized counter-
parts. In other words, the joint policy obtained by agents
using only local information is almost as good as the policy
obtained by the centralized controller with full system infor-
mation. More details on the desirable performance of the
algorithms are also provided in §E.1.
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Figure 2. The globally averaged returns for Cooperative Naviga-
tion, when neural networks are used for function approximation.

We also empirically evaluate the proposed algorithms with
nonlinear function approximators, namely, neural networks.
We consider the MARL task of Cooperative Navigation
from Lowe et al. (2017). To be compatible with our net-
worked multi-agent MDP, we modify the environment and
provide the details in §E.2 in the appendix. It is shown
in Figure 2 that the proposed algorithms successfully con-
verge even with such nonlinear function approximators, with
Algorithm 2 converging to a return relatively higher than
that Algorithm 1 converging to. Moreover, the decentral-
ized algorithms can achieve globally averaged return close
to the centralized ones, though at a slightly slower speed.
This implies the potential of our algorithms to large-scale
MARL problems with neural networks as function approxi-
mators. We also compare our algorithms with those where
each agent performs single-agent RL with local informa-
tion, with no communications with other agents. These
non-cooperative algorithms are shown to be unstable, and
achieve much worse return with greater variance. For better
illustration, we plot our results in Figure 2 against those of
the non-cooperative algorithms on a separate figure that is
deferred to §E.2. This shows the necessity of communica-
tion among agents in decentralized cooperative MARL.

6. Conclusions
We consider the fully decentralized multi-agent reinforce-
ment learning problem with networked agents. In this frame-
work, the agents aim to optimize network-wide averaged
return via communication with neighboring agents. We pro-
pose two decentralized online actor-critic algorithms with
function approximation, which are applicable to large-scale
MARL problems with numerous agents and massive state-
action spaces. Moreover, we establish convergence results
when linear function approximation is used, and provide
empirical experiments to validate our theoretical results.
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