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1. Proofs of Estimator Properties
1.1. Proof of Prop. 1

Here we show how the bias of the empirical estimator
depends on N,M . Since we use a plug in estimate of
the predictive posterior p̂i ≈ p(yi|Y) to estimate MI, we
first determine the mean and variance of the samples θi

for MI estimation which incorporate the plug in estimate
θi = log p(yi|xi)

p̂i .

Let {xi, yi}Ni=1 ∼ p(x, y | Y) and for each yi let
{xij}Mj=1 ∼ p(x | Y) be independent samples. Going
forward, we will drop the explicit dependence on the ob-
served data, Y , for clarity but all expressions are con-
ditioned on them. The empirical estimate of the poste-
rior predictive takes form p̂i = 1

M

∑
j p(y

i|xij). From
Thm. 3.9 of (DasGupta, 2008), if we have iid observa-
tionsX1, X2, . . . , XM with finite fourth moment, mean µ,
and variance σ2, and a scalar transformation g with four
uniformly bounded derivatives, then

E[g(X)] = g(µ) +
g(2)(µ)σ2

2M
+O(n−2)

var
(
g(X)

)
=

(g′(µ))2σ2

M
+O(n−2)

where X is the empirical mean X = 1
M

∑
iX

i. In our
case, we have M samples p(yi|xij) which are iid when
conditioned on yi with conditional mean p(yi) and con-
ditional variance σ2

p(yi|X) ,
∫
x
p(yi|x)2p(x)dx − p(yi)2.

We are interested in the transformation g = − log. Conse-
quently, we have

E[− log(p̂i)|yi] = − log(p(yi)) +
σ2
p(yi|X)

2Mp(yi)2
+O(M−2)

var
(
− log(p̂i)|yi

)
=

σ2
p(yi|X)

Mp(yi)2
+O(M−2).

*Equal contribution 1Computer Science and Artificial Intelli-
gence Lab, Massachusetts Institute of Technology, Boston, MA,
USA. Correspondence to: Sue Zheng <szheng@csail.mit.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Using the law of total expectation to remove the condition-
ing on yi in the mean and dropping the superscript i since
measurements are sampled iid, we have:

E[− log(p̂)] = H(Y ) + E

[
σ2
p(y|X)

2Mp(y)2

]
+O(M−2). (1)

Expanding the second term on the RHS, we obtain:

E

[
σ2
p(y|X)

2Mp(y)2

]
=

∫
y

p(y)

∫
x
p(y|x)2p(x)dx− p(y)2

2Mp(y)2
dy

=
1

2M

[∫
y

∫
x
p(y|x)2p(x)dx

p(y)
dy − 1

]
=

1

2M

[∫
y

∫
x

p(y|x)2p(x)2dx

p(y)p(x)
dy − 1

]
=

1

2M
χ2(p(y, x)||p(y)p(x)) (2)

where χ2(p(y, x)||p(y)p(x)) denotes the chi-square diver-
gence of p(y, x) from p(y)p(x). Plugging this back into 1,
we obtain

E[− log(p̂)] = H(Y ) +
χ2(p(y, x)||p(y)p(x))

2M
+O(M−2).

(3)

From Eqn. 3 we can now obtain the mean of each sample
θi = log p(yi|xi)

p̂i used in the empirical MI estimate ÎNM =
1
N

∑N
i θi and therefore, the mean of the MI estimate:

E[ÎNM ] = E[θ] = E[log p(y|x)]− E[log p̂]

= −H(Y |X) +H(Y ) +
χ2(p(y, x)||p(y)p(x))

2M

+O(M−2)

= I(X;Y ) +
χ2(p(y, x)||p(y)p(x))

2M
+O(M−2).

(4)

We have thus shown how the bias of the empirical estimator
depends on N,M .
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1.2. Proof of Prop. 2

We first show that the empirical plug-in estimator is con-
sistent and asymptotically normal. We will next show that
the influence function of the robust estimator converges to
the influence function of the empirical estimator, such that
the asymptotic analysis of the empirical estimator holds for
the robust estimate as well. We begin by finding expres-
sions for the mean and variance of the iid θi samples used
in MI estimation. Then, using these expression show that
the empirical mean converges to a Normal distribution.

In Sec. 1.1, we have an expression for the variance of the
log predictive posterior conditioned on yi. We can remove
the conditioning on yi though the law of total variance.
Again removing the superscript i for clarity, we have the
following expression for variance:

var
(
− log(p̂)

)
(5)

= E[var
(

log(p̂)|y
)
] + var

(
E[log(p̂)|y]

)
= E

[
σ2
p(y|X)

Mp(y)2
+O(M−2)

]
+ var

(
E[log(p̂)|y]

)
.

We can simplify the first term on the RHS through Eqn. 2.
Keeping track of only the order M−1 terms and higher, we
expand the last term on the RHS as

var
(
− E[log(p̂)|y]

)
= E

(− log(p(y)) +
σ2
p(y|X)

2Mp(y)2
+O(M−2)

)2


− E[log(p̂)]2

=

∫
y

p(y)

[
(log p(y))2 −

log p(y)σ2
p(y|X)

Mp(y)2
+O(M−2)

]
dy

− (H(Y ) +
1

2M
χ2(p(y, x)||p(y)p(x)) +O(M−2))2

=

∫
y

p(y)(log p(y))2 −
log p(y)σ2

p(y|X)

Mp(y)
dy +O(M−2)

−
(
H(Y )2 +

1

M
H(Y )χ2(p(y, x)||p(y)p(x))

)
= σ2(log p(y))−

∫
y

log p(y)σ2
p(y|X)

Mp(y)
dy

−
(

1

M
H(Y )χ2(p(y, x)||p(y)p(x))

)
+O(M−2).

We plug the above back into the variance expression

(Eqn. 5) to get the following dependence on M :

var
(
− log p̂

)
= σ2(log p(y)) (6)

+
1

M

[
(1−H(Y ))χ2(p(y, x)||p(y)p(x))∫
y

log p(y)σ2
p(y|X)/p(y)dy

]
+O(M−2).

We can now find the variance of the samples used in MI
estimation:

var
(
θ
)

= σ2(log p(y|x))− cov
(

log p(y|x), log p̂
)

+ var
(
− log p̂

)
. (7)

To simplify our analysis, let us assume that we use inde-
pendent sets of samples {xi, yi}Ni=1 and {xi, yi}2Ni=N+1 for
estimating E[log p(y|x)] and E[log p̂] respectively. Thus,
the covariance term in Eqn. 7 is zero. Substituting the log
posterior predictive variance Eqn. 6 into the MI sample
variance Eqn. 7 yields the full expression for the MI sam-
ple variance

var
(
θ
)

= σ2(log p(y|x)) + σ2(log p(y))

+
1

M

[
(1−H(Y ))χ2(p(y, x)||p(y)p(x))∫
y

log p(y)σ2
p(y|X)/p(y)dy

]
+O(M−2)

= σ2

(
log

p(y|x)

p(y)

)
(8)

+
1

M

[
(1−H(Y ))χ2(p(y, x)||p(y)p(x))∫
y

log p(y)σ2
p(y|X)/p(y)dy

]
+O(M−2).

We now have the variance and mean of θi, which com-
pose the samples for the plug-in empirical estimate of MI.
We will now show that this MI estimate admits a CLT.
Let us define θ̃i = θi − I(X;Y ) and let each θ̃i have
cdf F (θ̃i) = P (Θ̃i ≤ θ̃i). Let us assume that it has
finite moment and its moment generating function (mgf)
Mθ̃(t) = E[exp(tθ̃i)] exists. We will show that moment
generating function for ZN ,

√
N(ÎN − I(X;Y )) =

√
N
(∑

i θ̃
i

N

)
approaches that of a zero-mean normal with

variance σ2
Î
, σ2

(
log p(y|x)

p(y)

)
so that the estimator is con-

sistent and a CLT holds. Because θ̃i are iid, the mgf for ZN
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can be written as

MZN
(t) =

(
M∑N

i=1 θ̃
i/
√
N (t)

)
=
(
Mθ̃/

√
N (t)

)N
=
(
Mθ̃(t/

√
N)
)N

=
(
E[exp(tθ̃/

√
N)]
)N

. (9)

Using Taylor’s theorem on the exponential, we obtain

MZN
(t)

=

(
E[1 +

tθ̃√
N

+
(tθ̃)2

2N
+

(tθ̃)3

3!N3/2
+ . . .]

)N

=

(
1 +

t√
N

(
χ2(p(y, x)||p(y)p(x))

2M
+O(M−2)

)

+
t2

2N
E[θ̃2] +

t3

6N3/2
E[θ̃3] + . . .

)N
(10)

Note that, since θ̃ = θ − I(X;Y ), we have that var
(
θ̃
)

=

var
(
θ
)

and E[θ̃] = O(M−1) such that E[θ̃2] = O(M−2).
We now expand the third term in Eqn. 10 using our expres-
sion for variance (Eqn. 8) of θ:

E[θ̃2] = var
(
θ̃
)

+ E[θ̃]2

= var
(
θ
)

+O(M−2)

= σ2

(
log

p(y|x)

p(y)

)
(11)

+
1

M

[
(1−H(Y ))χ2(p(y, x)||p(y)p(x))∫
y

log p(y)σ2
p(y|X)/p(y)dy

]
+O(M−2).

Furthermore, note that since all the moments of θ̃ are fi-
nite, we can ignore the N−3/2 or lower terms since they
disappear as N → ∞. For the limit to exist, the co-
efficient for N−1/2 must decay at a rate at least 1/

√
N ;

thus, we must have M = Ω(
√
N). Finally, recall that

the mgf for a Gaussian with mean µ and variance σ2 is
exp(tµ+ 1

2σ
2t2). Therefore, to have a consistent estimator

(ZN has zero mean in the limit), we require the coefficient
on the t term to disappear in the limit. This requires that
M grows strictly faster than

√
N : M = ω(

√
N). Letting

M = ω(
√
N), the limit of Eqn. 10 is:

lim
N→∞

MZN
(t) = exp

(
σ2

(
log

p(y|x)

p(y)

)
t2

2

)
. (12)

Since the mgf approaches that of a zero mean Gaussian
with variance σ2

(
log p(y|x)

p(y)

)
we can conclude that the em-

pirical plug-in MI estimator is consistent and satisfies the

following CLT when M = ω(
√
N):

lim
N→∞

√
N(ÎN − I(X;Y ))→ N (0, σ2

Î
). (13)

Lastly, we demonstrate that as N → ∞, the robust influ-
ence function approaches that of the empirical such that the
consistency and CLT guarantees also hold for our robust es-

timator. Let α =
√

2
Nσ2 . Note that the influence function

corresponding to an empirical estimate is ψempir(x) = cx
where c is any constant. The robust cost function, parame-
terized by α, is given as

ψ(x;α) =

{
log(1 + αx+ (αx)2/2), x ≥ θ
− log(1− αx+ (αx)2/2), x < θ.

For simplicity of analysis, we will only consider x ≥ 0
however, the proof for x < 0 follows similarly. Note that

limN→∞ αx = limN→∞

√
2
N
x
σ = 0. Therefore, we take

the Taylor series of log(1 + y+ y2/2) at 0, where y = αx,
and obtain

ψ(x;α) = αx+ 0 · (αx)2

2
− (αx)3

3!
+ · · ·

As N → ∞, the first term dominates and we get that the
robust influence function approaches the empirical function
with c = α.

1.3. Proof of Prop. 3

Here, we first show the finite sample deviation bound on
the robust estimator, then secondly the bound on the em-
pirical. Let {xi, yi}Ni=1 ∼ p(x, y | Y) and for each yi let
{xij}Mj=1 ∼ p(x | Y) be independent samples. We define
xi , {xij}Mj=1. Recall that ÎNM = ROOT(

∑
i ψ(α(θi −

ÎNM )) where θi = log p(yi|xi)
p̂(yi;xi) and p̂(yi;xi) is the pos-

terior predictive estimator. Assuming α =
√

2/Nσ2
ÎNM

and N > 2 + 2 log ε−1, we have from Prop. 2.4 of (Catoni,
2012), the robust estimator satisfies with probability at least
1− 2ε

c ≤ ÎNM −m ≤ c (14)

where

m = E[θi] = E
[
log

p(y | x)

p̂(y;x)

]

and c =
2(1+log ε−1)

√
σ2
ÎNM

/2N

1+
√

1−2(1+log ε−1)/N
. Since the samples are

identically distributed, m does not depend on sample in-
dex i. Note that, because the denominator contains the es-
timated posterior predictive, this currently does not bound
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deviation from the true MI value, I . We can rewrite m as
follows:

m = E
[
log

p(y | x)

p̂(y;x)

p(y | Y)

p(y | Y)

]
= E

[
log

p(y | x)

p(y | Y)

]
+ E

[
log

p(y | Y)

p̂(y;x)

]
= I + E

[
log

p(y | Y)

p̂(y;x)

]
= I + Ex [KL(p(y | Y)||p̂(y;x))] . (15)

Note that the above derivation holds for both the
robust and empirical estimators. Letting b =
Ex [KL(p(y | Y)||p̂(y;x))], we obtain the presented devi-
ation bounds on the robust estimator:

b− c ≤ ÎNM −m ≤ b+ c (16)

Similarly, the empirical estimate can be bounded as in

Eqn. 14 but with c =

√
σ2
îNM

2Nε by Chebyshev’s inequal-
ity. Since the same derivation relating the true mean to the
plug-in mean in Eqn. 15 holds for the empirical, we have
that Eqn. 16 also carries through. Although the high-level
expression stays the same, we must be careful to note that
both b and c differ for the two estimators. The difference
in b is a bit more subtle. b is the expected KL divergence
between the posterior predictive and the estimated poste-
rior predictive; the estimated posterior predictive differs be-
tween robust and empirical.

1.4. Proof of Prop. 4

We now show how we approximate the probability that the
correct action is selected. Without loss of generality, let
I1 ≥ I2 ≥ . . . ≥ IA and let fa(Îa) and Fa(Îa) denote
the pdf and cdf of the estimate. Since independent samples
are drawn to estimate MI under each candidate action, their
estimates are independent. This allows us to decompose the
probability of selecting the correct action as:

P(a∗ = 1) =

∫ +∞

−∞
f(Î1)

(
A∏
a=2

∫ Î1

−∞
f(Îa)dÎa

)
dÎ1

=

∫ +∞

−∞
f(Î1)

(
A∏
a=2

Fa(Î1)

)
dÎ1 (17)

For N � 1, we have that

P(a∗ = 1) ≈
∫ +∞

−∞
N (Î1; I1, σ

2
1)

A∏
a=2

Φ

(
Î1 − Ia
σa

)
dÎ1

where σ2
a = 1

N σ
2(log pa(y|x)

pa(y|Y) ) and Φ(·) is the cumulative
distribution function of the standard normal distribution.
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Figure 1. Memory retention model. Plots of posterior model
probability of the correct retention model for 500 random trials
of 100 experiments with 500 particles. Data are sampled from
POW (left) and EXP (right). Plots show median (solid) and quar-
tiles (dashed) over the same set of runs.

2. Experiment: Memory Retention Model
Selection

We apply our method to sequential experiment design for
Bayesian model discrimination. We adopt the analysis
posed in (Cavagnaro et al., 2010) where the aim is to dis-
criminate among candidate models of memory retention.
At each stage an experiment is conducted where a simu-
lated participant is given a list of words to memorize. Af-
ter a chosen lag time dt participants are asked to recall the
words. At stage t the aim is to select lag time dt which max-
imally discriminates between two retention models, power
(POW) and exponential (EXP):

p0(dt | θ) = θ0(dt + 1)−θ1 , p1(dt | θ) = θ0e
−θ1dt .

The joint distribution combines the retention model with a
response variable yt where yt = 1 indicates the participant
remembers the words and yt = 0 otherwise,

m ∼ Unif(·), θ0 ∼ Beta(α0, β0), θ1 ∼ Beta(α1, β1),

yt | m, θ; dt ∼ Bernoulli
(
pm(dt | θ)

)
.

At each stage we select the lag time which maximizes
mutual information between the model and observation,
arg maxdt Idt(M ;Yt | Yt−1). Expectations over model
M and response Yt are discrete, and can be computed ef-
ficiently. Furthermore, under a uniform prior we have that
the model posterior is proportional to the evidences,

Zmt(yt, dt) ∝
∫
p(θ | m)

t∏
i=1

p(yi | θ,m; dt1) dθ (18)

We compare our integrated inference and planning ap-
proach to the sequential Monte Carlo (SMC) approach
of (Drovandi et al., 2014; Chopin, 2002), which utilizes the
SMC estimate of the evidence for planning: log Ẑmt =
log Ẑm,t−1 + log

∑N
i=1 w

i
mt.

We observe moderate slightly improved median perfor-
mance and tighter quartiles as shown in Fig. 1. Im-
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provements over SMC are modest, likely due to the low-
dimensional 2D integration over θ. We also find that when
data are sampled from the exponential model posterior con-
centrates quickly under both methods, which confirms find-
ings of the original authors. Both our method and SMC
significantly outperform random design.
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